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ABSTRACT The alternating current potential drop technique has been widely used to measure subsurface
cracks in metal structures. However, the application of the technique to random cracks has, to date, been
limited. By using a multidirectional alternating current potential drop technique, the angle between crack
and exciting electrode wire changes from 0◦− 90◦ to 67.5◦− 90◦, which considerably expanded the ranges
of detection. Simulation and experiment results showed that this technique can accurately measure the depth
of random cracks.

INDEX TERMS Alternating current potential drop technique, multidirectional current, random cracks, depth
measurement.

I. INTRODUCTION
The alternating current potential drop (ACPD) technique
makes use of an increase in electrical resistance of a metallic
conductor caused by crack initiation and growth [1]. It can
achieve high sensitivity with low injected current [2]–[4]. The
technique is based on ‘skin effect’ [5]–[8], which is closely
related to the current frequency. As the frequency decreases,
the current distribution in the material shifts from the surface
of the conductor to the entire conductor. The skin depth δ can
be represented by the following relation:

δ =
1

√
πµrµ0σ f

(1)

where µr is the relative magnetic permeability, µ0 the mag-
netic permeability of free space, σ the electrical conductivity,
and f the frequency of excitation current.
Figure 1(a) shows the initial state of a metal
pipewithout defects. After a period of service, defects form

in the inner walls of the pipe, whereas the outer walls are
always well protected. Figure 1(b) shows a crack defect with
depth d in the inner wall.
I (f ) is the excitation current with frequency f . It can be

represented by:

I (f ) = Iej2π ft (2)

Where I is the current amplitude, j =
√
−1, and t is time.

The electric field equation is as follows:

∇
2E(r)+ k2E(r) = 0 (3)

FIGURE 1. Schematic diagram of (a) initial state without defects and (b)
presence of a crack defect.

with

k = (1− j)
√
πµrµ0σ f (4)

The current density J (r) can be determined by the intensity
of the electric field at the same position r :

J (r) = σE(r) (5)
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Where r is the radial position measured from the center of the
conductor, and E(r) is the intensity of the electric field at r.
The solution of J (r) in the conductor is as follows [9]:

J (r) =
Ik
2πR
·
J0(kr)
J1(kR)

(6)

where J0 and J1 are Bessel functions of the first kind, with
order zero and one, respectively, R is the outer radius of spec-
imen, and l is the distance between each pair of electrodes,
so the theoretical potential drop across this distance can be
described as:

U (r) = l ·
I · k
2πRσ

·
J0(kr)
J1(kR)

(7)

Bessel functions can be approximated by an exponential
function. In this case, the absolute value of the voltage can be
written as [10]:

|U (r)| =
I

√
2πRδ

e
r−R
δ (8)

Equation (8) shows that the voltage changes at different
radial distances. In this work, the contact depth d0 between
the potential electrodes and the outer wall of the pipe was
approximately 0.5mm, so the voltage obtained on the two
electrodes was:

U =
I

√
2πRδ

e-
d0
δ (9)

The wall thickness of the pipe is given by T . The initial
voltage is U0, and the voltage measured with a defect is Ud .
An approximation can be made using (9). If the defect of
the inner wall is extremely shallow (d ≈ 0), then, as the
frequency decreases, Ud /U0 approaches 1. If the defect of
the inner wall is attributed to general corrosion [11], [12],
then, as the frequency decreases, Ud remains constant once
δ = T − d , and Ud /U0 ≈ m/U0 (where m is constant).
However, if the defect is a crack, the current around the defect
layer will infiltrate downward as the frequency decreases,
i.e., Ud < m, then Ud /U0 < m/U0.
Therefore, a general solution to calculate a crack defect can

be approximated by a linear superimposition of two extreme
cases: that without defects and that where the defect is due to
general corrosion:

Ud
U0
= a1 · 1+ a2 · dea3d (10)

where a1, a2 and a3 are constants.

II. MULTIDIRECTIONAL ACPD TECHNOLOGY
DEVELOPMENT
We studied the relationship between the directions of the
exciting electrode wire and the crack. The COMSOL finite
element simulation software (COMSOL Inc., Stockholm,
Sweden) was used to perform a numerical analysis to illus-
trate the relationship. Figure 1 shows the metal pipe simula-
tion model with properties as listed in Table 1.

TABLE 1. Parameters of model.

FIGURE 2. Calculated distribution of alternating current potential drop.

The calculated distribution of potential drop was obtained
by substituting parameters from Table 1 and current fre-
quency f into (4) and (7).

Before calculating the potential drop, we should confirm
the value of f . In Figure 2, the skin current could not com-
pletely penetrate the pipe wall at 2.5 kHz, so the voltage
Ud could not reflect information pertaining to a shallow
defect in this case. When the frequency decreased to 500 Hz,
the penetration current was able to reach the defect layer at
each depth. Considering that δ should be smaller than the wall
thickness (T = 10 mm), the lower limit of frequency was
calculated as 59 Hz according to (1). Therefore, the current
frequency could be selected between 59 and 500 Hz. In this
work, we chose 100 Hz as the frequency of the excitation
current.

In Figure 3(a), U0 could be obtained without defects.
Figures 3(b)-(e) represented four position defects with the
same length, width, and depth. ϕ is the angle between the
crack and exciting electrode wire.

In Figure 5, when ϕ was smaller than 45◦, the value of
Ud /U0 could not assess the crack depth using (10). However,
when ϕ was greater than 45◦, and the closer it was to 90◦,
the more closely the relationship between the value of Ud /U0
and crack depth followed the exponential distribution of (10).
In addition, the value of Ud /U0 at 90◦ was larger than at any
other angle.

The variation of Ud could be assessed by Ohm’ law.
We could regard the area measured between the potential
electrodes as a volume resistance Res.

Ud = ResI (11)

Res was conversed with the cross-section of the volume
resistance:

Res=
ρl
S
∝

1
S

(12)
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FIGURE 3. Diagrams of (a) initial state without defects and with crack
defects at (b) 0◦, (c) 45◦, (d) 70◦, and (e) 90◦ relative to the position of
the electrode wire.

Where ρ is the resistivity of conductor, and S is the cross-
section perpendicular to the direction of the current.

Figures 4(a)-(b) represented the current distribution of two
cases involved in Figure 3, where ϕ were 0◦ and 90 ◦. Com-
pared Figure 4(a) with 4(b), the current flew through a larger
cross-section when ϕ was 0◦ :

S1 > S4 (13)

FIGURE 4. current distribution in the cross sectional area of two cases
(ϕ = 00, 900).

FIGURE 5. Voltage ratio curve (ϕ = 00, 450, 700, 900).

FIGURE 6. Measured metal with multidirectional current (U1 represents
U1d or U10, U2 represents U2d or U20, U3 represents U3d or U30, U4
represents U4d or U40).

Where S1 is the cross-section of 0◦ crack, and S4 is of 90◦

crack.
Substituting (13) into (12), We could observe that the

value of Res at 0◦ was smaller than 90◦. Thus the former
voltage was smaller than the latter. A method defined as the
multidirectional alternating current potential drop (MACPD)
technique was therefore extracted to measure random crack
depths. The angle between the crack and exciting electrode
wire changed from 0◦ –90◦ to 67.5◦ –90◦ by adding three
sets of excitation currents, as shown in Figure 6.

The depth could be accurately determined by substituting
the largest values of Ud /U0 from the four voltages as follows
into (10):

(U1d
U10
,
U2d
U20
,
U3d
U30
,
U4d
U40

)

III. EXPERIMENTAL VERIFICATION
To verify the accuracy of the proposed method, experiments
were conducted using an SR850 digital lock-in amplifier
(Stanford Research Systems, CA, USA) and a power ampli-
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FIGURE 7. Experimental equipment.

FIGURE 8. Metal plate specimens with crack defects at (a) 45◦ and (b) 0◦.

fier, as shown in Figure 7. The power amplifier provided
a maximum sinusoidal current (I) of 2 A with a frequency
at 100 Hz from a source signal from the SR850 amplifier.
Figure 6 shows the probe configuration. Five 220 mm ×
220 mm × 10 mm metal plates were used as test specimens,
as shown in Figure 8. The µr, µ0, and σ values of these
specimens are summarized in Table 1. Plate 1-2 measured
cracks at 45◦ at depths of 3 mm and 5 mm. Plate 3-5 had
0◦ cracks at depths of 2 mm, 4 mm, and 6 mm.

Before machining the defects, alternating current of 2 A
with a frequency of 100 Hz was successively injected into
the plate through Iin1, Iin2, Iin3, and Iin4. The SR850 amplifier
was used to measure the initial voltages U10, U20, U30, and
U40 between probes (P1–P2), (P1–P3), (P2–P3), and (P3–P4),
respectively. The values of U1d , U2d , U3d , and U4d were
obtained in the same way.

After the voltage measurements were completed, eight
voltages for each plate were obtained. Substituting the largest
values of Ud /U0 into (10), we could acquire the results. The
constants in (10) were given by simulation data. COMSOL

FIGURE 9. Max(Ud /U0)-d curve(ϕ =00).

TABLE 2. Simulation results.

Multiphysics 4.5 was used for theoretical calculations. Mate-
rial parameters and dimensions of the simulation model were
the same as test specimens. The simulation cracks mea-
sured at 0◦, 11◦, 45◦, and 56◦ at depths of 2 mm, 2.5 mm,
3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, 5.5 mm and 6 mm.
Figure 9 and (14) showed the fitting results. Table 2 showed
the partial results of simulation. The measuring depth could
be obtained by substituting the largest values of Ud /U0
into (14). The error was calculated by [14], [15]:

error (%) = 100 % × (measuring depth – Real depth)/T

Ud
U0
= 0.9137+ 0.07261de-0.009146d (14)

Table 3 showed the voltage ratios of different depths and
angles based on 5 test specimens. The results were listed
in Table 4.
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TABLE 3. The voltage ratio of different depths and directions.

TABLE 4. Experimental results.

The results clearly demonstrated that the proposed method
could accurately measure the depth of random crack defects.

IV. CONCLUSION
MACPD could be used to assess random defects on a subsur-
face. We used the largest values of Ud /U0 to determine the
crack depth because numerical analysis showed that the angle
between the crack and exciting electrode wire changed from
0◦ –90◦ to 67.5◦ –90◦ by using this technique. The experi-
mental results were in good agreement with fitted equations
based on simulation.

To enable themore widespread use ofMACPD technology,
the applicability of (14) to identifying cracks with varying
depth and the occurrence of complex defects (cracks) should
also be considered.
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