
Received October 29, 2018, accepted November 14, 2018, date of publication November 28, 2018,
date of current version December 27, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2883610

UMLPACE for Modeling and Verification
of Complex Business Requirements in
Event-Driven Process Chain (EPC)
ANAM AMJAD1, FAROOQUE AZAM1, MUHAMMAD WASEEM ANWAR 1,
WASI HAIDER BUTT 1, MUHAMMAD RASHID 2, AND AAMIR NAEEM1
1Department of Computer and Software Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology,
Islamabad 44000, Pakistan
2Computer Engineering Department, Umm Al-Qura University, Makkah 21421, Saudi Arabia

Corresponding author: Muhammad Waseem Anwar (waseemanwar@ceme.nust.edu.pk)

ABSTRACT Business processes (BPs) are often modeled to elaborate process-related business requirements
(BRs). This leads to verify the complex BRs in early automation stages. Among various BP languages,
event-driven process chain (EPC) is a well-known semi-formal modeling language, which is verifiable after
transforming it into any other formal language, such as, timed automata or Petri nets. However, full potential
of EPC cannot be exploited as yet because existing EPC tools can onlymodel or verify the simple patterns and
they lack the modeling/verification of complex patterns. Moreover, only the proprietary tools are available,
which limit its applicability toward overwhelming utilization amongst widespread practitioners and research
community. This research work is the first attempt to make EPC more expressive in terms of modeling
complex patterns for real time systems. Particularly, the UMLPACE (Unified Modeling Language Profile
for Atomic and Complex events in EPC) has been developed, which adapts the concepts of UML activity
diagram for representing both simple as well as complex patterns in EPC. As a part of research, a complete
open source transformation engine is developed to transform UMLPACE source models into timed automata
target models for the verification of complex BPs. The implementation of transformation engine is carried
out in JAVA language and Acceleo tool through model-to-text transformation approach. Finally, the broader
applications of UMLPACE are demonstrated through two benchmark case studies.

INDEX TERMS Business processes, BPML, complex events, EPC, UMLPACE, verification.

I. INTRODUCTION
Business Processes (BPs) consist of pre-defined activities to
achieve a certain business objective. In the development of
business process, the first step is to gather the customer’s
requirements which further need to be documented. In the
beginning, this documentation is done using natural lan-
guage which often leads to the misinterpretation. In order
to overcome this issue, different process modeling languages
are developed. The purpose of these languages is to docu-
ment the business requirement in an efficient manner without
any ambiguity or misinterpretation. The process modeling
languages are in graphical or textual formats to facilitate
business users. Different process modeling languages (e.g.
Business Process Modeling Language - BPMN [1], Business
Process Execution Language - BPEL [2], Event-driven Pro-
cess Chain -EPC [3] and EDOC [4] etc.) represent different

set of notations for modeling but the essence remains same
i.e. flow and activities in all of them. These languages are
commonly used by business user, business analyst and soft-
ware developers [5]. The ultimate objective is to verify the
correctness of initially collected business requirements in
early automation stages.

Event-driven Process Chain (EPC) is a well-known BPML
supporting functional, dynamic and organization view. It is
a semi-formal language, which supports the modeling and
represents the business requirements in graphical view. It has
many advantages over other BPML, such as, it has a dynamic
view which supports to model the behavior of the system.
The primary task of EPC is modeling but it can also perform
different activities such analysis, simulation and verification.
These activities are often performed with the help of other
formal models like Petri net. Events are first class-citizens

76198
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-1193-5683
https://orcid.org/0000-0002-1347-3662
https://orcid.org/0000-0001-5852-1296


A. Amjad et al.: UMLPACE for Modeling and Verification of Complex BRs in EPC

meaning EPC revolves around events tomodel the occurrence
of anything happening in the real time world. It is a descrip-
tive language understandable by both human and machine.
EPC is widely used in industry and commercial areas [2].

In modern business processes, business requirements can
be of two types; simple and complex. Simple requirement
can be related to simple patterns involving synchronization,
merge or termination patterns. In EPC, events which are
satisfying these simple patterns are called atomic events. The
issue with these atomic events is the inefficiency to model
the complex requirements of the stakeholders. For example,
‘‘The order should be delivered to the customer in 24 hours’’
cannot be catered using atomic events of EPC. To facilitate
this requirement, there is a need of complex event pattern (e.g.
temporal pattern).

The complex events satisfy the complex requirement of the
stakeholders, which can be related to the logical, temporal,
spatial, data or trend pattern categories. The simple patterns
belong to the workflow patterns whereas complex patterns
are introduced from the innovative field of Complex Event
Processing (CEP). These complex events are being used
in different languages like Kim and Oussena [6] has used
Archimate language to facilitate the complex events in order
to obtain the full potential of the Archimate. Furthermore,
real time applications such as ATM cannot be modeled using
atomic events, so complex events are involved as presented
in [7]. The advantages of using these complex events in EPC
will make it more expressive. Moreover, EPC can be used
to model the complex and real time business requirements
through these complex event patterns.

Modeling and verification are two main activities for any
process modeling language. Modeling of business process
is performed for the analysis, improvement, standardization,
design and documentation of business process. Modeling is a
core element to represent all the activities to be performed in
a way that is understandable by stakeholders. Verification of
the models being generated is a common trend using process
modeling languages. Early verification is performed after
modeling phase. Although few studies [7], [8] provide partial
support for complex events in EPC, there is no study avail-
able yet to the best of our knowledge that provides the full
modeling and verification support of complex event patterns
in EPC. Consequently, it is not possible to model and verify
complex business requirements in EPC.

In this article, a novel framework is introduced to model
and verify the complex business requirements by utilizing the
major Model Based System Engineering (MBSE) activities
i.e. modeling, transformation and verification [9]. The major
contributions of this research, as shown in Figure 1, are
summarized as follows:
• Firstly, the UMLPACE (Unified Modeling Language
Profile for Atomic and Complex events in EPC) has
been introduced, which adapts the concepts of UML
activity diagram for representing both simple as well
as complex patterns in EPC. Particularly, UMLPACE
profile incorporates three sub-profiles i.e. Events and

FIGURE 1. Overview of Research.

Function, Logical Operators and Additional Process
Objects

• Secondly, a complete open source transformation engine
is developed to transform UMLPACE source models
into timed automata target models for the verification
of complex BPs. Particularly, the implementation of
transformation engine is carried out in JAVA language
and Acceleo tool through Model-to-Text (M2T) trans-
formation approach.

• Finally, the validation is performed through two bench
mark case studies i.e. Automatic Teller Machine ATM)
and Patient Flow System (PFS). Particularly, the com-
plex requirements of both case studies have been
modeled through UMLPACE. Subsequently, the UML-
PACE source models are automatically transformed to
timed automata models through transformation engine.
Finally, deadlock and reachability properties are verified
through UPPAAL tool.

Rest of the paper is organized as follow; Section II high-
lights the preliminary concept of this research which involves
EPC, literature review, research gaps and proposed solution.
Section III provides complete description of the proposed
UMLPACE. The implementation details of UMLPACE trans-
formation engine are provided in Section IV. The validation of
proposal is performed in Section V through two benchmark
case studies. The comparative analysis of UMLPACE with
other state of the art approaches and discussion is performed
in Section VI. Finally, the conclusion and future work are
given in Section VII.

II. PRELIMINARIES
In this section, the syntax and semantics of EPC, relatedwork,
research gaps and proposed solution are discussed.

VOLUME 6, 2018 76199



A. Amjad et al.: UMLPACE for Modeling and Verification of Complex BRs in EPC

A. EVENT-DRIVEN PROCESS CHAIN (EPC)
EPC was developed through combined efforts of University
of Saarland, Germany and global software system, SAP AG
in 1992 [5]. Firstly, it was integrated into the ARIS (Architec-
ture of Integrated Information System) tool. SAP R/3 models
were modeled by using EPC in 1992 indicating the usability
of EPC as soon as it developed in software global software
company. After that, a lot of tools offered business process
modeling through EPC such asMSVisio andADONIS. In the
beginning, EPC was developed for modeling where require-
ments of any business process were gathered and modeled
graphically. One of the prominent reasons of EPC popularity
is its easy understandability. After gaining much attention
in both industrial and commercial area, EPC was used for
the simulation or verification. Simulation or verification was
performed to make the output model error free.

B. SYNTAX AND SEMANTICS OF EPC
In Figure 2, The EPC notations are provided for depicting
the syntax. EPC is a directed connected graph [11], [12].
The notations or elements used for the EPC modeling are as
follows:

FIGURE 2. Elements of EPC Modeling Notations.

Events are passive elements defining pre-condition and
post-condition of the function of EPC. Event is represented
as hexagon. Functions are active elements performing activ-
ity/action. Function is represented as rounded rectangle.
Control Flow is used to connect event, function and logical
operators. It is represented as uni-directional arrow. Logical
Operators are of three types (AND, OR, XOR). Logical oper-
ators are represented as circle in EPC.

• AND operator is used for parallel execution of paths.
• OR operator is used to represent the execution of at least
one path.

• XOR: Exactly one path is executed.

Additional process objects are linked with function provid-
ing additional information. Deliverable, information object
and organization unit belongs to this category [6]

• Deliverable is the products or services produced by the
function.

• Information Object represents the input/ output of the
function in terms of information.

• Organizational Unit/Role represents the person or role
responsible for performing the certain function which is
described through organizational role/ unit.

There are few important semantics of EPC those should
be taken into consideration for modeling the error-free EPC
diagram:

1. EPC always starts with an event called starting event.
There can be one or more than one starting event in
EPC.

2. EPC ends on the event called ending event. There can
be one or more than one ending event in EPC 13], [14].

3. Events and functions should be alternated.
4. Events cannot make decisions like (OR/XOR), event

can only be associated with AND operator. Function
can use all these three logical operators for decision
making.

C. RELATED WORK
In this section, related work is presented to get insight on the
usability and applicability of EPC in different dimensions.
Krumeich et al. [7] propose the selection of eight complex
event patterns from the Complex Event Processing (CEP)
and the modeling notations of these complex event patterns
through EPC are demonstrated. Annotations are used for
the modeling of complex events in EPC. These annotations
for modeling are described theoretically; no tool is used or
developed. Amjad et al. [8] present the verification of two
complex event patterns in EPC. For this purpose, verification
through two formal methods; timed automata and time Petri
net is performed. It is concluded through case study that timed
automata supports both complex event patterns. Stefanov and
List [11] also extended the EPC language to make it suitable
for the performance measurement. Meta-model of EPC is
extended and proposed notations are discussed. Gross and
Doerr [15] have contributed in the area of Requirement Engi-
neering (RE) and EPC. The comparison on activity diagram
and EPC is conducted in the context of business process
requirements.

Various extensions of EPC are also proposed to make
it suitable to the specific domain. For example, Iris
Reinhartz-Berger et al. [16] present the extension of EPC
i.e. Configurable EPC(C-EPC) to support the configuration
of EPC. The Application-based Domain Modeling (ADOM)
is used for the design of reference models with EPC which
increase the flexibility, variability and adaptability of the
design. Similarly, Mendling et al. [17] extend the EPC to
yet-another Event-driven Process Chain (yEPC). The purpose
of this extension is to take advantage of YAWL language
and consequently, additional support for workflow patterns.
Rosemanna and Van der Aalst [18] also present an exten-
sion of EPC which is Configurable EPC (C-EPC) for ref-
erence modeling. The reason of this extension is to make
EPC more expressive towards enterprise systems. Wil M.P.
In another study, Van der Aalst et al. [19] extend the EPC
language to C-EPC to support the configuration for setting the

76200 VOLUME 6, 2018



A. Amjad et al.: UMLPACE for Modeling and Verification of Complex BRs in EPC

requirements of the specific organization. The semantics of
configurable EPC is presented in the paper. Petri-nets (Work
flow nets) are also used for mapping to EPC language. The
errors caused at any step are highlighted and suggestion for
corrections are made according to the rules provided. Another
important extension of EPC is proposed by Xue et al. [21] i.e.
lightweight event-driven process chain (lightEPC). A com-
plete semantics of extended language is introduced. Also, two
error patterns are presented. The rules to eliminate the errors
at design time are also discussed.

There exist several studies in the literature that deals
with the verification of EPC. Such verification is primar-
ily meant for the elimination of errors which are present
in the EPC models. Moreover, EPC is a semi-formal lan-
guage which is verified through formal methods such as
Petri nets. In this context, Mendling et al. [22] has pre-
sented the prediction and detection of errors in EPC. For
this purpose, 600 SAP reference models which are modeled
using EPC are selected. The verification is performed by
translation it to the YAWL language through WofYawl tool.
In another study, Van der Aalst [23] has mapped to the
semantics of Petri-nets taking advantage of the high-level lan-
guage. Finally, the formalization and verification of EPCwith
Petri-net is performed. In another study, Mendling et al. [24]
discuss the twomain problems of EPC language; OR join and
multiple start events. These problems are specified in order
to reduce the gap between conceptual models and workflow
executions. Finally, the solution of OR join and multiple
start events in EPC is proposed. In another important study,
Mendling et al. [25] generate correct EPC from the config-
urable EPC. The problems encountered in the generation of
correct EPC are also elaborated. Automatic transformation of
one language (C-EPC) to another (Correct EPC) is performed
which enables the correct EPC by using transformation rules.
Gruhn and Laue [26] have also contributed in the area EPC
verification. 1000 EPC models are selected for verification.
A great number of models are selected from SAPR/3whereas
others are from thesis or textbooks etc. Comparison of the
soundness result with three tools (i.e. ProM, EPCTools and
YAWL) is performed.

Another interesting area is the translation of EPC graph-
ical models into different textual languages. In this context,
Kapuruge et al. [12] introduced the textual language for EPC
i.e. EPClets. The EPC is a directed graph but this proposed
approach is able to generate the text along the EPC graphi-
cal description. This study benefits the developers as codes
or textual languages are easy to understand for them. The
comparison of EPCLets and EPCMarkup Language (EPML)
is also performed. Similarly, Winter and Simon [27] pro-
pose a Graphic eXchange Language (GXL) that represents
different graphical models in XML. As a proof of concept,
EPC and Petri nets are exchanges. Their meta-schema is also
discussed for the better description. Mei et al. [28] propose
Rule merged Event-driven Process Chain (REPC) framework
to reduce the gap between process modeling and business
process execution. Particularly, four important properties (i.e.

multi-view, semantic maintenance, business rule and exe-
cution support) are introduced in REPC. Comparison with
other languages such as BPMN, ARIS and SEPC shows that
REPC yields better results to support these four properties.
In another study, Yongsiriwit et al. [29] propose Business
Process as a Service (BPaaS) by integrating two business
process modeling languages i.e. EPC and BPMN. Another
important study is performed by Schunselaar et al. [30]
where business requirements are modeled through EPC.
Subsequently, the EPC models are directly transformed to
ERP systems.

D. RESEARCH GAPS AND PROPOSED SOLUTION
It is concluded from the above section that there are two
types of events in EPC i.e. atomic events and complex events.
Atomic events in EPC represent the support of simple patterns
such as parallel synchronization. For example, the order is
delivered by company and payment is made by the customer
represent the parallel synchronization which is represented
by the atomic events in EPC. The main activities of EPC are
modeling, simulation and verification. In the above related
work, these activities are well-supported by atomic events
of EPC using different tools. Consequently, simple business
requirements are easily modeled and verified through atomic
events of EPC.

Complex events in EPC represent the support of complex
event patterns such as event time and event cardinality. For
example, user cannot enter incorrect PIN in ATM more than
three times. This example illustrates the cardinality (three)
of the event and it belongs to the complex event category.
It is concluded from the related work that the support for
complex events in EPC is mandatory to model and verify the
complex business requirements. However, the modeling and
verification of complex events is not supported yet in EPC.
There are limited studies available [7], [8], [31], in litera-
ture that try to support complex events in EPC. Therefore,
there is a strong need to develop a complete solution that
support both atomic and complex events in EPC for the
modeling and verification of large and complex business
requirements.

This study proposes UMLPACE to support the modeling
and verification of both atomic as well as complex events in
EPC. Particularly, six complex events are included in EPC [7]
as follows:

1. Event Cardinality: ‘n’ represent the number of
time an event occurs. So, n > 1 means that
any event occurring more than one time defines its
cardinality.

2. Event Exclusion: A condition where one event should
be absent for the occurrence of another event is event
exclusion.

3. Event Sequence: Event occurring in a specified order
defines its sequence.

4. Event Time: Event is bound to the time condition.
Before or after time conditions can be defined by using
event time.

VOLUME 6, 2018 76201



A. Amjad et al.: UMLPACE for Modeling and Verification of Complex BRs in EPC

FIGURE 3. Extended EPC Meta-model.

5. Event Trend: Two or more than two events can rep-
resent the trend of occurring events in increasing or
decreasing order.

6. Data Dependency: In data dependency, data condition
must hold true for the existing data.

III. UMLPACE
Unified Modeling Language (UML) is a general-purpose
language. UML can be extended through profile mechanism
to make UML a domain specific modeling language. One
example of UML profile is MARTE which was developed
for the Modeling and Analysis of Real-Time and Embed-
ded systems [32]. UML profile is a package with the ‘‘Pro-
file’’ guillemet. UML profile mainly consists of stereotypes,
tagged values and constraints. We have developed a UML
profile that supports the atomic and complex events of EPC.
UML 2.0 supports two kind of diagrams i.e. structural dia-
grams and behavioral diagrams. Examples of structural dia-
grams are class diagrams and object diagrams. Few examples
of behavioral diagrams are activity diagram, state-machine
diagram and use-case diagram.

In UMLPACE the concepts of UML activity diagram are
extended. The reason to extend activity diagram are as fol-
lows: 1) Activity diagram is a behavioral diagram which can
be used to represent the behavior of the system. It is the
commonly used UML diagram in business process modeling.
2) Activity diagram has semantics similar to the Petri net
for the graphical description of the flow oriented processes
like EPC [33]. Moreover, EPC and activity diagram share
the same semantics. Both languages are used to represent the
concurrent flow of the business processes.

A. EXTENDED EPC META-MODEL
In this section, meta-model of EPC [10] is extended. Six
complex events are introduced in this meta-model (repre-
sented as blue color). UMLPACE is developed by using the
stereotypes from EPC meta-model [10] and activity diagram

meta-classes. The extended EPC meta-model is shown in
Figure 3. On the basis of this meta-model, UMLPACE is
established. This meta-model of EPC is divided into three cat-
egories. 1)Events (atomic and complex) and function 2) Log-
ical operator 3) Additional process objects.

B. UMLPACE DESCRIPTION
TheUMLPACE is developed in Papyrusmodeling editor tool.
It is an eclipse plug-in written in Java. Figure 4 provides
the complete view of the UMLPACE. From Figure 3, all
the constructs of EPC languages are selected and its UML
profile is developed by extending it with semantically equiv-
alent constructs of UML activity diagram [10]. In Figure 4,
meta-class and stereotypes are used. Stereotypes represents
the constructs of EPC language whereas meta-class represent
the constructs of UML activity diagram, which is extended
form of EPC. It is categorized into three sub-profiles to make
it more organized and easy to understand. The division is
followed by the meta-model division in Figure 3.
• Sub profile for events and function
• Sub profile for logical operators
• Sub profile for additional process objects

1) SUB PROFILE FOR EVENTS AND FUNCTION
The first sub profile contains following EPC elements; start
event, end event, atomic event, complex event and function
as stereotypes [10]. These can be called basic elements which
are minimum requirement to model an EPC. The descriptions
of six complex event patterns which are generalized with
complex events are also described along with atomic event.
This sub profile is shown in Figure 4.
�Start_Event�
It can be viewed in Figure 3 that EPC is composed of events
and function/ functions. Event can be at three positions; start,
intermediate or end. In addition, there can be one ormore than
one start events in EPC. In order to model the start event,
we have extended Start_Event stereotype with InitialNode

76202 VOLUME 6, 2018



A. Amjad et al.: UMLPACE for Modeling and Verification of Complex BRs in EPC

FIGURE 4. UML Profile for Atomic and Complex Events in EPC.

meta-class. By using this stereotype, one or more than one
Start_Event can be mapped to the activity diagram while
modeling the business requirements through UMLPACE.
�End_Event�
According to the meta-model of EPC in Figure 3, there can
be one or more than one end events in EPC. End_Event
stereotype is extended with the ActivityFinalNode meta-
class. By using the ActivityFinalNode for activity diagram,
one or more than one paths as End_Event stereotype can be
represented.
�Function�
The Function can be a complex one and may be an abstract
representation. According to EPC meta-model, there should
be at least one function to model the EPC. We have extended
Function stereotype with Action meta-class. By using this
meta-class, activity diagram can facilitate the modeling of

Function of EPC. This stereotype can be applied on Action
of activity diagram.
�Atomic_Event�&�Complex_Event�
Event represents anything happening in the real world.
It can be atomic event or complex event according to the
nature of business requirements. There can be minimum
two or maximum more than two events in EPC as per EPC
meta-model. We have extended Atomic_Event and Com-
plex_Events with ControlFlow meta-class. Now, the atomic
and complex events can be mapped to the activity diagram
using UMLPACE. We have introduced six complex events;
event cardinality, event exclusion, event sequence, event
time, event trend and data dependency in UMLPACE. These
complex events are generalized with the Complex_Event
stereotype. These six complex events are discussed
below:

VOLUME 6, 2018 76203



A. Amjad et al.: UMLPACE for Modeling and Verification of Complex BRs in EPC

�Event_Cardinality�
Cardinality represents the number of times an event occurs.
Event_Cardinality stereotype is generalized with Com-
plex_Event stereotype which is further extended with the
ControlFlow meta-class. According to the restriction of
UML, stereotype cannot be extended with other stereotypes.
The stereotypes can only be generalized with other stereo-
types. This is the reason event cardinality is generalized with
complex event. It is clear from the above statement that by
using ControlFlow, Event_Cardinalty stereotype is extended.
It does not contain any tagged value. The guard condition
on the ControlFlow represents the number of times an event
occurs. This stereotype facilitates the full modeling capabili-
ties of Event_Cardinality in EPC.
�Event_Exclusion�
Event exclusion represents the condition which is excluded
for some event to be executed. It is also generalized
with complex event which is further extended with Con-
trolFlow meta-class. This stereotype is having a tagged
value named Condition. The type of Condition is String.
It means that string represent the condition for the exclu-
sion. This stereotype and tagged value enable event exclusion
in EPC.
�Event Sequence�
Event sequence represents the execution of events in sequen-
tial order. It was partially achieved by EPC earlier. In UML-
PACE, event sequence stereotype make it possible to fully
model event sequence. It is extended with ConrolFlow
meta-class with intermediately Complex_Event stereotype
between these two. This stereotype consists of one tagged
value named Sequence_No where event which is assigned
Sequence_No = 1 is executed first.
�Event_Time�
Time is an important factor while considering many real
time applications. This Event time stereotype is generalized
with complex event containing one tagged value as clock.
TimeEvent is separately placed in this sub-profile as a meta-
class. It is used in depicting the type of clock. By using
TimeEvent, a clock can represent the before or after condi-
tions related to time.
�Event_Trend�
The trend of two or more than two event needs to be observed
in increasing or decreasing order when critical analysis of
real time application such as marketing is performed. This
stereotype is also extended with ControlFlow as ControlFlow
represent the atomic and complex events. This stereotype
has two tagged values. One is Threshold which can be any
arbitrary number for observing the increasing or decreasing
trend pattern. Second tagged value is Function which is of
string type. A Function keeps the record of two ormore events
and increment their values.
�Data_Dependency�
Data dependency is used to check the validity of the accounts
by accessing/matching the information from existing
database. Here the Data_Dependency stereotype is extended
with the ControlFlow meta-class. Data_Dependency

stereotype has one tagged value which is DependencyCon-
dition. This should satisfy the condition holding for the
dependency. Type of tagged value is String.

2) SUB PROFILE FOR LOGICAL OPERATORS
The sub profile for logical operators consists of AND,OR and
XOR which are further divided into two categorie; split and
join. Split performs the division of the outgoing flows and
join performs the collection of incoming flows. These logical
operators are used to facilitate both atomic and complex
events. The Figure 4 illustrates the concepts being used as
stereotypes and meta-classes for this sub profile.
�AND_Split�
In EPC, when two parallel executions need to be performed
rather than single path to be followed, AND_Split stereotype
is used. This behavior is demonstrated by using AND Split
in EPC which is divided into parallel paths satisfying one
incoming and two or more outgoing arcs. Its equal seman-
tic is ForkNode in activity diagram. Therefore, by using
UMLPACE, the AND_Split stereotype can be applied on the
ForkNode meta-class.
�AND_Join�
Opposite to AND_Split, AND_Join in EPC has two or more
incoming and one outgoing arc representing the parallel
execution of the incoming arcs. This stereotype is extended
with JoinNode in activity diagram. JoinNode can be mod-
eled using activity diagram and AND_Join stereotype can be
applied using UMLPACE.
�OR_Split�
The need of using OR_Split arises when user is intended to
perform at least one or more than one function. This behavior
is captured by OR_Split in EPC. It has one incoming and two
ormore outgoing arcs executingminimum one outgoing flow.
The OR_Split stereotype is extended with ForkNode meta-
class. In Figure 4, it is illustrated that both AND_Split and
OR_Split are extended with the ForkNode. The difference
among them is the use of guard condition in OR_Split which
controls the outgoing tokens.
�OR_Join�
Unlike OR_Split, OR_Join has one or more incoming arcs
and one outgoing arc. This stereotype is extended with
MergeNode meta-class. The OR_Join stereotype can be
applied on the MergeNode in activity diagram to facilitate
OR_Split.
�XOR_Split�
When exactly one path is selected among multiple paths,
the XOR_Split is used to model this behavior. In EPC,
XOR_Split has one incoming and two or more outgoing
arcs where only one outgoing can be executed. XOR_Split
stereotype is extended with DecisionNode meta-class having
guard condition onControlFlow. This guard condition as true/
false indicate the decision making process.
�XOR_Join�
In EPC meta-model, XOR_Join has two or more incoming
and one outgoing arc. It is extended with merge node of
activity diagram. The purpose to use this stereotype is to

76204 VOLUME 6, 2018



A. Amjad et al.: UMLPACE for Modeling and Verification of Complex BRs in EPC

select exactly one path among multiple paths. This ultimately
makes a decision using guard condition.

3) SUB PROFILE FOR ADDITIONAL PROCESS OBJECTS
Like logical operators, additional process object may or may
not part of an EPC. A complete EPC language cannot be
presented without additional objects. However, additional
process objects can be used to represent the additional infor-
mation regarding the functions of EPC. In this sub-profile,
four additional process objects and three connectors used to
link these additional process objects are presented as shown
in Figure 4. The description of these elements is as follows:
� Deliverable�
In presented EPC meta-model (Figure 3), the modeling of
deliverable is important when a function produce some prod-
uct or service to the customer. The stereotype Deliverable
is extended with the ObjectNode using UMLPACE. Now,
the ObjectNode which is present in the activity diagram can
illustrate the concept of deliverable in EPC.
�Information_Object�
Information_Object when associated with the function is
used to represent the significant information regarding that
function. This stereotype is extended with the DataStoreNode
meta-class. Both are semantically equal.
�Organizational_Unit/Organizational_Role�
In the meta-model of EPC, Organizational_Unit / Organiza-
tional_Role is used to represent the responsibility of the orga-
nization role/unit towards a function. These both stereotypes
can be applied to the Activity Partition which represent the
swim-lanes used to depict one particular Unit/ Role account-
able for a function.
� Input/Output_Flow_Connector�
In EPC meta-model (Figure 3), there is only one
input/output flow connector linked with function. This
connector is used to link deliverable with function. The
same is obtained by the concepts of activity diagram.
The stereotype Input_Output_Fow_Connectoris extended
with the ObjectFlow meta-class. Now, the ObjectFlow
is linked with the ObjectNode making the modeling of
Input/Output_Flow_Connector easy to use.
�Data_Flow_Connector�
Data_Flow_Connector in EPC is used to link Informa-
tion_Object with function. ObjectFlow is extended for
Input/Output_Flow_Connector as well as for Data_Flow_
connector.
�Organization_Flow_Connector�
Organization_Unit / Organization_Role is linked with the
function with the help of Organization_Flow_Connector.
This stereotype can be applied to ActivityPartition by using
UMLPACE. It is analyzed that all organization related con-
cepts are associated with the activity partition which is used
to represent the same concept by swim lanes.

We have proposed eleven stereotypes in the sub-profile
for events and function. Six stereotypes are proposed in
sub-profile for logical operators. In the last sub-profile for
additional process objects, seven stereotypes regarding EPC

are proposed. The practical application of these stereotypes
is further demonstrated in Section V where two case studies
(ATMand PSF) aremodeled usingUMLPACE. The complete
UMLPACE profile along with sample case studies can be
downloaded at [40].

IV. TRANSFORMATION ENGINE
As a part of research, a complete transformation engine is
developed to automatically transform the source UMLPACE
requirements. This section deals with the implementation
details of transformation engine. Firstly, the architecture of
transformation engine is discussed. Secondly, the transforma-
tion rules are presented.

A. ARCHITECTURE OF TRANSFORMATION ENGINE
The architecture of transformation engine is shown in
Figure 5. There are two main components of transforma-
tion engine i.e. User Interface (UI) and Code generator. The
implementation of transformation engine is carried out in
JAVA language and Acceleo tool by utilizing model-to-text
(M2T) transformation approach.

FIGURE 5. Architecture of transformation engine.

User Interface: Main, MainGUI and Launcher are the
classes used to develop the user interface of transforma-
tion engine. Main is used for execution and its functional-
ity resides in MainGUI and Launcher. This interface shown
in Figure 6 consists of various components. Among them,
the Input Model and Destination Folder can be obtained
using Browse button. The Generate button can generate the
timed automata .xta file from UMLPACE models. Status is
used to represent whether file is successfully generated or
not. By using Reset button, the input model and destination
folder can be replaced. At the end, two tools; Papyrus and

VOLUME 6, 2018 76205



A. Amjad et al.: UMLPACE for Modeling and Verification of Complex BRs in EPC

FIGURE 6. User Interface of Transformation Engine.

UPPAAL can be opened directly by using this interface. Close
button can be pressed to close the interface view from the
screen.
Model Generator: The Input Model (.uml) and destination

Folder received from the user interface of UTATE (UML
to Timed Automata Transformation Engine) are accessed
through model generator. It is implemented in java and
Acceleo tool to transform the concepts of UMLPACEmodels
to timed automata. Model generator consists of two compo-
nents; Generate and Template. As a result of execution, two
files (i.e. .xta and .q) are generated through generate.mtl file.
The file generated with xta extension is basically a timed
automata model that is compliant with UPPAAL tool. On the
other hand, the file with q extension contains the verification
properties.

UTATE is designed to maintain the significant transforma-
tion properties as follows:

1) SCALABLE
UTATE is highly scalable as it is based on modular archi-
tecture (Figure 5). Therefore, it can easily accommodate
the future enhancement as per requirements. For example,
it is straightforward to add new transformation rules in order
to incorporate more UML activity constructs or even for
other formalisms like Petri nets by only modifying Model
Generator component of UTATE. Similarly, user interface of
UTATE can be upgraded by only modifying User Interface
component. In addition, UTATE is built on widely acceptable
technologies which are highly supportive for scalability. For
example, the core business logic (transformation rules) of
UTATE is implemented in Java language which is widely
used in several open source model driven projects. To sum-
marize, UTATE is built on a style that is eager to support
scalability.

2) DETERMINISTIC
UTATE is deterministic which is intended to produce deter-
mined output against provided input. For example, we have
written Java code in such a manner that against UML activity
diagram, text file of timed automata is generated without any
syntactic or semantic error.

3) EASY TO USE
Simple user interface is provided to configure desired options
in UTATE as shown in Figure 6. All the important configu-
rations like browsing of input model and destination folder,
availability of status bar and generate / close buttons etc. are
provided in UTATE with simplicity.

4) CONTROLLED
In UTATE, transformation is performed in a controlled man-
ner e.g. explicit instructions are provided about transforma-
tion process etc. Furthermore, transformation mechanism is
well documented, guided through user manual and applica-
bility is shown with the help of multiple case studies.

5) OPEN SOURCE
UTATE is publically available [40], so that, both industry and
academia can utilize it for further improvements / enhance-
ments as per requirements.

6) CORRECTNESS
All the syntactic and semantic correctness is handled in the
UTATE effectively. Syntactic correctness means that the gen-
erated target models represent well-formed instances of target
language i.e. timed automata.

B. TRANSFORMATION RULES
This section provides the mapping rules which are used to
map UMLPACE into timed automata. These rules produce a
target model for verification through transformation engine.
For the modeling of UMLPACE models, Papyrus modeling
editor of Eclipse is used. For the verification, UPPAAL tool
is used. UPPAAL is used for the simulation and verifica-
tion of the models produced using timed automata. Model
of UPPAAL is composed of states and transitions. States
carry clock and transition carry synchronization, guard and
update [35].

1) TRANSFORMATION RULES FOR EVENTS AND FUNCTION
According to the meta-model division in Figure 3, transfor-
mation rules are developed for events and function, logical
operators and complex events separately. Transformation rule
for events and function is provided in Table 1. Three param-
eters are used in this table: 1) Activity diagram depicts the
graphical notation used for modeling initial node, final node,
control flow and action. 2) Timed Automata represents the
graphical notation used to model the equivalent notations of
activity diagram. 3) Description provides the mapping detail
of UML activity diagram to timed automata.

76206 VOLUME 6, 2018



A. Amjad et al.: UMLPACE for Modeling and Verification of Complex BRs in EPC

TABLE 1. Transformation rules for Events and Functions.

The transformation rules for complex event are associ-
ated with the ControlFlow in activity diagram as UMLPACE
complex events stereotypes are based on ControlFlow. The
transformation rules to transformUMLPACE complex events
stereotypes into equivalent timed automata model are pro-
vided in the Table 2.

2) TRANSFORMATION RULES FOR LOGICAL OPERATORS
Transformation rules for logical operators which are used to
map the activity diagram into timed automata are provided
graphically and semantically in Table 3.

Transformation rules for additional process objects are
not implemented in the engine because such details are not
covered in this study to limit the broader scope. This major
focus of this study is the complex / atomic events, functions
and logical operators. The complete source code of transfor-
mation engine along with user manual can be found at [40].

V. VALIDATION
The applicability of our approach is presented in this section
with the help of ATM and patient flow system case studies in
subsequent sections.

A. ATM CASE STUDY
This case study consists of three sections. Firstly, introduction
of requirements are discussed. Secondly, in next section the
details of modeling in UMLPACE is provided. Finally, trans-
formation and verification of ATM case study is performed.

Requirements: In ATMcase study, two scenarios are com-
monly observed. One is of ATM fraud detection and another
of simple transaction process. The biggest challenge involved
in banking field comprise of fraud detection and cross selling.
The faulty operations regarding bank are often led by the
ATM machines or through web services. Our area of focus
is ATM fraud detection where the misuse of ATM machines
is conducted by the people to gain access to the other people’s
account for the sake of unauthorized withdraws of the money.

The complex event patterns involved in the modeling of
this process enrich the flow and can detect the threat which
indicates a fraud. Few examples of such fraud detection are
the identification when a customer withdraws a very large
amount or changing the password. The requirements we have
catered in our process are of two types; one leads to the
fraud detection and another leads to the simple transaction
process.

1. Card checking should be associated with data depen-
dency where the data in the form of card information
(account number) is matched with the existing data to
ensure the validity of the card.

2. Event Cardinality is associated with the incorrect PIN.
This complex event indicates that if the user enters
incorrect PIN more than three times, an event counter
measure to fraud detection should be executed.

3. Counter measure to fraud detection is further checked
that if incorrect PIN is entered three times and time
duration is less than 15 minutes then user’s card should
be captured.

4. ATM is used for different purpose by different users.
Some withdraw cash, some requires balance inquiry
and some asks for the statement. Two most frequently
used transactions are cash required and balance inquiry
required. The trend of these two events is observed by
theEvent Trend complex event patterns. Event trend
take place with two or more than two events where the
trend of the event is observed in increasing or decreas-
ing order. Threshold value is provided to observe the
increasing or decreasing trend.

5. Event Exclusion pattern in ATMmeans that user cannot
withdraw more than 25,000 US dollars in one day.

Modeling: In Figure 7, ATM example is modeled in activ-
ity diagram through UMLPACE.

It is mandatory to use UMLPACE stereotypes in order
to model the above five requirements. �Start_Event�
stereotype is applied on the initial node User_Enters_ATM,

VOLUME 6, 2018 76207



A. Amjad et al.: UMLPACE for Modeling and Verification of Complex BRs in EPC

TABLE 2. Transformation rules for complex events.

subsequently a Machine_displays_message is visible on
ATM machine is represented by the�function� stereotype
of the UMPACE. The decision is taken with�XOR_Split�
stereotype which is represented by decision node in activity
diagram. Guard condition is applied If ATM_is_available
== false, then user moves to another machine. Thereafter,
activity final node will be executed as �End_Event�.
If the ATM_is_available == true, then the �function�
Use_inserts_a_card is performed by a user. After inserting an
ATM card, decision is taken represented by�XOR_Split�
connector where machine decides whether it is a Valid Card
which is shown as Valid_ATM_card== true or Invalid ATM
card is shown as Invalid_ATM_card == false. To check the
validity of card before decision node, UMLPACE stereotype
�Data_Dependency� is applied. It is used to facilitate the
requirement.

If the card is invalid, user can again insert a card else
User_insert_PIN. Again, when the PIN is inserted, decision is

taken by XOR split connector to see whether user has inserted
the PIN correctly or incorrectly. PIN_correctly_entered
== true represents that pin is correctly entered while
PIN_correctly_entered== false represents that PIN is incor-
rectly entered. Here, two stereotypes of �Complex_Event,
Event_Cardinality� are applied. Stereotype of complex
event is used to differentiate from atomic event and event
cardinality represents the type of complex event applied.
If PIN is incorrectly entered then counter measure to fraud
detection as a �function� is executed. Further, the user’s
card is captured which shows a fraud case. Exit2 represented
by�End_event� is one of the end events here. It is triggered
when two stereotypes �Event_Time, Event_Cardinality�
are fulfilled where it ensures that incorrect PIN is entered
more than three times and within 15 minutes. Along with
these two stereotypes, �Complex_event� is also applied.
These three stereotypes together model the requirement 2
and requirement 3.

76208 VOLUME 6, 2018



A. Amjad et al.: UMLPACE for Modeling and Verification of Complex BRs in EPC

FIGURE 7. Modeling of ATM Requirements through UMLPACE.

If the PIN is entered correctly, then user can see
multiple options on the screen and should select one
particular action at one time. After Select_an_action,
�OR_Split� is placed which represents that user can
select minimum one action and can also perform more than
one action. Four events; Cash_required, Balance_Inquiry
Required, Statement_Required and Exit_Required are pre-
sented. These four events have corresponding functions.
When User_selects_balance_Inquiry, current balance will
be viewed. If the user_selects_statemen_required, it trig-
gers the send acknowledgement which notifies the reply.
User_select_cancel_required automatically pass the flow
to the action_complete. User_selects_Balance_withdarwis
associated with UMLPACE stereotype�Event_Exclusion�
where user cannot enter more than 25000 US dollars in
one day in order to fulfill the requirement 5. To ful-
fill the requirement 4, �Event_Trend� is observed for

Cash_required and Balance_inquiry_required. It represents
that among these two events, whether user uses cash or bal-
ance inquiry required. It is recorded as a pattern against a user.
An arbitrary threshold value, ten (10) is used to observe the
increasing or decreasing trend. All these four events reach to
the�OR_Join� which enables the action completed. Then,
Exit is another final state.

Transformation and Verification: UMLPACE transfor-
mation engine is utilized to automatically transform the ATM
case study model into timed automata target model in order to
perform the verification. UPPAAL tool takes timed automata
model in xta format. Furthermore, verification properties (e.g.
reachability, deadlock etc.) are expressed in Timed Compu-
tational Tree Logic (TCTL) [32]. UMLPACE transforma-
tion engine is capable of generating both timed automata
model and TCTL properties from the source model as shown
in Figure 8. Input Model of Activity Diagram for ATM

VOLUME 6, 2018 76209



A. Amjad et al.: UMLPACE for Modeling and Verification of Complex BRs in EPC

FIGURE 8. Transformation of ATM Model in Timed Automata.

TABLE 3. Transformation rules for logical operator.

is provided. The extension of this model is .uml. It will
only select models with .uml extension. Destination Folder
is browsed as desktop. After browsing Input Model and Des-
tination Folder, Generate button is enabled. By clicking on the

Generate button, the text file .xta is generated. Status shows
that file is successfully generated. This Case Study .xta file
is opened in Notepad++ displaying the text obtained from
the activity model. Case Study .xta file will automatically
produce a model in timed automata.

When the model is loaded in the UPPAAL, its syntax is
checked first. This validation by using simulation ensures
the correctness and completeness of the model uploaded.
After simulation, verification is performed. We have only
considered two verification properties.

• Deadlock: Deadlock stops any state from going to the
next state.

• Reachability: Soundness is when an initial state is reach-
able to the final state through some firing sequence.
Reachability defines that specific condition holds in
some state from the initial state. The reachabil-
ity to final state can be considered as soundness
in EPC.

It can be seen from the Figure 9 that the two properties
are successfully verified. First property A [] not deadlock
represents that there is no deadlock in the system. Second
property E<> Process. Exit2 represents that the final state
‘Exit 2’ is reachable from the initial state by using any path.
Exit 2 refers to the fraud detection based end event as shown
in Figure 9.

B. Patient Flow System Case Study
To keep the patient flow system efficient is the forefront
duty of every hospital. Patient flow systems are made to
ensure the care and quality provided to the customer with
best of their services. This system is an example of real-time

76210 VOLUME 6, 2018



A. Amjad et al.: UMLPACE for Modeling and Verification of Complex BRs in EPC

FIGURE 9. Verification of ATM Case Study in UPPAAL.

system. Also, it is a complex process which consists of
simple as well as some complex requirements. The require-
ments need to be modeled and verified. Requirement, mod-
eling, transformation and verification is carried out in this
section.

Requirement: Following are the key requirements of this
case study.

1. Event Time: The laboratory tests should be available to
the patient within specified time.

2. Event Sequence: Sequence of following occurring
events should be followed. Sequence 1 means that this
event should execute prior to sequence 2. And sequence
2 means that it should be executed prior to sequence
3.sequence 3 is executed at the last.

• Sequence 1: Medical history needed.
• Sequence 2: Physical examination required.
• Sequence3: Laboratory tests required.

3. Data Dependency: The patient should visit the doctor
according to the visiting number allotted.

Modeling: In Figure 10, Patient’s visitis the starting event
represented as stereotype �Start_Event�, then an activ-
ity is performed which is representing as Checking doc-
tor’s availability. This activity is represented by stereotype
�function� in UMLPACE. A decision is taken with the help
of stereotype�XOR_Split� connector showingwhether the
Doctor is available or Doctor is unavailable. If the doctor
is unavailable the guard condition Doctor_is_avialble ==
false executes then some temporary arrangements are made.
The temporary arrangement means arranging a duty doctor to
examine the patient. In second case, if the doctor is available
thenDoctor_is_available== true is executed and check-up is
performed with Doctors_examination. Patient_turn is linked

with the �Complex_Event, Data_Dependency� to satisfy
the requirement 3.

This check-up is further split with a AND operator
indicating the parallel execution of three events; Medical
history needed, physical examination and laboratory tests
required. These should be performed in sequence provided
and stereotype�AND_Join� collects the results of the exe-
cution. The �Complex_Event, Event_Sequence� stereo-
type on these three events depicts that sequence is followed
and requirement 2 is satisfied. Further, on step three,
<Event_Time� is applied to fulfill the requirement 1.
At first, control is given to the medical history needed, then
physical examination is provided and after these two lab-
oratory tests are made. After it, the disease is diagnosed
and prescription_provided by the doctor. The stereotype
�XOR_Join� can have the output from one path at one
time. After it, stereotype �Payment_made� is applied on
the action of the activity diagram. Activity final node named
Patient_exit indicates that the checkup is being completed
and it must be followed by the payment by the patient. Turn
to the next patient is the stereotype �End_Event� in this
example.

Transformation and Verification: UMLPACE transfor-
mation engine is utilized to automatically transform PFS
model into timed automata target model. We are omitting
the details of transformation and verification process for
PSF case study because such details are already described
in ATM case study. Figure 11 and Figure 12 represents the
transformation and verification of PFS case study. However,
interested readers can find complete models of both ATM and
PFS case studies along with transformation engine here [40].
The transformed model is verified with deadlock and reach-
ability to final state i.e. Turn_of_next_patient as shown in
Figure 12.

VOLUME 6, 2018 76211



A. Amjad et al.: UMLPACE for Modeling and Verification of Complex BRs in EPC

FIGURE 10. Modeling of PFS Requirements through UMLPACE.

VI. COMPARATIVE ANALYSIS AND DISCUSSION
In this section, comparative analysis with the existing liter-
ature is performed to highlight the importance of the work
done. We have found four studies where complex event
patterns are considered in the context of EPC. We have
used five evaluation parameters to perform comparative anal-
ysis of studies with UMLPACE as follows: 1) Reference
No is used to refer the selected research study. 2) No of
complex event patterns represents the number of complex
events patterns which are targeted in the particular study. The
selected research studies are checked against 3) Modeling,
4) Transformation and 5) Verification of the complex events
in EPC. Particularly, the objective is to evaluate the mod-
eling, transformation and verification support for complex
events in EPC. The parameters 3, 4 and 5 are evaluated as
Yes, No or Partial. 6) Tool support is represented in last
column.

In Table 4, total four studies in the given domain are
selected. Different research papers have used different num-
ber of complex event patterns. For example, study [7] has
selected eight complex event patterns, [8] and [20] both have
selected two complex event patterns and [31] has selected
one complex event pattern. In the column targeting number
of complex event pattern, our proposed approach has used
6 complex event patterns. Although [7] has usedmore number
of patterns than our proposed approach, this study has neither
performed transformation nor verification. Modeling is also
performed with the help of annotations. The business process
modeling language is same in all the papers i.e. EPC. It can
be analyzed from the Table 4 that two studies ([7] and [20])
have performed modeling of complex events in EPC. On the
other hand, studies [8], [31] do not purely deal with the
modeling of complex events and only conceptual mapping of
complex events is provided by utilizing the existing modeling

76212 VOLUME 6, 2018



A. Amjad et al.: UMLPACE for Modeling and Verification of Complex BRs in EPC

FIGURE 11. Transformation of PFS case study.

FIGURE 12. Verification of PFS case study.

concept of EPC. It can also be analyzed from the Table 4 that
there does not exist any study that provides complete tool
support in the form of transformation engine. In study [8],
verification of complex event is performed, however, trans-
formation support is partial because only mapping of EPC to
verification language is performed without any proper tool
support. Finally, it can be concluded from the Table 4 that
UMLPACE is the only approach that fully support modeling,
transformation and verification of complex events patterns in
EPC. Furthermore, it also provides complete tool support as
a UMLPACE transformation engine.

A. DISCUSSION
In this article, UMLPACE is introduced to include the
modeling, transformation and verification support for com-
plex events in EPC. There are few attempts in this area,

for example, Birgit Korherr and Beate List presented UML
profile for EPC but it only covers atomic events [41]. There-
fore, this study is the first attempt to propose the modeling of
six complex events (Event cardinality, event exclusion, event
sequence, event time, event trend and data dependency) in
EPC by using UMLPACE. Besides complex events, UML-
PACE includes all other elements (atomic events, logical
operators and additional process objects) of EPC in this pro-
file to give a complete view of the EPC. Therefore, by using
UMPACE, equal benefits to both a business user and software
developer are gained. Some advantages of UMLPACE are as
follows.
• Real time:UMLPACE enables the modeling and verifi-
cation of complex real time business processes. It is not
possible to manage real times business requirements in
EPC before UMLPACE.

VOLUME 6, 2018 76213



A. Amjad et al.: UMLPACE for Modeling and Verification of Complex BRs in EPC

TABLE 4. Comparative analysis with state-of-the-Art.

• Behavioral modeling: For model to be useful, it should
be correct and meaningful. UMLPACE supports the
behavioral modeling as it is based on the semantics of
activity diagram and EPC language. Consequently, it is
verified to obtain correct and meaningful models [42].

• Formal Verification: UMLPACE is fully supported by
transformation engine to automatically generate timed
automata target models from the source models. Con-
sequently, complex and real time business requirements
can be formally verified in early automation stages.

Although UMLPACE incorporates six important complex
events in EPC for modeling and verification of complex
business requirements, it is still required to include more
complex events in UMLPACE to manage modern business
requirements particularly for real time systems. Furthermore,
UMLPACE does not provide the complete support for addi-
tional process objects. Despite such minor limitations, UML-
PACE provides strong basis to model and verify complex and
real time business processes. If we talk about the modeling
capability of the UMLPACE with other approaches, so it
is two step modeling. In first step, we have to develop a
UML activity diagram. This UML activity diagram is created
with the help of mapping given in the UMLPACE. In the
second step, UMLPACE need to be applied on the activity
diagram. This complexity of the UMLPACE is associated
with two-step process. The modeling is considered incom-
plete without performing these two steps. By using UTATE,
the model we have developed using UMLPACE can be veri-
fied at design phase. Early verification at design phase is used
to improve the software development life cycle by identifying
errors or bugs.

It can be argued that the parallel execution of fork node
in activity diagram can be modeled using the timed automata
CCS parallel composition operator which allows interleaving
of actions as well as hand-shake synchronization. In this
regard, it is important to mention here that the fork is a control
node in UML activity diagram which has one incoming edge
and multiple outgoing edges. It is used to split incoming flow
into multiple concurrent flows within a single process. On
the other hand, there are two major elements (i.e. sequential
flow and CCS operator) in timed automata to achieve the
concurrent flows. Essentially, CCS operator is used to achieve

concurrency where more than one processes combined into
single process [43]. In Contrast, sequential flow is used to
achieve concurrency in timed automata where modeling of
a single process is performed. As we have used a single
activity in UML activity diagram which is transformed to a
single process in timed automata, the mapping of fork node
to sequential flow is carried out in UTATE. Furthermore,
the major functionality can be achieved through sequential
flow only because it can produce same resultant tokens.
Therefore, we have ignored the transformation of fork to CCS
operator in UTATE to avoid complexity.

It can also be argued that the business artifacts represen-
tation methods have evolved little over the last decades and
other modeling languages such as BPMN naturally replaced
EPC in different areas. BPMN is considered as one of the
most popular and standard language by Object Management
Group (OMG). However, the key advantages of EPC over
BPMN are as follows:

1) Increased usability: To model complex event pat-
terns (e.g. event cardinality or event trend), EPC repre-
sent a promising means for depicting these patterns in
relation to business processes. As these complex pro-
cesses are generated from business scenarios for which
non-technical experts are responsible, therefore, EPC
being a simple and easy to understand language is used
by both non-technical and domain experts. On the other
hand, in order to understandBPMN, domain experts are
required.

2) Wide tool support: There is a wide variety of EPC
tools available such as ARIS, Microsoft Visio 41]
etc. at industrial and academic level. A complete tool
support for the atomic and complex events of EPC
is also provided in this article which helps the user
to model and verify real-time systems. In addition,
we have developed Platform Independent Model (PIM)
approach to model EPC for complex processes.
By using PIM approach, modeling can be performed
by utilizing the concepts of any other business process
modeling language as well. For example, UMLPACE
can easily be extended to incorporate the concepts of
Business Process Modeling Notation (BPMN) or Busi-
ness Process Execution Language (BPEL) depending

76214 VOLUME 6, 2018



A. Amjad et al.: UMLPACE for Modeling and Verification of Complex BRs in EPC

upon the domain and user’s requirements. Furthermore,
UTATE can be upgraded to generate the other required
target models like Petri Nets etc. In contrast, BPMN
tools are not flexible and usually deal with the platform
specific models.

It is important to understand that EPC is still being widely
used and cannot be replaced completely with BPMN [41].
In addition, EPC has made an irreplaceable impact in differ-
ent domains since its development. Such as in industry, EPC
plays an important role as SAP models are developed in EPC
since its development. By adding six complex patterns (i.e.
event cardinality, event sequence, event time, event exclusion,
event trend and data dependency) in EPC, it is now becomes
highly suitable for real time systems.

VII. CONCLUSION AND FUTURE WORK
This article reduces the design and verification gap of the
complex and real time business processes by utilizing the
concepts of Event-driven Process Chain (EPC). For this pur-
pose, UMLPACE (Unified Modeling Language Profile for
Atomic and Complex events in EPC) is introduced for the
modeling of complex and real time business requirements
at Platform Independent Model (PIM) level. Particularly,
the concepts of UML activity diagram are utilized in UML-
PACE for representing both simple as well as complex pat-
terns in EPC. As a part of research, a complete open source
UML to Timed Automata Transformation Engine (UTATE)
is developed to automatically transform UMLPACE source
models into timed automata target models for the early veri-
fication of complex and real time business processes. Finally,
the applicability of UMPLACE is demonstrated through two
benchmark case studies.

UMLPACE is the first attempt to model and verify com-
plex and real time business requirements in the context of
EPC. Moreover, it is based on UML concepts that provide
higher level of abstraction. Furthermore, it fully supports for-
mal verification through sophisticated transformation engine.
Consequently, it is equally beneficial for business analyst,
business user and software developers that lead to simplify the
design, verification and implementation of modern business
processes. Business users and business analyst can easily
model the complex requirements using the proposed frame-
work whereas this research works aims to facilitate the soft-
ware developers with familiar notations of UML activity
diagram for modeling without any additional efforts and time
to understand the EPC language. Although UMLPACE incor-
porates six important complex events in EPC for modeling
and verification of complex business requirements, it is still
required to include more complex events in UMLPACE to
manage modern business requirements particularly for real
time systems. Therefore, in future, we intend to enrich the
UMLPACE by introducing more behavioral patterns e.g. sub-
scription and consumption patterns. Moreover, we also intend
to include spatial patterns for complex scenarios where event
location is an important factor.

REFERENCES
[1] R. M. Dijkman, M. Dumas, and C. Ouyang, ‘‘Semantics and analysis of

business process models in BPMN,’’ Inf. Softw. Technol., vol. 50, no. 12,
pp. 1281–1294, Nov. 2008.

[2] H. Mili, G. Tremblay, G. B. Jaoude, É. Lefebvre, L. Elabed, and
G. El Boussaidi, ‘‘Business process modeling languages: Sorting through
the alphabet soup,’’ J. Comput. Surv., vol. 43, no. 1, pp. 1–56, 2010.

[3] E. Söderström, B. Andersson, P. Johannesson, E. Perjons, and B. Wangler,
‘‘Towards a framework for comparing process modelling languages,’’ in
Proc. 14th Int. Conf. Adv. Inf. Syst. Eng. (CAiSE), Toronto, ON, Canada,
2002, pp. 600–611.

[4] O. Kath, ‘‘Towards executable models: Transforming EDOC behavior
models to CORBA and BPEL,’’ in Proc. 8th IEEE Int. Enterprise Dis-
trib. Object Comput. Conf. (EDOC), Monterey, CA, USA, Sep. 2004,
pp. 267–274.

[5] G. Jošt, J. Huber, M. Heričko, and G. Polančič, ‘‘An empirical investigation
of intuitive understandability of process diagrams,’’ Comput. Standards
Interfaces vol. 48, pp. 90–111, Nov. 2016.

[6] H. Kim and S. Oussena, ‘‘A case study on modeling of complex event
processing in enterprise architecture,’’ in Proc. ICEIS, vol. 3, 2012,
pp. 173–180.

[7] J. Krumeich, N. Mehdiyev, D. Werth, and P. Loos, ‘‘Towards an extended
metamodel of event-driven process chains to model complex event pat-
terns,’’ in Proc. Int. Conf. Conceptual Modeling, Stockholm, Sweden,
2015, pp. 119–130.

[8] A. Amjad, F. Azam, M. W. Anwar, and W. H. Butt, ‘‘Verification of event-
driven process chain with timed automata and time Petri nets,’’ in Proc. 9th
IEEE GCC Conf. Exhib., Manama, Bahrain, May 2017, pp. 1–6.

[9] M. W. Anwar, M. Rashid, F. Azam, and M. Kashif, ‘‘Model-based design
verification for embedded systems through SVOCL: AnOCL extension for
SystemVerilog,’’Design Automat. Embedded Syst., vol. 21, no. 1, pp. 1–36,
2017.

[10] B. Korherr and B. List, ‘‘A UML 2 profile for event driven process chains,’’
in Proc. Int. Conf. Res. Practical Issues Enterprise Inf. Syst. (CONFENIS),
Vienna, Austria, 2006, pp. 161–172.

[11] V. Stefanov and B. List, ‘‘A performance measurement perspective for
event-driven process chains,’’ in Proc. 16th Int. Workshop Database Expert
Syst. Appl. (DEXA), Aug. 2005, pp. 967–971.

[12] M. Kapuruge, J. Han, A. Colman, and U. Rüegg, ‘‘EPClets—A lightweight
and flexible textual language to augment EPC process modelling,’’ in Proc.
IEEE Int. Conf. Services Comput. (SCC), Jun./Jul. 2014, pp. 693–700.

[13] E. Kindler, ‘‘On the semantics of EPCs: Resolving the vicious circle,’’
J. Data Knowl. Eng., vol. 56, no. 1, pp. 23–40, 2005.

[14] J. Mendling andM. Nüttgens, ‘‘EPCmarkup language (EPML): An XML-
based interchange format for event-driven process chains (EPC),’’ Inf. Syst.
e-Bus. Manage., vol. 4, no. 3, pp. 245–263, 2005.

[15] A. Gross and J. Doerr, ‘‘EPC vs. UML activity diagram–two experiments
examining their usefulness for requirements engineering,’’ in Proc. IEEE
17th Int. Conf. Requirements Eng., Aug./Sep. 2009, pp. 47–56

[16] I. Reinhartz-Berger, P. Soffer, and A. Sturm, ‘‘Extending the adaptability
of reference models,’’ IEEE Trans. Syst., Man, Cybern. A, Syst. Humans,
vol. 40, no. 5, pp. 1045–1056, Sep. 2010.

[17] J. Mendling, G. Neumann, and M. Nüttgens, ‘‘Yet another event-driven
process chain,’’ in Proc. 3rd Int. Conf. Bus. Process Manage. (BPM),
Nancy, France, 2005, pp. 428–433.

[18] M. Rosemann and W. M. P. van der Aalst, ‘‘A configurable reference
modelling language,’’ Inf. Syst., vol. 32, no. 1, pp. 1–23, 2005.

[19] W. M. P. van der Aalst, M. Dumas, F. Gottschalk, A. H. M. ter Hofstede,
M. La Rosa, and J. Mendling, ‘‘Preserving correctness during business
process model configuration,’’ Formal Aspects Comput., vol. 22, no. 3,
pp. 459–482, 2009.

[20] R. Rieke and Z. Stoynova, ‘‘Predictive security analysis for event-driven
processes,’’ in Computer Network Security (Lecture Notes in Computer
Science), vol. 6258. Berlin, Germany: Springer, 2010, pp. 321–328.

[21] S. Xue, B. Wu, and J. Chen, ‘‘lightEPC: A formal approach for modeling
personalized lightweight event-driven business process,’’ in Proc. IEEE
Int. Conf. Services Comput. (SCC), Jun./Jul. 2013, pp. 1–8.

[22] J. Mendling, H. M. W. Verbeek, B. F. van Dongen,
W. M. P. van der Aalst, and G. Neumann, ‘‘Detection and prediction
of errors in EPCs of the SAP reference model,’’Data Knowl. Eng., vol. 64,
no. 1, pp. 312–329, 2008.

[23] W. M. P. van der Aalst, ‘‘Formalization and verification of event-driven
process chains,’’ Inf. Softw. Technol., vol. 41, no. 10, pp. 639–650,
1999.

VOLUME 6, 2018 76215



A. Amjad et al.: UMLPACE for Modeling and Verification of Complex BRs in EPC

[24] J. Mendling, B. F. van Dongen, and W. M. P. van der Aalst, ‘‘Getting
rid of OR-joins and multiple start events in business process models,’’
J. Enterprise Inf. Syst., vol. 2, no. 4, pp. 403–419, 2008.

[25] J. Mendling, J. Recker, M. Rosemann, and W. van der Aalst, ‘‘Generat-
ing correct EPCs from configured C-EPCs,’’ in Proc. ACM Symp. Appl.
Comput. (SAC), Dijon, France, 2006, pp. 1505–1510.

[26] V. Gruhn and R. Laue, ‘‘A comparison of soundness results obtained by
different approaches,’’ in Proc. Int. Conf. Bus. Process Manage. (BPM),
Berlin, Germany, 2010, pp. 501–512.

[27] A. Winter and C. Simon, ‘‘Using GXL for exchanging business process
models,’’ Inf. Syst. e-Bus. Manage., vol. 4, no. 3, pp. 285–307, 2005.

[28] S. Mei, H. Cai, and F. Bu, ‘‘Multi-view service-oriented rule merged
business process modeling framework,’’ in Proc. IEEE 6th Int. Symp.
Service Oriented Syst. (SOSE), Dec. 2011, pp. 175–180.

[29] K. Yongsiriwit, N. Assy, and W. Gaaloul, ‘‘A semantic framework for
configurable business process as a service in the cloud,’’ J. Netw. Comput.
Appl., vol. 59, pp. 168–184, Jan. 2016.

[30] D. M. M. Schunselaar, J. Gulden, H. van der Schuur, and H. A. Reijers,
‘‘A systematic evaluation of enterprise modelling approaches on their
applicability to automatically generate ERP software,’’ in Proc. 18th Conf.
Bus. Inform. (CBI), Paris, France, Aug./Sep. 2016, pp. 290–299.

[31] S. Denne, ‘‘Verifying properties of (timed) event driven process chains by
transformation to hybrid automata,’’ in Proc. EPK, 2006, pp. 157–176.

[32] M. Faugère, T. Bourbeau, R. de Simone, and S. Gérard, ‘‘MARTE: Also an
UML profile for modeling AADL applications,’’ in Proc. 12th IEEE Int.
Conf. Eng. Complex Comput. Syst. (ICECCS), Jul. 2007, pp. 359–364.

[33] R. B. France, S. Ghosh, T. Dinh-Trong, and A. Solberg, ‘‘Model-driven
development using UML 2.0: Promises and pitfalls,’’ Computer, vol. 39,
no. 2, pp. 59–66, Feb. 2006.

[34] M. Tom and P. V. Gorp, ‘‘A taxonomy of model transformation,’’ Electron.
Notes Theor. Comput. Sci., vol. 152, pp. 125–142, Mar. 2006.

[35] S. Mallek, N. Daclin, V. Chapurlat, and B. Vallespir, ‘‘Enabling model
checking for collaborative process analysis: from BPMN to ’network of
timed automata,’’ J. Enterprise Inf. Syst., vol. 9, no. 3, pp. 279–299, 2015.

[36] W. M. P. van der Aalst, ‘‘Formalization and verification of event-driven
process chains,’’ J. Inf. Softw. Technol., vol. 41, no. 10, pp. 639–650, 1999.

[37] W. M. P. van der Aalst et al., ‘‘ProM 4.0: Comprehensive support for real
process analysis,’’ in Proc. 28th Int. Conf. Appl. Theory Petri Nets Other
Models Concurrency (ICATPN), Siedlce, Poland, 2007, pp. 484–494.

[38] F. Cassez and O. H. Roux, ‘‘Structural translation from time Petri nets to
timed automata,’’ J. Syst. Softw., vol. 79, no. 10, pp. 1456–1468, 2006.

[39] P. Bouyer, P.-A. Reynier, and S. Haddad, ‘‘Extended timed automata
and time Petri nets,’’ in Proc. 6th Int. Conf. Appl. Concurrency Syst.
Design (ACSD), Jun. 2006, pp. 91–100.

[40] UMLPACE Transformation Engine. Accessed: Apr. 2018. [Online]. Avail-
able: http://ceme.nust.edu.pk/ISEGROUP/UMLPACE/umlpace.html

[41] A. Amjad, F. Azam, M. W. Anwar, W. H. Butt, and M. Rashid,
‘‘Event-driven process chain for modeling and verification of business
requirements—A systematic literature review,’’ IEEE Access, vol. 6,
pp. 9027–9048, 2018.

[42] E. A. Lee, ‘‘Constructive models of discrete and continuous physical
phenomena,’’ IEEE Access, vol. 2, pp. 797–821, Aug. 2014.

[43] J. Bengtsson and W. Yi, ‘‘Timed automata: Semantics, algorithms and
tools,’’ in Advanced Course Petri Nets. Berlin, Germany: Springer, 2003,
pp. 87–124.

ANAM AMJAD received the B.S. degree in
computer sciences from International Islamic Uni-
versity and the M.S. degree in software engineer-
ing from the National University of Sciences and
Technology, Pakistan, where she is currently pur-
suing the Ph.D. degree with the Department of
Computer and Software Engineering, CEME. Her
area of research is business process automation
through model driven software engineering.

FAROOQUE AZAM is currently an Adjunct
Faculty with the Department of Computer and
Software Engineering, College of Electrical and
Mechanical Engineering, National University of
Sciences and Technology, Pakistan. He has been
teaching various software engineering courses
since 2007. His areas of interests are: model driven
software engineering, business modeling for Web
applications, and business process reengineering.

MUHAMMAD WASEEM ANWAR is currently
pursuing the Ph.D. degree with the Department
of Computer and Software Engineering, CEME,
National University of Sciences and Technol-
ogy, Pakistan. He is a Senior Researcher and an
Industry Practitioner in the field of embedded
and control systems. His major research area is:
model-based system engineering for complex and
large systems.

WASI HAIDER BUTT is an Assistant Professor
with the Department of Computer and Software
Engineering, College of Electrical andMechanical
Engineering, National University of Sciences and
Technology, Pakistan. His areas of interests are:
model driven software engineering, Web develop-
ment, and requirement engineering.

MUHAMMAD RASHID received the bachelor’s
degree in electrical engineering from the Univer-
sity of Engineering and Technology, Peshawar,
Pakistan, in 2000, the master’s degree in embed-
ded systems design from the University of Nice,
Sophia-Antipolis, France, in 2006, and the Ph.D.
degree in embedded systems design from the Uni-
versity of Bretagne Occidentale, Brest, France,
in 2009. He is an Assistant Professor with
the Computer Engineering Department, Umm

Al-Qura University, Mecca, Saudi Arabia.

AAMIR NAEEM is currently pursuing the mas-
ter’s degree with the Department of Computer and
Software Engineering, CEME, National Univer-
sity of Sciences and Technology, Pakistan. His area
of research is business process automation through
model driven software engineering.

76216 VOLUME 6, 2018


	INTRODUCTION
	PRELIMINARIES
	EVENT-DRIVEN PROCESS CHAIN (EPC)
	SYNTAX AND SEMANTICS OF EPC
	RELATED WORK
	RESEARCH GAPS AND PROPOSED SOLUTION

	UMLPACE
	EXTENDED EPC META-MODEL
	UMLPACE DESCRIPTION
	SUB PROFILE FOR EVENTS AND FUNCTION
	SUB PROFILE FOR LOGICAL OPERATORS
	SUB PROFILE FOR ADDITIONAL PROCESS OBJECTS


	TRANSFORMATION ENGINE
	ARCHITECTURE OF TRANSFORMATION ENGINE
	SCALABLE
	DETERMINISTIC
	EASY TO USE
	CONTROLLED
	OPEN SOURCE
	CORRECTNESS

	TRANSFORMATION RULES
	TRANSFORMATION RULES FOR EVENTS AND FUNCTION
	TRANSFORMATION RULES FOR LOGICAL OPERATORS


	VALIDATION
	ATM CASE STUDY
	Patient Flow System Case Study

	COMPARATIVE ANALYSIS AND DISCUSSION
	DISCUSSION

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	ANAM AMJAD
	FAROOQUE AZAM
	MUHAMMAD WASEEM ANWAR
	WASI HAIDER BUTT
	MUHAMMAD RASHID
	AAMIR NAEEM


