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ABSTRACT The primary objective of this paper is to explore the spatial analysis of bikeshare ridershipwith a
consideration of the diversity across different station categories using smart card data and points of interests
(POIs) data. The bikeshare trip records were obtained from the Citi Bike system of New York City. The
POI data in the vicinity of each station were collected through the Google Places API. K-means clustering
method was employed to classify the bikeshare stations into five categories. Then, the geographically
weighted regression (GWR) method was applied to establish the relationship between bikeshare ridership
and various kinds of influencing factors. To account for the diversity across different station categories, five
separate GWR models for each station category were developed and compared with the joint model of all
station categories. The results of likelihood ratio test confirmed the superiority and importance of building
separate models for each bikeshare station category instead of a joint model. In addition, all the developed
bikeshare ridership models were applied to predict the ridership of the newly opened stations in the next
year. The results were indicated that the prediction performance of separate bikeshare ridership models was
generally better than that of the joint model. The findings of this paper could help transportation agency
to develop specific planning and management strategies for each station category of the entire bikesharing
system.

INDEX TERMS Bikeshare, POI, K-means, geographically weighted regression, spatial analysis.

I. INTRODUCTION
Over the past few decades, bikesharing systems have grown
rapidly in urban areas, providing individuals a healthy and
green transport mode for short trips [1]–[9]. Currently, more
than 800 cities have implemented their own bikesharing sys-
tems around the globe [9]. Bikeshare have been considered a
promising way to resolving the last mile problem of public
transit and reducing traffic congestion and air pollution in
urban areas. However, a series of problems emerged recently
due to the fluctuating spatial and temporal demand of shared
bicycles, such as the high operating costs, low usage rates,
and the inefficient bike repositioning [10]–[14].

To improve the operational efficiency of bikeshar-
ing systems and attract more people to use shared
bicycles, considerable efforts have been devoted to

examining the factors that affect the bikeshare rider-
ship [1], [3], [10], [11], [13], [15]–[17]. Rixey [1] inves-
tigated the effects of demographic and built environment
characteristics nearby stations on the bikeshare ridership in
three different bikesharing systems. The results suggested
that population density, job density and the income level
surrounded by each station are all positively correlated with
the bikeshare ridership for all the three bikesharing sys-
tems. Noland et al. [13] estimated the effects of bicycle
infrastructure, employment population, land use mix and
transit access on bikeshare trip generation by seasons of
the year, weekday/weekend and user type. They found that
bikeshare stations located near busy subway stations and
bicycle infrastructure are usually related with higher usage
frequency, and stations surrounded by greater population
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and employment are usually related with greater usage.
Faghih-Imani et al. [3] examined the influence of meteoro-
logical data, temporal characteristics, bicycle infrastructure,
land use and built environment attributes on arrival and depar-
ture flows of the bikesharing system in Montreal. The results
of multilevel regression models indicated that the bicycle
flows are expected to decrease with the increased distance
away from CBD, and increase with the increased number
of restaurants, commercial enterprises and universities in the
vicinity of a station.

Although these studies have provided important insights
into the influencing factors of bikeshare ridership, two impor-
tant issues have been greatly neglected. First, each category
of stations have their unique characteristics in built envi-
ronment, land use, travel patterns and trip purposes [15].
Neglecting the diversity across different station categories
may hide some important findings associated with specific
stations. Moreover, suggestions and strategies that aim at
improving the operations of bikesharing systems should be
developed separately for each station category, mainly due
to the varied influencing of the contributing factors across
different station categories. Second, the spatial autocorrela-
tion problem should be considered in modelling the station-
level ridership. Traditional ordinary least squares (OLS)
multiple regression models usually have fixed coefficients of
explanatory variables, which will fail to capture the spatial
heterogeneity of influencing factors across stations.

Some researchers started to considering the bikeshare
station clusters in the ridership modeling. For example,
Hyland et al. [16] clustered the bikeshare stations based on
the type of arriving trips using k-means or fuzzy c-means
clustering techniques. Although the stations can be well clus-
tered based on the number of arriving trips, this method may
fail to allocate new stations to specific clusters due to the
lack of recorded trip information. Recently, with the wide
application of the location based services, many online social
media such as Foursquare, Twitter, and Google Map can
accurately recommend some places that may attract users
to visit. In these social media applications, individuals can
check in some point of interests (POIs) and share their activi-
ties, emotions, and experiences of these places. Traditionally,
POI is defined as a specific point of location that someone
may find useful or interesting. Most consumers use this term
when referring to restaurants, hotels, park or any other cat-
egories applied in digital maps [17]. Some previous studies
have suggested that the POIs surrounding each station have
great potential to reveal the travel patterns and possible trip
purposes [18], [19], and accordingly can be used to classify
the category of bikeshare stations.

In addition, to address the spatial heterogeneity problem
when modelling bikeshare ridership data, the geographi-
cally weighted regression (GWR) method was employed in
this study. GWR method has been recently widely used to
model the ridership of various transportation modes, such as
taxi [20], public transit [21], and ride-sourcing [22]. Some
recent studies also have started applying GWR to the spatial

analysis of bikeshare-related problems [23]. For example,
Ji et al. [23] applied geographically weighted Poisson regres-
sion (GWPR) model to explore the factors that influence the
metro-bikeshare transfer. Compared with other spatial statis-
tical methods such as spatial autoregressive models (SAR)
and spatial error models (SEM), the GWR method can be
specified easily, and the spatial distribution of the coefficients
of variables can also be displayed in a more intuitive man-
ner [24]. To the best knowledge of the authors, this paper
is one of the first attempts to directly apply GWR to model
the station-level bikeshare ridership with the consideration of
diversity across different station categories. The key goal of
this paper can be summarized as follows:
(a) To classify the bikeshare stations into different cate-

gories based on the POI data in the vicinity of each
station.

(b) To explore the potential influencing factors of bike-
share ridership in New York City accounting for the
diversity across different station categories.

(c) To show the justification of using separate models for
each station category instead of a joint model.

(d) To investigate the prediction performance of developed
bikeshare ridership models in new built stations.

(e) To provide insights and suggestions from models of
each station category which lead to appropriate policy
implications.

The rest of the paper is organized as follows. Section 2 dis-
cusses the procedures for gathering various types of data
from multiple data sources. Section 3 describes the method-
ology of this paper. The results of data analysis are presented
in Section 4. Section 5 is a summarization of this study.

II. DATA SOURCES
We collected data from the New York City to illustrate
the procedure for the spatial analysis of bikeshare rider-
ship. In the present study, five types of data were collected,
including bikesharing trip data, POI data in the vicinity of
each station, bicycle infrastructure data, weather data, and the
socio-demographic characteristics. The data were collected
from different data sources. More specifically, the bikeshar-
ing trip data were collected from the Citi Bike website [25].
Each trip record contains the following information: start time
and date, stop time and date, station name and geo-location,
user type and gender. In the present study, we selected
the bikesharing trip records of the whole 2015 year, which
can represent the variation of bikeshare usage across the
whole year. Moreover, trip records with trip duration exceed
120 minutes or less than 2 minutes are further removed,
mainly because some users might forget to return the bicycles
to the dock correctly or only try to check their new smart
cards [15]. Finally, a total of 9,787,566 bikesharing trip
records were selected in the study period.

The POI data in the vicinity of each bikeshare station
were collected through the Google Places application pro-
gramming interface (API). For each query, the latitude, lon-
gitude and searching radius information of each station are
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FIGURE 1. Classification of extracted POI data.

sent to the Google Places API. Then, feedback messages
are returned, including nearby buildings, POIs with geo-
location, and customer ratings. A web crawler was devel-
oped by Python in this study to extract the needed POI data
from the feedback messages efficiently and to remove the
redundant POIs automatically. As suggested by previous
studies [26], we set the searching radius of each station
as 250 meters regarding the dense urban form of New York
City and the average distances between two stations. Finally,
a total of 32,476 POIs within 301 bikeshare stations were
extracted. To better understand the categories of bikeshare
stations, the extracted POIs were further classified into
six categories according to the associated trip purposes
(See Figure 1).

The bicycle infrastructure, which includes the free side-
walk bicycle parking racks and all the bicycle routes, were
collected from the New York City Department of Transporta-
tion (NYCDOT). Although the bicycle parking racks may
not represent the actual parking locations of shared bicy-
cles, we expect that areas with more bicycle racks will be
involved with more cycling activities and thus may generate
more bikeshare usage. The weather data were collected from
the National Climate Data Center (NCDC) website which
provide the monthly weather information across the United
States. The socio-demographic characteristics were collected
from the U.S. Census Bureau and the American Community
Survey (ACS). The information obtained from the social-
demographic data include the number of population segre-
gated by ethnicity and age cohorts, the number of college
enrollment, median household income, and the number of
employment population.

Note that all the collected socio-demographic data are at
the census-block-group level. To distribute the census-block-
group data to each bikeshare station, we defined the service

FIGURE 2. Spatial distribution of selected stations and service areas.

area for each station, and then distributed census-block-group
based data to these service areas weighting by the share
of each census-block-group’s land area within the station’s
service area. In this study, we set the radius of service area
for each station as 250 meters, which was applied in previous
studies [26]. Figure 2 illustrates the spatial distribution of
selected bikeshare stations and their service areas. Finally, the
number of bicycle parking racks, the length of bike lanes as
well as the socio-demographic data were aggregated into cor-
responding station service areas with the ArcGIS software.
The descriptive statistics of all the variables are summarized
in Table 1.

III. METHODOLOGY
In the present study, the K-means clustering method was
firstly applied to classify bikeshare stations into several cat-
egories based on the spatial distribution of different POIs in
the vicinity of each station. Then, for each station category,
the geographically weighted regression (GWR) method was
developed to establish the relationship between the station-
level ridership and a variety of candidate explanatory vari-
ables listed in Table 1. The methods used in the present study
are briefly discussed in this section.

A. K-MEANS CLUSTERING ANALYSIS
K-means clustering analysis is a classic unsupervised
machine learning method, which aims to divide M objects
in N dimensions into K clusters such that the within-group
distances are minimized and between-group distances are
maximized [27]. This algorithm firstly divides objects into
k clusters randomly, then calculates the centroids of each
cluster and assigns each object to the cluster with the nearest
centroids. The algorithm runs iteratively until the centroids
of each cluster do not change or the pre-defined number of
iterations has reached.
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TABLE 1. Descriptive statistics of variables.

In this study, we denoted each bikeshare station as a
mixture of different POI category. For example, s1 = (p1,
p2. . . , p6), where p1, . . .p6 represent the proportions of each
POI category within the service area of station s1. Then, all
the bikeshare stations are labelled as POI feature vector, and
input into theK-means clustering algorithms. The final output
of the cluster centers could depict the characteristic and land
use of each station category.

B. GEOGRAPHICALLY WEIGHTED REGRESSION
The spatial heterogeneity and spatial autocorrelation among
explanatory variables are common issues when modelling
geo-location data. To address these issues, some spatial
statistical models were proposed, such as spatial autore-
gressive model [28], random-parameter model [29], and
Bayesian spatial model [30]. Recently, the geographically
weighted regression (GWR) method were proposed and
widely applied in travel demand prediction [21], public transit
usage forecasting [31], and traffic safety estimation [24]. The
GWR method is considered as an extension of traditional
linear regression framework, and accordingly easy for speci-
fication. Unlike the complex mechanism of Bayesian spatial
model, the GWR method is easier for traffic engineers to
understand and widely used in practical application. In par-
ticular, in the GWR models the coefficients of variables can
be visualized in an easily identifiable manner, which could
provide insightful suggestions for city planners and bikeshare
system operators [24].

The GWR model is different from the traditional linear
regression by allowing the coefficients of explanatory vari-
ables to vary over space [32]. In this manner, the spatial
heterogeneity issue in the bikeshare ridership data could be
addressed. The GWR model could be specified as follows:

yit = β0(uit , vit )+
∑

kβkt (uit , vit )xkit + εit (1)

where (uit , vit ) represents the location of centroid of ith

bikeshare station during month t in this study. xkit represents
the k th explanatory variable with varying coefficients at the
ith bikeshare station during month t . β0(uit , vit ) and
βkt (uit , vit ) represents the intercept term and the coefficient of
the k th explanatory variable at the ith bikeshare station during
month t , respectively.
The expression of the local coefficients β suggests that the

GWR method could address the spatial heterogeneity issue
by allowing the estimated coefficients to vary across different
bikeshare stations. Accordingly, the local coefficients β can
be represented by the following matrix:

β =


β0(u1, v1) β1(u1, v1) ... βk (u1, v1)
β0(u2, v2) β1(u2, v2) ... βk (u2, v2)

... ... ... ...

β0(un, vn) β1(un, vn) ... βk (un, vn)

 (2)

where each row denotes the coefficients for each bikeshare
station. The coefficients for each station are estimated as
follows [32]:

β̂(i) = (XTW(i)X)−1XTW(i)Y (3)

where W (i) = diag[wi1,wi2, . . . ,win], is a diagonal matrix.
wij denotes the allocated weights for neighboring bikeshare
station j in the estimation of the model for bikeshare station i.
Several kernel functions were designed to define the weight-
ing scheme, such as Gaussian, exponential and bi-square
function [32]. The Gaussian weight function was selected
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TABLE 2. The clustering performance of three clustering methods.

in this study to reflect the distance decay in the weighting
scheme, which can be expressed in the following form:

wij = exp[−
1
2
× (dij/b)2] (4)

where dij denotes the distance between the centroids of two
bikeshare stations, and the parameter b refers to the selected
bandwidth. Considering that when the data become scarce
the fixed kernel weighting scheme will produce inaccurate
estimation results of coefficients, the Gaussian function with
adaptive kernel was employed in this study [32]. For areas
with more data points the bandwidth of the kernel will be
lower, while for areas with few data points the bandwidth of
the kernel will be larger. In the GWR method, the Corrected
Akaike Information Criterion (AICc) value is a commonly
used metric to determine the model specification. Finally,
the model with the lowest AICc value will be considered as
the best model.

IV. RESULTS OF DATA ANALYSIS
A. RESULTS OF K-MEANS CLUSTERING ANALYSIS
In this study, different clustering methods was employed to
classify the bikeshare stations into several different categories
based on the spatial distribution of POI data in the vicinity
of each bikeshare station [27], [33]. Table 2 illustrates the
clustering performance of K-means and other two traditional
methods: hierarchical agglomerative clustering and density-
based clustering of applications with noise (DBSCAN). The
silhouette values of K-means clustering results were higher
than the other twomethods. In addition, the clustering centers
output from K-means analysis could depict the general fea-
tures in each cluster. Thus, the results of K-means clustering
was used in this study.

In this study, we successively conducted the K-means clus-
tering analysis by setting the number of clusters from 3 to 8 to
obtain the optimal number of clusters. During this process,
when the number of clusters was set as 5, the performance
of K-means clustering reached the best. Accordingly, in this
study the bikeshare stations were finally clustered into five
categories. Table 3 gives the clustering centers for the five sta-
tion categories, and Figure 3 illustrates the spatial distribution
of the five station categories and their surrounding POIs.

The results of clustering analysis reveals that different sta-
tion categories are surrounded by different land use and have
their unique characteristics. More specifically, the clustering
center of S1 stations (see Table 3) indicates that most of
the POIs within service area are related with transportation
facilities, such as transit stations, bus stops and subway sta-
tions. It can be inferred that this type of bikeshare station

TABLE 3. The centers of different bikeshare station categories in
K-means clustering.

mainly serves as an important transferring tool for other
public transit systems, particularly during commuting time.
The dominant POIs surrounding S2 stations are related with
shopping stores, and most of this type of stations are located
nearby the famous shopping malls of Manhattan like Times
Square and Herald Square. In contrast with S2 station, S3 sta-
tions are mainly located in the central business district (CBD)
area of Manhattan, and have a relatively high proportion
of POIs associated with eating places within their service
areas. Accordingly, it can be inferred that people are more
likely to ride to S2 stations for shopping activities and to
S3 stations for eating activities. As is shown in Table 3,
the clustering center of S4 stations is mainly related with
educational POIs and also surrounded with eating, shopping
and transportation related POIs. The characteristics of this
station category exhibits a typical school living land use
pattern, indicating a main usage for college students. Com-
pared with the other four stations categories, S5 stations have
a relatively high proportion of POIs related with residen-
tial places, and are mainly located around the Central Park
(see Figure 3). Previous studies have revealed that people
living around this station type are more likely to ride for
commuting on weekdays and ride for outdoor sports on
weekends [34], [35].

In general, the clustering analysis results of bikeshare sta-
tions indicate that different categories of stations are asso-
ciated with different dominant individual activities and thus
may show different usage patterns and trip purposes. Accord-
ingly, it is highly desirable to conduct the spatial analysis
of bikeshare ridership regarding the diversity across different
station categories.

B. SPECIFICATION OF GWR MODELS
In this study, six different types of GWR models were devel-
oped and compared: one joint model and five separate models
for each station category. The GWR models were specified
using the software of GWR 4.0 [36]. The specification results
of the GWR models are given in Table 4.

Similar with the specification of general linear regression,
the explanatory variables in the GWR model were selected
through a stepwise procedure. The variables were input into
GWR models one by one by checking the significance and
the AICc values of the model. However, when checking
the significance of explanatory variables in GWR model,
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FIGURE 3. Spatial distributions for the five categories of bikeshare station and their surrounding POIs. (a) Spatial distribution of bikeshare
stations. (b) Spatial distribution of POIs. (c) Zoom in on A area. (d) Zoom in on B area. (e) Zoom in on c area. (f) Zoom in on D area. (g) Zoom in
on E area.

a potential problem is that one variable may be significant
in some certain bikeshare stations while insignificant in other
bikeshare stations. To account for this problem, in this study
the GWR models selected the variables that are significant
in over 80% of bikeshare stations with at least 90% level of
confidence during the modeling procedure [37]. The variable
selection procedure was repeated until the AICc value of
the models reached the minimum. In the end, the GWR
model which have the lowest AICc value, were considered
as the best models. In addition, to verify the potential multi-
collinearity between selected variables, the variance inflation
factors (VIF) values of the explanatory variables were calcu-
lated following the ordinary least square analysis. As shown
in Table 4, the VIF values for all the selected explanatory
variables were less than 5, indicating that the problem of
multicollinearity did not exist.

Furthermore, the spatial correlation in the residuals of
predictions in the GWR model and the global model for all
the stations were computed and compared. The global model
assumes that effects of explanatory variables are fixed over
space. As is shown in Table 5, the spatial correlation in the
residuals of GWRmodel is not significant at 90% confidence
level. However, in the global model, a significant spatial cor-
relation is found in the residuals of predictions. The tests of
Moran’s I statistics indicate that by accounting for the spatial

heterogeneity in the station-level bikeshare ridership data,
the residuals in the GWR model are less spatially correlated
than that of global model.

In this study, the likelihood ratio tests (LRT) were con-
ducted to test whether separate model estimation for each
station category is superior to a joint model for all the station
categories. The null hypothesis for the LRT test is that the
joint model for all the five station categories does not have
a significantly lower log-likelihood value than the separate
models for each station category together. This null hypoth-
esis also indicates that there are no significant differences
between separate models and joint model. The test statistic
can be calculated as follows:

LR = −2[LL
(
βjoint

)
− LL (βs1)− LL (βs2)
−LL (βs3)− LL (βs4)− LL (βs5)] (5)

This statistic follows a chi-square distribution. The degrees of
freedom (n) equals to the difference between the number of
estimated variables in the joint model and the number of all
the five separate models together. If the test statistics value is
more than the chi-square value with n degrees of freedom at
a certain confidence level, then the null hypothesis should be
rejected.

In this study, two groups of likelihood ratio tests were
conducted. The first test compared the joint model without
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TABLE 4. Results of gwr models for one joint model and five separate models.

TABLE 5. Moran’s I statistics for residuals of predictions in the GWR and
global model.

station category variables and separate models, while the sec-
ond test compared the joint model with station category vari-
ables and separate models. As is shown in Table 6, the results
of likelihood ratio rest indicate that the separate models
for each station category are significantly better than the
joint model at the 95% confidence level. The test confirms
the necessary of considering the diversity across different
station categories in spatial analysis of bikeshare ridership.
In addition, the results in Table 6 also suggest that the

separate models for each station category are significantly
better than the joint model with station category variables at
the 95% confidence level. This finding indicates that build-
ing separate models for each station category is better than
incorporating station category as dummy variables in a joint
model.

Moreover, in this study we further compared the perfor-
mance of GWR model and spatial autoregressive model,
which is commonly used for addressing the issue of spatial
correlation in many previous studies [28], [29]. Table 7 gives
the results of goodness-of-fit between the two methods
for each station category. It can be found that in gen-
eral the GWR models exhibit better performances than
SAR models for each station category. The comparison anal-
ysis results suggest that the GWR is a superior technique for
the modelling of station-level bikeshare ridership data than
SAR method.
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TABLE 6. Likelihood ratio test for the separate models and joint models.

TABLE 7. Measures of goodness of fit for the GWR and SAR.

C. DISCUSSION OF MODEL SPECIFICATION RESULTS
As is shown in Table 4, for the socio-economic and demo-
graphic variables, it can be found that the number of
employed people in each station’s service area is positively
correlated with the bikeshare ridership in the joint model.
This finding is expected and consistent with many previ-
ous studies [3], [11]. However, by further inspecting this
coefficient in separate models, we found that the employ-
ment variable only has significant impact on the ridership
of S1 stations. Considering that the S1 stations are sur-
rounded by many public transit stations and mainly serve for
commuting trips, the bikeshare ridership of S1 station are
more easily to be affected by the employment population.
Similarly, the number of college enrollment in each station’s
service area is found to be only positively correlated with the
bikeshare ridership of S4 stations. The S4 station represents
a typically bikeshare usage for school living. Accordingly,
bikeshare of this station type mainly serve for college stu-
dents and are more easily affected by the number of college
enrollment.

In addition, the population in each station’s service area is
usually found to be positively correlated with the bikeshare
ridership in many previous studies [1], [3], [11], [15], [38].

In this study, from the results of separate models we
further found that the population variable only has significant
impact on the bikeshare ridership of S3 and S5 stations. This
finding is intuitive because stations of this two types are
usually located nearby residential areas and are more easily
to be affected by the surrounding population. The percent of
non-white population in each station’s service area is found
to be negatively correlated with the ridership for some certain
station categories, which is consistent with many previous
studies [39]. Moreover, the median household income in each
station’s service area seems to have a positive effect on the
bikeshare ridership in most station categories. This finding
is also consistent with that of other bikesharing systems in
Minneapolis, Denver, and Washington [1].

For the bikeshare infrastructure related variables, it can be
found that the number of bike racks in each station’s service
area is positively correlated with the bikeshare ridership in
the developed joint models. This finding reveals that areas
with more bike racks will be involved with more bicycle
activities and accordingly generate more potential trips [13].
Similarly, the bike lane length in each station’s service area
is also found to be positively correlated with the bikeshare
ridership in the joint model. Figure 4 further illustrates the
spatial pattern of the coefficients of the two variables. It can
be found that the coefficient of bike racks reaches the highest
value in the stations around the Lower Manhattan area, while
the coefficient of bike lane length reaches the highest value
in the stations around the Midtown area. This finding can
guide transportation planners where to add some bike racks
or new bike lanes to improve the bikeshare ridership more
effectively, particularly with the budget limitations. By fur-
ther inspecting the results of separate models, we found that
the bike lane length variable only have significant effect
on the ridership of S1, S3 and S4 stations. These types of
stations are mainly located within areas that have a rela-
tively high proportion of bike lane, such as the school-living
area or near the public transit stations. Thus, the higher
density of bike lanes in the service area of these station
types will generate more bikeshare trips. For the weather
related variables, the monthly accumulative precipitation and
snowfall are found to be negatively correlated with the bike-
share ridership, while the average temperature is found to
be positively correlated with the bikeshare ridership for each
month. These findings are intuitive because good weather
and warm temperature will attract more people to take shared
bicycle [16], [38].

In general, the findings from the spatial analysis of
bikeshare ridership in New York City are consistent with
many previous studies. By building the separate models for
each bikeshare station category, the fitness of developed
GWR models are greatly improved, and many interesting
findings associated with specific station categories can be
revealed. Accordingly, when designing planning scheme and
operation strategies, policy makers should be cautious about
the varied influencing of the contributing factors across dif-
ferent station categories.
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FIGURE 4. Spatial pattern of coefficients of bike racks and bike lane length in GWR models. (a) Spatial pattern of coefficients of
bike racks in GWR models. (b) Spatial pattern of coefficients of bike lane length in GWR models.

FIGURE 5. The selected new stations opened in 2016 year.

D. MODEL PREDICTION AND VALIDATION
The scale of the bikesharing system in New York City has
expanded year by year. Although the developed GWR mod-
els have exhibited decent performance for the study data,
the applicability for forecasting ridership at new stations
needs to be further investigated. In the present study, 12 newly
opened stations in downtown Manhattan during 2016 year
were selected to validate the prediction performance of devel-
opedmodels. Figure 5 illustrates the locations of selected new
stations and their related station categories.

More specifically, we applied the developed GWR models
of 2015 year to predict the bikeshare ridership of 12 new

FIGURE 6. Model prediction performance for the selected new stations.

stations opened in 2016 year. Then, we calculated the
actual ridership of the selected stations from the trip records
of 2016 year. The mean absolute percentage error (MAPE)
was calculated to assess the prediction performance for each
station category (See Figure 6).

As is shown in Figure 6, the MAPE values of the separate
models were generally lower than that of the joint model.
The findings again confirmed the fact that building bikeshare
ridership models for each station type can greatly improve
the model prediction performance. In addition, the prediction
quality of the S1, S4 and S5 station category models seem
not to be very satisfactory as most MAPE values were higher
than 30%. The reasons are twofold. First, the weather related
variables are aggregated monthly, which are not fine enough
to reflect the weather variation in predicting bikeshare rider-
ship for new stations. Second, there was a significant growth
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of the bikesharing user base in New York City during the two
years. It was reported that the registered bikesharing users of
New York City have increased by nearly 150% during these
two years.

V. CONCLUSIONS AND DISCUSSIONS
The present study conducted the spatial analysis of bikeshare
ridership for different station categories using smart card data
and online POI data. We collected bikeshare trip records from
the Citi Bike system in New York City to illustrate the proce-
dure. The POIs in the vicinity of each bikeshare station were
obtained from the Google Places API. The K-means cluster-
ing analysis was firstly conducted to classify the bikeshare
stations into five categories based on the spatial distribution
of their surrounding POIs. Then, the GWR models were
developed to establish the relationship between the bikeshare
ridership and various contributing factors, such as the bicycle
infrastructures, station capacity, weather variables, and socio-
economic and demographic variables in each station’s service
area. A joint model and five separate models for each station
category were built, respectively. The results of likelihood
ratio test confirmed the superiority and necessary of building
separate models for each bikeshare station category instead
of a joint model. Moreover, all the developed GWR models
were applied to predict the bikeshare ridership of the newly
opened stations in the next year. The results suggested by
building separate bikeshare ridership models for each station
category, themodel prediction accuracy are greatly improved,
particularly for station category S1, S2, and S3.

The results of the clustering analysis revealed that dif-
ferent bikeshare station categories are associated with dif-
ferent dominant activities and may exhibit different usage
patterns. By capturing the diversity across different station
categories, the fitness of developed GWR models and the
model prediction performance at new stations were both
greatly improved. Moreover, the varied influencing of the
contributing factors across different station categories can
be identified, and some interesting findings associated with
specific station category can be revealed. Accordingly, when
designing planning scheme and operation strategies, policy
makers could provide insightful suggestions for each station
category that aim at improving the operations of the whole
bikesharing systems.

Even though the developed models can provide some guid-
ance and effective strategies to improve the operations of
bikesharing systems, several limitations are still needed to be
addressed before the results of this study are used in practical
engineering:
(a) Attaching the potential trip purpose to each collected

POI data may suffer from some uncertainty. For exam-
ple, a commercial building including restaurants, bars,
and fitness room may have different types of trip pur-
poses. In this study, we checked the collected POI data
and found that POI of this kind only constitute a rela-
tively small proportion (7.23%) of the whole dataset.
Thus, in general the POI category in this study can

be accurately classified by the type of associated trip
purposes.

(b) Clustering the station category based on surround POIs
could be appropriate in a suburban context where land
uses are typically separate without mixed-uses. How-
ever, in a dense, urban, and predominantly mixed-use
environment such as Manhattan, the collected POI may
not well reflect the land use function.

(c) Some specific category of POIs are more likely be
labeled than the other category of POIs in the Google
Map Application such as recreational and leisure
places, leading to potential biases of the station clus-
tering results.

(d) The difference between weekday and weekend trips
and the difference between member and non-member
trips were not investigated in this study. The further
segment of trip types may help to better reveal the
influencing factors to ridership.

The limitation of POI data is a prevalent problem in many
previous transportation studies which also applied the POI
data to cluster the bus stations [19] and subway stations [18].
Some of these limitations may go away since more and more
human activity information can be collected in urban areas,
such as twitter check-in data and mobile phone data. In the
future, these data sources could be combined with POI data
for better clustering the station category and understanding
the spatial variation of bikeshare ridership. The authors rec-
ommend that future studies may focus on these issues.
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