
Received November 7, 2018, accepted November 25, 2018, date of publication November 28, 2018,
date of current version December 27, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2883742

Evaluating Collaborative Filtering Recommender
Algorithms: A Survey
MAHDI JALILI 1, (Senior Member, IEEE), SAJAD AHMADIAN2, MALIHEH IZADI3,
PARHAM MORADI4, AND MOSTAFA SALEHI 5
1School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
2Department of Computer Engineering, University of Zanjan, Zanjan 4537138791, Iran
3Department of Computer Engineering, Sharif University of Technology, Tehran 1136511155, Iran
4Department of Computer Engineering, University of Kurdistan, Sanandaj 66177-15175, Iran
5Faculty of New Sciences, University of Tehran, Tehran 1417466191, Iran

Corresponding author: Mahdi Jalili (mahdi.jalili@rmit.edu.au)

This work was supported by the Australian Research Council under Project DP17010230.

ABSTRACT Due to the explosion of available information on the Internet, the need for effective means of
accessing and processing them has become vital for everyone. Recommender systems have been developed
to help users to findwhat theymay be interested in and business owners to sell their products more efficiently.
They have foundmuch attention in both academia and industry. A recommender algorithm takes into account
user–item interactions, i.e., rating (or purchase) history of users on items, and their contextual information,
if available. It then provides a list of potential items for each target user, such that the user is likely to
positively rate (or purchase) them. In this paper, we review evaluation metrics used to assess performance of
recommendation algorithms. We also survey a number of classical and modern recommendation algorithms
and compare their performance in terms of different evaluation metrics on five benchmark datasets. Our
experiments show that there is no golden recommendation algorithm showing the best performance in all
evaluation metrics. We also find large variability across the datasets. This indicates that one should carefully
consider the evaluation criteria in choosing a recommendation algorithm for a particular application.

INDEX TERMS Recommender systems, collaborative filtering, evaluation metrics, precision, ranking,
diversity.

I. INTRODUCTION
Nowadays, there are many commercial and non-commercial
websites on the Internet offering increasing volume of diverse
products to users. Recommender systems (RSs) have become
an inevitable part of the world-wide-web, due to the emer-
gence of e-commerce, wide and fast growing range of choices
for customers, diversity of preferences between users, lack of
precise knowledge of their needs, and lack of keyword terms
to express and use search engines to meet these demands.
Recommender algorithms predict the utility of an item to a
target user, and suggest the best items regarding the user’s
preferences using their past ratings to available items in
the system. An item may represent a movie, a music track,
a book, an application, a restaurant, a place for vacation,
a webpage or any other thing used by users. Personalized RSs
utilize user-related information to customize the generated
recommendations regarding their preferences.

Asmore RS algorithms are developed, it is necessary to put
efforts on developing proper evaluation methods. Evaluating
performance of RSs is one of the challenging tasks within

these systems [1]. There is no a single metric that can effi-
ciently measure the performance and often one has to use a
number of them at the same time. For example, accuracy and
diversity of RSs that are not often in the same direction, have
to be shown at the same time to have a fair understanding of
the performance. Recommendation algorithms are proposed
for different objectives, and thus different evaluation met-
rics are chosen to assess the performance of the algorithms
from different aspects. A RS may have good performance
based on some evaluation metrics, while having poor per-
formance based on some other. Furthermore, performance
of RSs depends on the nature of items considered in these
systems. For example, a specific method may have good per-
formance only for movie recommendation systems, while not
performing well for other types of items such as music,
book or news.

Although there are a number of reviews for RSs [2]–[5],
to the best of our knowledge, there is no comprehensive work
comparing different RS algorithms on available evaluation
metrics and also various types of datasets. In this paper,

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

74003

https://orcid.org/0000-0002-0517-9420
https://orcid.org/0000-0002-2577-5828


M. Jalili et al.: Evaluating Collaborative Filtering Recommender Algorithms: A Survey

we provide a brief overview of a number of memory- and
model-based collaborative filtering RSs and assess their per-
formance on five benchmark datasets including Movielens,
Epinions, LastFM, BookCrossing, and Jester, which have
been frequently used as benchmarks in RSs research. The
evaluation metrics are categorized into three classes: accu-
racy, rank-based, coverage and novelty/diversity metrics.
In addition, a combination of several evaluation metrics is
considered as a unified metric to compare the performance
of recommendation methods. Our experiments on the perfor-
mance of the algorithms on the datasets show that there is no
golden algorithm that outperforms others in all of the evalu-
ation metrics. The best performers are indeed spread across
the evaluation metrics, which indicates the significance of the
evaluation metric in choosing a recommendation algorithm
for a particular application. We also find large variability
across the datasets.

II. RECOMMENDER SYSTEMS
The task of RSs is either prediction or recommendation.
Prediction means deciding whether or not a user would like a
particular item by predicting howmuch they would rate a new
item. On the other hand, recommendation refers to the task
of recommending a list of items that the user would probably
like [6]. Real-world example of items for recommendations
include movies [7], [8], music [9], [10], documents and books
[11], [12], news [13], [14], jokes [15], e-learning material
[16], [17] and e-commerce applications [18], [19]. RSs utilize
various explicit or implicit information sources to generate
their recommendations, including ratings, social information,
demographic and contextual information such as time, loca-
tion, contents, features and tags [20]–[24]. Regarding to how
recommendations are made, RSs algorithms are categorized
into three groups: content-based, collaborative filtering and
hybrid recommendation algorithms [3], [25], [26].

A. CONTENT-BASED RECOMMENDATION ALGORITHMS
The items recommended using these algorithms have similar
contents or features to those positively rated by the target
user [27]–[30]. For example, in recommending a movie, the
features may include genre, actors and director. When a user
indicates their preference in action movies, a content-based
algorithm recommends the best-matching action movies to
them. Moreover, content-based recommenders can exploit
the information in users’ profiles [31] such as demographic
information, age, gender, nationality, education or occupation
[32], [33] to improve the quality of recommendation.

B. COLLABORATIVE FILTERING RECOMMENDATION
ALGORITHMS
This approach recommends the items based on the sim-
ilarity between the users and/or the items [4], [26]. The
term ‘‘collaborative’’ (first used by the creators of Tapestry
recommender [34]) refers to the need of collaboration of
different users for ‘‘filtering’’ abundant data and generat-
ing recommendations. For example, if users u and p have

similarly rated items in the past, their history of preferences
will impact the recommendations each one gets, more than
preferences of other non-similar users to them. The algo-
rithms in this category are divided into two subgroups of
memory-based and model-based Collaborative Filtering (CF)
recommenders [35], [36]. This approach is the most widely
used RSs algorithm in many industrial applications [3], [37].

C. HYBRID RECOMMENDATION ALGORITHMS
Different combinations of content-based and CF algorithms
exist that exploit users’ and items’ information as well as the
ratings and similarity of different users and items [38]–[41].
Generally, there are four different ways to combine
the content-based and CF recommenders [25], including
(1) separately implement content-based and CF algorithms,
then combine their results [33], [42], (2) use some of content-
based features to boost a CF algorithm [33], [43], [44],
(3) or alternatively, use some of the characteristics of a CF
algorithm to boost a content-based recommender [43], (4) and
finally, unify content-based and CF characteristics into one
recommender [33], [45]. Several studies have shown that
hybrid RS algorithms provide better recommendations than
separate content-based or CF algorithms [33], [43], [46].

In spite of the growing research in the field of RSs over the
past years, there are still several challenges for both content-
based and CF methods. Generally, comparing content-based
and CF approaches, the latter is not limited to the con-
tent or features since they use the users’ rating history for
prediction and they can recommend diverse items. However
new user problem is still an issue, likewise new item problem
and sparsity [25], [33], [43], [47]. The first two problems
are usually referred to as ‘‘cold-start problem’’ [43], [45].
Combining content-based and CF algorithms – a hybrid
approach – has been used as a solution for the cold start
problem in different studies. Other studies have used various
methods to find the best item for recommending to a new user
and learn their preferences gradually; e.g., a simple way is
to recommend popular items or items based on users’ demo-
graphic information such as age, gender, location, nationality,
education or occupation (assuming new users have to fill out a
profile before using the system) [25], [48]. The quality of RSs
can be enhanced by various approaches; for example, by bet-
ter knowing users and items [43], [49]–[51] through incorpo-
rating features of their profiles such as demographic informa-
tion or keywords [31], [33], [52], [53] or using data mining
techniques [31], [33], [52], [54], utilizing additional contex-
tual information such as time and location [5], [55]–[57],
getting feedbacks on recommendations and improving the
performance according to them [13], [58], [59], using multi-
criteria ratings, or by adding the features of complex networks
into recommendation process [60].

III. COLLABORATIVE FILTERING RECOMMENDATION
ALGORITHMS
Collaborative Filtering (CF) RSs consider item- or user-based
similarities and extract the list of recommendations based

74004 VOLUME 6, 2018



M. Jalili et al.: Evaluating Collaborative Filtering Recommender Algorithms: A Survey

on them. To formalize this, let’s denote ‘‘U ’’ as the set of
users in the system, displayed by U = {u1, u2, . . . , um} and
‘‘I ’’ as the set of items, represented by I = {I1, I2, . . . , In}.
rui represents the rating given by user u to item i, and usually
has a numerical scale, such as the five-star rating scale for
Movielens1 (1 means very bad and 5 very good) and the
ten-star rating scale for IMDB.2 In some cases, the scale
is continuous, e.g., rui is in the range [−10, 10] for Jester
Joke recommender. There are explicit or implicit ways for
gathering the users’ ratings, as indicator of their preference
toward the items [61]–[63]. The numerical ratings along
binary (like/dislike) and unary ones (e.g., the only choice
of Like in Facebook), which are entered directly by a user,
are considered as explicit ratings [4]. Implicit feedback gath-
ered from the users can be used to improve the quality of
recommendations [4], [64]. The data file containing ratings
(called user-item interaction matrix) is used for learning the
users’ preferences and habits, predicting new ratings, recom-
mending items to users, and finally evaluating the system. For
evaluation purposes, ones needs to divide the rating matrix
into two parts: training set for learning and test set for eval-
uating the performance. Memory-based and model-based CF
algorithms use these matrices differently, which are discussed
in the following sections.

A. MEMORY-BASED COLLABORATIVE FILTERING
As mentioned, memory-based algorithms predict new rat-
ings based on the available data (which is loaded into the
memory), using similarity of other users or items to the target
user/item [4], [25]. The set of similar users to a target user
(or similar items to a target item) is called their neighbor
set and is used to extract users/items with similar history
of ratings. The underlying assumption is that if two users
have similar history of ratings for common items, they will
likely have similar preferences for the rest of items. As for
the two items rated similarly by several users, they would
probably be rated in the same manner by the rest of users.
However, there are always individuals with unique tastes and
preferences which would not help this case, but generally
speaking, this assumption has proved to be useful. After
forming the neighborhood, a new rating for a target user-item
pair is predicted as a function of the neighbors’ ratings for
that particular item and the degree of their similarities to the
target user. Based on using the target users/items neighbors,
these algorithms are divided into two categories of user-based
and item-based CF.

There are various similarity measures for extracting the set
of neighbors, such as cosine–based similarity adapted from
information retrieval [65], adjusted cosine, Pearson correla-
tion coefficient, constrained Pearson correlation, Euclidean
and mean squared differences [3]. In addition to the sim-
ilarity, in some cases, one can use dissimilarity values as
well [66], e.g., when the sparsity of available data is high

1www.movielens.com
2www.imdb.com

and the relevance becomes more important than the correla-
tion [67]–[69]. Next, we review cosine-based similarity and
Pearson correlation; however as Pearson correlation coef-
ficient has shown to be the more effective technique [25],
we chose Pearson as our similarity measure in the implemen-
tations. Cosine-based similarity between two users u and u′

is calculated using Eq. (1) as follows [6], [64]:

similarity(u, u′) = cos(u, u′) =

∑
i∈Iuu′

rui× ru′i√ ∑
i∈Iuu′

rui2
√ ∑
i∈Iuu′

ru′i2
(1)

where Iuu′ is the set of items rated by both users, and
rui is the rating that user u has given to item i. Pearson
correlation coefficient for users u and u′ is obtained using
Eq. (2) [70], [71]:

similarity(u, u′) = PC uu′

=

∑
i∈Iuu′

(rui− ru)× (ru′i− ru′ )√ ∑
i∈Iuu′

(rui− ru)2
√ ∑
i∈Iuu′

(ru′i− ru′ )2
(2)

where ru is the average rating of user u.
As the similarity values are computed, one can use k

Nearest Neighbor(KNN) algorithm to find the k-most similar
users to the target user. Eqs. (1) and (2) are also applicable for
calculating the similarities between items [6], [72]. Usually,
in real recommenders the similarities are pre-calculated and
used whenever there is a need to generate recommendations.
This enables to make the recommendation on a real-time
fashion. However, the similarity values must be recalculated
once in a while, due to the change in the users and items
networks in the system [25].

1) USER-BASED COLLABORATIVE FILTERING
User-based CF is among the most successful and widely
implemented techniques in RSs [6], [25]. It recommends
items to a target user based on opinions of other similar
users to them [70]. After forming the neighborhood, the new
rating for the target user-item pair is estimated consider-
ing the weights of different neighbors. That is, the higher
is the similarity of a user with the target user, the more
impact their rating has on the estimation of the target user’s
rating. The new rating for user u and item i is predicted
as ˜rui using:

r̃ui =

∑
u′∈NSu

(ru′i)× (similarity(u, u′))∑
u′∈NSu

|(similarity(u, u′))|
(3)

whereNSu is the neighbor set of target user uwith k members.
However, Eq. (3) neglects the fact that different people may
differently use the rating scale. Eq. (4) considers this issue
through adjusting the formula by first subtracting the average
rating of each neighbor user, ru′ , then multiplying the result

VOLUME 6, 2018 74005



M. Jalili et al.: Evaluating Collaborative Filtering Recommender Algorithms: A Survey

by his/her similarity with the target user, and finally adding
the target user’s average rating [4], [25].

r̃ui = ru+

∑
u′∈NSu

(ru′i− ru′ )× (similarity(u, u′))∑
u′∈NSu

|(similarity(u, u′))|
(4)

User-based CF is a popular method for being relatively fast
with reasonable accuracy in the prediction task. However,
it has its own drawbacks, such as dealing with sparsity and
scalability issues. As the number of items grows, even an
active user does not visit a high percentage of total items, and
thus the data will be extremely sparse. A possible solution
for the sparsity problem is to use semi-intelligent content-
boosted agents to increase the density of rating matrix
[73], [74]. Another solution is to use latent semantic indexing
to detect the similarity between users and items in a reduced
dimensional space [75], [76]. As for the scalability, the com-
putation complexity increases as the number of users and
items in the system grow [6]. In the worst case, for a user-
based CF with m users and n items, the phase of calculating
similarities has a time complexity in order ofO(m2n), and the
prediction phase takes the order of O(km). The user-based
CF provides low coverage of available items in the system,
and the final recommendations are more biased to popular
items.

2) ITEM-BASED COLLABORATIVE FILTERING
In order to alleviate the scalability issue of user-based CF,
item-based CF algorithm was proposed [6]. The underlying
assumption here is that two items which are being rated
similarly by several users, would probably be rated in the
same manner by the rest of users. Unlike the user-based CF,
the item-based algorithm analyzes the rating matrix to iden-
tify the relationships between items. Prediction is computed
by taking a weighted average of the target user’s ratings
on similar items. Item-based CF is preferred to user-based
whenever the number of items in the system is far less than
the number of users. Fig. 1, retrievd from Sarwar et al. [6],
depicts the similarity computation of item-based CF.

When estimating an unknown rating value, first Eq. (3) is
modified to calculate the Pearson correlation between items
rather than users. Then, the new ratings are calculated using
Eq. (5):

r̃ui =

∑
i′∈NS i

(rui′ )× (similarity(i, i′))∑
i′∈NS i

|(similarity(i, i′))|
(5)

where NS i is the neighborhood set of item i. According to
[6] and [72], item-based CF is scalable for larger data sets
since the item-neighborhood is rather static, and therefore, the
similarities can be efficiently pre-computed. Thus, the online
(prediction phase) performance is better than user-based CF.
Regarding the computational complexity of item-based CF
with m users and n items, the similarity calculation phase
needs a time complexity in order of O(m2n) and prediction

FIGURE 1. Calculating similarity values between items for item-based CF
method. The purpose is to calculate similarity value between items i and j
based on their common ratings provided by users. In this matrix, the rows
represent the users and the columns represent the items. The common
ratings for items i and j are provided by users 1, u, and m-2.
The figure and concept is adopted from [6].

phase takes O(km). However, in a real system with large
number of users and items, the actual complexity is far less,
since the number of items not being rated by a user is much
less than the total number of items.

3) RESOURCE ALLOCATION COLLABORATIVE FILTERING
Resource allocation CF uses the notion of link prediction [77]
in RSs to improve its performance. There are a number
of methods for link prediction in complex networks [78].
Javari et. al. [79] used resource allocation (RA) index [80],
which has shown good estimation of the missing links in
bipartite networks of users and items. They used the con-
cept that more popular items should have less impact when
calculating the similarities of users, since most users like
popular items, and therefore, they are less worthy to be used
for the recommendation purposes. RA is a degree-based local
similarity measure, in which its value for two users depends
on the degree of the common-rated items by users; that is
the more popular the common-rated items, the less the value
of their RA similarity index. Moreover, as the number of
common-rated items grows, RA increases, and the calculated
similarity is more trust-worthy. According to this algorithm,
if each node distributes its resources equally to all of its
neighbors, the RA index, as a degree indicator of the sim-
ilarity between users u and u′, is obtained using Eq. (6) as
follows:

SRA(u, u′) =
∑

i∈0(u)∩0(u′)

1

di
(6)

where di is degree of item i, that is the number of users who
have rated i, and 0(u) is the set of items rated by u. Eq. (6)
indicates that the RA values depend on both the number
of common neighbors and their degree. As the RA scores
are obtained, the similarity between the users is obtained as
follows:

similarityCF−RA(u, u
′) = PCuu′ × SRA(u, u

′) (7)

74006 VOLUME 6, 2018



M. Jalili et al.: Evaluating Collaborative Filtering Recommender Algorithms: A Survey

The rest is the same as standard user-based CF
algorithm.

4) USER OPINION SPREADING
User Opinion Spreading (UOS) method uses a combination
of CF algorithm with the users’ opinion spreading process to
predict more accurate ratings [81]. In this method, the sim-
ilarity value between two users is defined by measuring the
amount of opinion that the users transfer to each other based
on the primitive user-item rating matrix. To this end, Eq. (8)
is used to normalize the ratings by transforming the ratings to
the range [−1, 1].

eiα =
2 ∗

(
riα − rmin

i

)
rmax
i − rmin

i

− 1 (8)

where riα is the rating of item α given by user i, rmini and rmaxi
are the minimum and maximum ratings that have been given
by that user, respectively.

Also, the following equation computes the amount of opin-
ion that user i transmits to user j through an item α mutually
rated by them:

Eijα = eiα ∗ ejα (9)

where ejα is computed using Eq. (8). Then, the opinion-based
similarity weights between users are computed using Eq. (10)
as follows:

Sij =
1
ki

P∑
α=1

AiαAjαEijα
kα

(10)

where Aiα = 1 if user i has rated item α, otherwise Aiα = 0. P
is the number of all items and ki and kα denote the number of
neighbors of user i and item α, respectively. Finally, the rating
of user i on item α is computed as follows:

riα = r i +

∑n
j=1

[(
rjα − r j

)
∗ Sji

]∑n
j=1 Sji

(11)

where n denotes the number of neighbors, rjα is the rating of
user j on item α, r i is the average ratings given by user i, and
Sji is the opinion-based similarity value between users i and j
that is computed using Eq. (10).

5) MULTI-LEVEL COLLABORATIVE FILTERING
A Multi-Level Collaborative Filtering (MLCF) is proposed
in [82] to improve the accuracy of the classical CF. The
main idea of this method is to use an improved similarity
measure to enhance the ability of CF in accurately predicting
the unseen items This similarity measure is computed using

Eq. (12), as:

sim (a, b)

=



simPCC(a,b) + x, if
|Ia ∩ Ib|

T
≥ t1

and simPCC(a,b) ≥ y

simPCC(a,b) + x, if
|Ia ∩ Ib|

T
< t1

and
|Ia ∩ Ib|

T
≥ t2 and simPCC(a,b) ≥ y

simPCC(a,b) + x, if
|Ia ∩ Ib|

T
< t2

and
|Ia ∩ Ib|

T
≥ t3 and simPCC(a,b) ≥ y

simPCC(a,b) + x, if
|Ia ∩ Ib|

T
< t3

and
|Ia ∩ Ib|

T
≥ t4 and simPCC(a,b) ≥ y

0, otherwise

(12)

where Ia is a set of items that are rated by user a, T is
the total number of co-rated items, x and y denote positive
real numbers, and simPCC(a,b) is the similarity value between
users a and b, which is calculated using Eq. (2). t1, t2, t3,
and t4 are natural numbers that constraint the number of co-
rated items for each level. The rest is the same as the classical
CF algorithm.

6) ITEM GLOBAL PROFILE EXPANSION
Item Global Profile Expansion (IGPE) is a recommendation
method which is based on expanding the users’ rating pro-
files by using the items that are similar to those that have
been already rated by the user [83]. Therefore, this method
needs to use profile-level information to find similar items.
To this end, the cosine vector similarity is used to measure
the similarity values between the items as Eq. (13):

ς (i, j) =

∑
u∈U VuiVuj√∑

u∈U V
2
ui
∑

u∈U V
2
uj

(13)

where ς (i, j) is the cosine similarity value between items i
and j, U is the set of all users in the system, and Vui is the
rating of item i given by user u. After calculating the simi-
larity values, the top-k similar items are selected to expand
the users’ rating profile. To this end, each selected item is
assigned by a rating value that is computed as the average
weighted rating of the other similar items. Finally, the unseen
items are predicted using the classical CF algorithm.

7) USER LOCAL PROFILE EXPANSION
User Local Profile Expansion (ULPE) is a recommendation
method to expand users’ ratings based on the items that have
been rated by the neighbors of the active user [83]. In other
words, in thismethod only those of items are considered in the
computations that have already been rated by the neighbors
of the active user. Thus, the profile is expanded with the
top-l rated items. If a given item was rated by more than one
neighbor, the rating is averaged according to their similarity

VOLUME 6, 2018 74007



M. Jalili et al.: Evaluating Collaborative Filtering Recommender Algorithms: A Survey

values with the active user and imputed to the user-item rat-
ings matrix. To obtain the similarity values between the active
user and his/her neighbors, the cosine similarity measure is
used as Eq. (1). Finally, the similarity values between the
users are computed based on the expanded rating profiles,
and the remaining unseen items are predicted using the pure
CF algorithm.

8) MORE ON MEMORY-BASED COLLABORATIVE
FILTERING ALGORITHMS
Due to the simplicity of memory-based algorithms, they
have been implemented in many industrial recommenders.
The KNN technique used in these algorithms is simple and
produces reasonably accurate results, and the new data can
be added incrementally to the algorithm. Memory-based CF
algorithms do not have a learning step (no model is extracted
from the data), but their prediction phase may need heavy
computations. Despite their wide-spread use in recent years,
memory-based CF algorithms have several drawbacks related
to synonymy, sparsity and scalability. Indeed, the similarity-
based methods cannot be pre-computed for real-time per-
formance [84]. According to [64], in order to improve the
neighborhood-based results, one can utilize several exten-
sions such as default votes, inverse user frequency or case
amplification. The first extension assumes a default vote for
the pairs of user-item, for which there is no explicit rating.
This is performed in order to increase the common items rated
by two users (or common users who have rated two items).
The idea behind using inverse user frequency is to decrease
the effect of universally-liked items when calculating the
similarities. The case amplification technique uses a weight
transformwhichwould put more emphasis on higher weights,
while punishing low weights. Furthermore, as the number of
users and items increases, the time complexity of the nearest
neighbor algorithms linearly grows [85]. A solution can be to
use clustering techniques on users or items, in order to reduce
the search time [86]–[88]. Another approach is to use model-
based techniques such as matrix factorization and dimension-
ality reduction to deal with these limitations. Several Model-
based algorithms are reviewed in the following section.

B. MODEL-BASED COLLABORATIVE FILTERING
Model-based CF algorithms use different techniques on the
training set, in order to find patterns in the data and learn
a model for predicting new ratings [36], [89], [90]. One
can name Slope one [91], latent factor models such as
Matrix Factorization (MF) and Singular Value Decomposi-
tion (SVD) [36], [92]–[94], Bayesian classifiers [95], [96],
clustering models [97]–[100], various probabilistic relational
models [101], [102], probabilistic latent semantic analy-
sis [89], [103], [104], linear regression [6], [105], max-
imum entropy model [106], Latent Dirichlet Allocation
(LDA) [107], Markov chain based models [108], principal
component analysis (PCA) [109], probabilistic factor anal-
ysis [110], neural networks and fuzzy systems [111], [112]
among the techniques used for model-based CF. In the

following, we review a number of frequently used model-
based methods. Although there is a rich literature on model-
based CF, these algorithms have limited applicability in real
scenarios.

1) SLOPE ONE
Lemire and Maclachlan proposed three slope one algorithms
that pre-compute the average difference between the rat-
ings of two items for users who have rated both items,
in the form of f (x) = x + b predictors, where b is
a constant and variable x represents the ratings [91]. For
each pair of items, slope one calculates how much an item
is more preferred than the other one (popularity differen-
tial), which is then used to predict the user’s rating of
one of those items, given their rating of the other. Note
that the distinction between slope one algorithms is due
to the way that the relevant differences are selected for
the prediction. For example, consider two users u and u′,
and two items i and j, as shown in Fig.2. The ratings of
user u on items i and j are 1 and 1.5, respectively. User u′

gave a rating of 2 to item i and did not rate item j. slope one
tries to predict the rating that user u′ would give to item j,
using both ratings of user u and the rating of a common item
between users u and u′ (i.e., item i). Since u rated j 0.5 point
(1.5 − 1) higher than i, one can predict u′ will give j a rating of
2.5 (2+ 0.5). As described by this example, slope one utilizes
the information of other users who have rated the same item,
other items rated by the same user and the data points that fall
neither in the user vector nor in the item vector (e.g., rating
of user u to item i) when predicting an unknown rating.

FIGURE 2. Basis of slope one algorithm; adopted from [91]. The purpose
is to predict rating of item j for user u

′
based on the slope 1 algorithm.

User u has provided ratings for items i and j . However, user u
′

has just
provided a rating for item i . Therefore, the rating of item j for user u

′
can

be predicted based on the difference of ratings provided for items i and j
by user u.

Given two rating vectors vi and wi, i = {1, 2, . . . , n}, slope
one searches for the best predictor of the form f (x) = x+b to
predictw from v byminimizing

∑
i (vi + b− wi)

2. Therefore,
bmust be chosen to be the average difference between the two
vectors. The average deviation of item i with respect to item j

74008 VOLUME 6, 2018



M. Jalili et al.: Evaluating Collaborative Filtering Recommender Algorithms: A Survey

is calculated as:

devji =
∑

u∈sji(trainSet)

ruj− rui
card(sji(trainSet))

(14)

where u ∈ Sji (trainingSet) is the set of users who have rated
both items i and j in the training set, rui and ruj are the ratings
given by user u to items i and j, respectively, and card(S)
is the number of elements in set S. Note that the symmetric
matrix defined by devji can be computed once and updated
quickly when new data is entered. Afterward, unseen ratings
are predicted as follows:

r̃uj =
1

card(Rj)

∑
i∈Rj

(devji+ rui) (15)

where Rj =
{
i | i ∈ S (u) , i 6= j, card(Sji (trainSet)) > 0)

}
is

the set of all relevant items and S(u) is the set of items rated
by user u.

2) WEIGHTED SLOPE ONE
One may notice that in the computations of slope one,
the number of observed ratings is not included. Considering
the scenario shown in Fig. 3 where u has rated both j and i,
we want to predict the utility of item q for user u. If 100 users
had rated both q and j, and only 10 users had rated both q and i,
the rating given by u to j is probably a better predictor for q
(i.e., more reliable) than the rating to i.

FIGURE 3. Basis of weighted slope 1 algorithm. User u has provided
ratings for items i and j . The purpose is to predict ratings of item q for
user u. The main idea of weighted slope one algorithm is to consider the
number of users who have ratings for both of items i and q (i.e. 10 users)
and both of items j and q (i.e. 100 users). Therefore, the rating given to
item j by user u is probably better and more reliable predictor for item q.

The weighted ratings are predicted using Eq. (16) as
follows [91]:

rwuj =

∑
i∈s(u)−{j}

(devji+ rui)× (card(sji(trainSet)))∑
i∈s(u)−{j}

(card(sji(trainSet)))
(16)

3) MATRIX FACTORIZATION METHODS
Due to the limitations of memory-based CF algorithms
regarding scalability and sparsity issues, new algorithms tried
to address these issues using dimensionality reduction tech-
niques [36], [75]. Matrix Factorization (MF) methods such
as Singular Value Decomposition (SVD) are among these
techniques [36], [92]. In their simplest form, these algo-
rithms factorize the rating matrix into two low-rank matrices:
users profile and items profile. High similarity between item

and user profiles results in a recommendation. According
to [113], these methods have several advantages such as
better accuracy (in regard to kNN-based algorithms), good
scalability, and relatively easy learning process. However,
their main burden is the difficulty in learning themodel. In the
following, we give details on a number of methods based on
matrix factorization.

a: REGULARIZED SINGULAR VALUE DECOMPOSITION
In recommendation algorithms based on SVD, the SVD
technique is used to first detect the latent relationships
between the users and the items and then to generate a low-
dimensional representation of the original rating matrix space
to calculate the neighborhood in the reduced space [75]. SVD
factorizes the rating matrix into a product of two low-rank
matrices. It produces a set of uncorrelated eigenvectors which
represents the users and the items. For a rating matrixM with
m× n dimensions and rank r , SVD is calculated as:

SVD(M) = U × S × V T (17)

wherem and n are the total number of users and items respec-
tively, and dimensions of U , S and V are m × m, m × r and
r×n, respectively.U and V are two orthogonal matrices, S is
a diagonal matrix which is called the ‘‘singular matrix’’ and
have r nonzero diagonal elements. Note that the dimensions
of matrices U and V are reduced to m × r and r × n,
respectively and the values on the diameter of S are sorted
decreasingly. The first r columns of U and V represent the
orthogonal eigenvectors associated with the r nonzero eigen-
values of MMT and MTM , respectively. U and V are called
the left and right singular vectors, respectively [75], [114].
One can keep only k of r singular values (highest values) and
discard lower entries. (r − k) columns from U and (r − k)
rows from V T are eliminated to produceUk and V T

k matrices.
Uk and Vk are multiplied together using Sk to produce Mk .
The reconstructed matrix Mk is the closest rank-k matrix
to M , with respect to the Frobenius norm of matrix. Indeed,

Mk = Uk × Sk ×V T
k (18)

Now, the rating prediction for user u and item i, ˜rui, is cal-
culated using dot product as:

r̃ui = ru+Uk
√
STk (u)×

√
Sk × V T

k (i) (19)

SVD has several advantages and often results in predic-
tions with good accuracy. SVD addresses the synonymy
problem by helping users who have rated similar, but not
exact items to be mapped into the space spanned by the
same eigenvectors. Furthermore, the low-rank approxima-
tion of the original space is better than the original space
itself due to eliminating small singular values which cause
noise in the user-item relationship [115]–[117]. According
to [75], [76], and [117], algorithms based on SVD can make
the neighborhood formation process of CF systems very scal-
able, often resulting in better performance. The space storage
of SVD takes O (m+ n), since it only stores two matrices

VOLUME 6, 2018 74009



M. Jalili et al.: Evaluating Collaborative Filtering Recommender Algorithms: A Survey

of size m × k and k × n. Therefore, the space storage of
SVD is very efficient compared to neighborhood-based CF
algorithms that is O(m2). Despite its popularity and being
implemented in several studies [118], [119], SVD is slow
and requires dealing with the missing values. Furthermore, its
optimization method is non-convex. A solution to deal with
the missing values is to replace them with the users’ average
ratings or those of the items [75]. A typical model-based
recommendation algorithm has two steps: one for model-
building (offline) and one for execution (online). A major
defect of SVD is its time-consuming offline decomposition
step. For anm×n rating matrix, the required time of this step
is the order ofO((m+ n)3) [115], [116], while the complexity
of online phase in neighborhood-based CF is O(m2n), much
lower than SVD [75]. Incremental SVDwas proposed to help
improve the computation time [117], which first computes
a model with an appropriate size, and then use a projection
method to build incrementally upon that [117].

During the Netflix competition in December 2006, regular-
ized SVD (RVD)was proposed byBrandynWebb (also called
FunkSVD) to improve SVD using a learning rate, regulariza-
tion constants and a method for clipping predictions [120].
This algorithm minimizes the squared error between the
actual ratings and predicted estimations for all available
votes [121]. RSVD considers a regularization parameter,
guarantees the convergence, and improves the generalizabil-
ity of the model by optimizing the regularization parameter.
Forminimization process, RVDuses gradient descent that can
achieve good accuracy by choosing appropriate parameters.

b: NON-NEGATIVE MATRIX FACTORIZATION
In the Non-negative MF (NMF) algorithm [122], there is a
low-dimensional linear model with a non-negative constraint
to indicate the rating matrix. This means that the profile of the
users and items in a NMF, should have only positive values
[36], [123]. This method uses multiplicative update rules for
minimizing the least squares error between the actual ratings
and the predicted ones.

c: PROBABILISTIC MATRIX FACTORIZATION
Probabilistic MF (PMF) utilizes a probabilistic linear model
to represent the latent features of users and items. According
to Mnih and Salakhutdinov [124], implementation of this
algorithm on the large and sparse dataset of Netflix showed
promising results. This model linearly scales with the number
of ratings.

d: BAYESIAN PROBABILISTIC MATRIX FACTORIZATION
Usually, low-rank MF algorithms are fitted to the data
using a Maximum-a-Posteriori (MAP) estimate of the model
parameters, which in the case of inaccurate tuning of
regularization parameters, will often result in over-fitting.
Salakhutdinov and Mnih presented a Bayesian version of
PMF with automatic controlling of all model parameters and
hyper-parameters [125]. They used Markov Chain Monte
Carlo (MCMC) method to train their model and applied it

on the Netflix dataset. Their results indicated better accuracy
than PMF method.

e: NON-LINEAR PROBABILISTIC MATRIX FACTORIZATION
Non-linear PMF (NLPMF) uses Gaussian process latent vari-
able models for recommendation. The model is optimized
using stochastic gradient descent method. Lawrence and
Urtasun applied this model to EachMovie and Movielens
datasets and achieved good results [126].

f: REGULARIZED SINGLE-ELEMENT-BASED NMF
Non-negative MF methods have been proposed primarily for
computer vision applications, while CF problems differ from
them due to their sparsity of the user-item ratings matrix.
In [127], a regularized single-element-based NMF (RSNMF)
model was proposed which is especially suitable for solving
CF problems subject to the constraint of non-negativity.

g: ALTERNATING NON-NEGATIVE LATENT FACTOR
High computational and storage complexity are the major
challenges in NMF-based CF recommender systems.
To address this problem, an alternating direction method
(ADM)-based non-negative latent factor (ANLF) model was
proposed in [128] to apply the ADM-based optimization with
regard to each single feature and obtain high convergence rate
as well as low complexity.

h: INHERENTLY NON-NEGATIVE LATENT FACTOR
In [129], a novel inherently non-negative latent factor (INLF)
was proposed to extract non-negative latent factors from
high-dimensional and sparse matrices. To this end, a single-
element-dependent mapping is used to bring the output fac-
tors and decision variables for making the parameter training
unconstrained and compatible with general training schemes.
Experiments are performed on six high dimensional and
sparse matrices and the results showed that INLF model is
able to acquire NLFs more efficiently than other methods.

i: EFFICIENT SECOND-ORDER LATENT FACTOR
In [130], an efficient second-order latent factor (ESLF)model
was proposed based on second-order optimization to achieve
higher accuracy. To this end, a Hessian-free optimization
framework is applied to avoid direct usage of the Hessian
matrix by computing its product with an arbitrary vector.
Moreover, a model is considered to extract latent factors from
the given incomplete matrices via a second-order optimiza-
tion process. Experimental results on two datasets indicated
that ESLF model can offer higher prediction accuracy with
reasonable computational efficiency.

Table 1 represents the summary of CF recommender
algorithms mentioned above. Note that these algorithms are
only representative for recommendation algorithms andmany
extensions to these classical memory- and model-based have
been proposed in the literature, some of which were also
discussed in this manuscript.

74010 VOLUME 6, 2018



M. Jalili et al.: Evaluating Collaborative Filtering Recommender Algorithms: A Survey

TABLE 1. Summarization of recommender algorithms. The recommender
algorithms are classified into three main groups including content-based,
collaborative filtering, and hybrid methods.

In this manuscript, we do not consider distributed imple-
mentation of CF algorithms. However, as the size of the
dataset increases, calculation of similarity scores might not
be easy, and can even be impractical for very large-scale
datasets. A possible approach to solve the issue is to use dis-
tributed processing approaches such as mMapReduced-based
distributed framework on Hadoop, which have been shown to
significantly improve the computational performance [131].

IV. EVALUATION METRICS
There are various metrics in the field of RSs for evaluating
the performance of different algorithms [4], [132]. In this
section we review the most common evaluation metrics to
assess the performance of RSs algorithms. Evaluations can be
offline or online [4], [63]. In an offline analysis, the dataset
is collected and a proportion of ratings are hidden from the
recommender algorithm as a test set. Then, the target algo-
rithm uses the rest of data (i.e., the training set) to predict
new ratings or rank the unseen items. Afterward, one metric

or combination of evaluation metrics is used to measure
the quality of recommendations. Offline analysis has the
advantage of being quick, while its major drawback is that
we cannot measure the true satisfaction of users regarding
the recommended items. On the other hand, online eval-
uations are conducted in a live experiment, observing the
users’ behavior, recommending items and measuring their
satisfaction using their feedback or tracking their acts such as
click-through rate. However, conducting an online evaluation
is expensive and often impossible. In this paper, we used
offline analysis to evaluate recommendation algorithms on
different existing datasets.

There are different perspectives on evaluation metrics;
some are based on the recommendation list itself, such as
accuracy, coverage, diversity and novelty, some are based
on the system’s or users’ point of views independent of
the recommender, namely confidence, robustness, adaptivity,
scalability, trust, risk and privacy [133], [134]. It is logi-
cal that different metrics evaluate different aspects of algo-
rithms [132], hence, the focus of this paper is to evaluate
the algorithms discussed in section 3 using several evalua-
tion metrics including accuracy metrics, rank-based metrics,
diversity, novelty and coverage. Each algorithmfirst produces
the predicted ratings, the results are then sorted, and for
each user, the top-N items with the highest predicted ratings
are recommended. The metrics evaluate different proper-
ties of these top-N items. Note that in this study, in order
to have integrity among all datasets, only the ratings of
users and the relationships due to these ratings are used,
and other data such as timestamps of the ratings are not
included.

Among the first studies of RS, Shardanand and Maes [71]
used reversal(errors between the predicated and true ratings)
as an evaluation metric. Konstan et al. [13] used receiver
operating characteristic curve (ROC curve) for evaluating
RS, which had been used for evaluation in the context of
information filtering beforehand. Breese et al. [64] analyzed
several CF algorithms and introduced some extensions such
as default vote and evaluated them using Mean Absolute
Error (MAE) and half-life utility. Several researchers have
used accuracy metrics such as MAE and Root Mean Squared
Error (RMSE) to evaluate RS, while some others used non-
accuracy metrics. Mobasher et al. [135] used coverage as
a measure of quality of recommenders that is defined as
the proportion of items that recommender can suggest to
users. McNee et al. [136] measured the degree to which
recommendations where surprising or non-obvious. Others
have measured the explainability of a recommender that is
how well a recommender can explains its recommendations
to users. A few studies have discussed that these metrics do
not measure the users’ satisfaction of the recommender, while
others have argued that the users’ satisfaction may not be
the ultimate goal of using a recommender in some cases.
In the following, we give a comprehensive overview of the
metrics that can be used to evaluate the performance of CF
methods where the only available information is the rating

VOLUME 6, 2018 74011



M. Jalili et al.: Evaluating Collaborative Filtering Recommender Algorithms: A Survey

histories. We categorized these metrics into three groups:
accuracy metrics, ranking-based metrics, and diversity,
novelty and coverage.

A. ACCURACY METRICS
Herlocker et al. [4] categorized accuracy metrics into three
classes, namely, predictive accuracy metrics, rank accuracy
metrics and classification accuracy metrics, which are
reviewed in the following.

1) PREDICTIVE ACCURACY METRICS
In order to measure the accuracy of the predicted ratings
generated by a recommender according to the real ratings
(i.e., the rating in the test set) of users, predictive accuracy
measures such as MAE or RMSE are frequently used in RS.
These metrics are mostly useful where the predicted ratings
are shown to the users of system [4]. Although these metrics
are easily deployable due to their simplicity, the predictive
accuracy metrics consider the ratings’ space to be uniform,
which is not the case in real systems [132]. Moreover, these
metrics treat all ratings the same, regardless of their position
in the recommendation list [61], i.e., a one-star error for an
item on the top of the recommendation list penalizes the
system the same as a one-star error for an item at the end of
the list, which probably will not be recommended to the user
ever. Thus, these metrics are not suitable in a system with
the goal of finding good items, which means the users only
care about errors of items in the top-N list [4]. As a solution,
one can put more weight on the errors in the top-N items of
recommendation list than the rest of the prediction list.

a: MEAN ABSOLUTE ERROR
MAE is used to measure the average absolute deviation of the
predicted ratings from the real ratings of users, as:

MAE =
1

|TestSet|

∑
(u,i)∈TestSet

| r̃ui− rui | (20)

where r̃ui represents the predicated rating of the system for
user u and item i. MAE has been used for evaluation of RSs
in various studies [64], [71], [137], [138]. Often, the averaged
MAE for all users is shown as a general performance of a
RS. In order to compare recommenders using different rating
scales, one can normalize the totalMAE by dividing themean
MAE value over all users by the maximum rating (Ratingmax)
minus the minimum rating (Ratingmin) in the system [15]:

NMAE =
MAE

Ratingmax−Ratingmin
(21)

b: ROOT MEAN ABSOLUTE ERROR
RMSE is a variation of MAE which puts more emphasis on
large errors by using power 2 on the deviation of predicted
ratings from real ratings:

RMSE =
1

|TestSet|

∑
(u,i)∈TestSet

√
(r̃ui− rui)

2 (22)

and the normalized RMSE as:

NRMSE =
RMSE

Ratingmax−Ratingmin
(23)

c: ASYMMETRIC LOSS
In systems which recommending bad items as good ones is
worse than recommending good items as bad ones, one can
use asymmetric loss to evaluate the system as follows:

ALu =
1
n
×

∑
i,j

loss(rui, r̃ui) (24)

If the recommended item is liked by the user, loss equals
zero, however for an item is liked by the user but not recom-
mended by the system, loss is defined as,

loss = rui− r̃ui (25)

and finally if a disliked item is recommended to the user,
the loss is:

loss = (r̃ui− rui)× (1+ (Ratingavg− rui+1)× 0.5) (26)

2) RANK ACCURACY METRICS
In order to measure the relationship between the order of the
items in a recommended list with the order that each user
has given to the same items, rank accuracy metrics are used.
These metrics are useful when one recommends a ranked list
of items to users [4].

a: PEARSON CORRELATION
Pearson Correlation measures the linear relationship between
two list of predicted ratings and real ratings of a user.
Hill et. al. used this metric to evaluate their recommender
algorithm [139]. One should first calculate the PC for each
user, and then get the average by dividing sum of all PC values
by the number of users in the system, as:

PCu =

N∑
i=1

(rui− ru)(r̃ui− r̃u)√
N∑
i=1

(rui− ru)2
√

N∑
i=1

(r̃ui− r̃u)
2

(27)

b: SPEARMAN CORRELATION
Spearman’s rank correlation coefficient or Spearman’s rho,
is a nonparametric metric of statistical dependence between
predicted and real lists and is named after Charles Spear-
man [140]. The difference between Pearson and Spearman
correlations is that in the latter, ri and r̃i are the ranks of
corresponding items in the real and predicted rating lists,
respectively, rather than the value of ratings. Indeed, Spear-
man’s rank correlation is Pearson correlation of the rank
vectors, and is calculated as:

SCu =

N∑
i=1

(ri− ru)(r̃ i− r̃u)√
N∑
i=1

(ri− ru)2
√

N∑
i=1

(r̃ i− r̃u)
2

(28)

74012 VOLUME 6, 2018



M. Jalili et al.: Evaluating Collaborative Filtering Recommender Algorithms: A Survey

c: KENDALL TAU CORRELATION
Kendall rank correlation is used to measure the similarity
of the orderings of two ranked lists which was proposed by
Kendall [141]. It is defined as:

τ =
C − D
C + D

(29)

where C is the number of pairs of items for which the
recommender predicted in the same order as real rating list
of user (Concordant pairs) and D is the number of pairs of
items for which the recommender predicted the wrong order
(Discordant pairs). When there are no discordant pairs of
items (D = 0), i.e., the ranking of items in the predicted and
the real rating lists are exactly the same, the Kendall tau value
will be 1, and for two completely dissimilar lists the value
of this metric is −1 (C = 0). Considering a ranked list with
N items, there are N × (N −1)/2 ordered pairs of items, thus
Eq. (29) is equal to:

τ =
C − D

N (N− 1)/2
(30)

Sometimes a user gives several items the same ratings or a
recommender predicts the same ratings for several items.
In such cases, we use a variation of Kendall Tau correlation
proposed by Herlocker et al. [4] that is defined as:

τ ≈
(C − D)

√
(C + D+ TR)(C + D+ TP)

(31)

where TR is the number of item pairs with the same real
ratings and TP is the number of items with the same predicted
ratings.

The Kendall Tau does not consider the position of the
correct ranked items, e.g., between the first and the second
rating and between 50th and 51th ratings. One solution for
this issue can be to add more weight to concordant pairs at
the top of the list than those towards the end of the list [61].

d: NORMALIZED DISTANCE-BASED PERFORMANCE
MEASURE
For comparing two weakly ordered ranked list, normalized
distance-based performance measure (NDPM) was proposed
by Yao [142] and is defined by:

NDPM =
2D− CU

2NP
(32)

where D is the number of discordant pairs, CU is the number
of pairs for which one system gives a tie and the other ranked
list does not, and NP is the total number of pairs in the real
ranked list minus tied ones. Indeed, the modified Kendall Tau
correlation penalize the system even when there are tied pairs
in the real ranked list; however, NDPM only penalizes the
recommender for tied pairs of predicted ranked list for which
one item is strictly preferred in the real list.

3) CLASSIFICATION ACCURACY METRICS
In order to measure how many times the system can classify
a relevant item as a good one or an irrelevant item as a

bad one, classification accuracy metric are used. A relevant
item is an item that the user has liked in the real ratings. For
binary ratings, obviously, there are liked and disliked items
and not the ratings. Usually, the disliked and non-rated items
are grouped together, and hence, the liked items (sometimes
showed as purchased items) are the relevant ones. However,
for numerical rating scales, we define the relevant items as the
items for which the user gave a higher rating than the average
rating of all the items he/she voted for. For classification
metrics, deviation from the real ratings is tolerated as long
as the relevant items are recommended on the top-N list.
Unlike the rank accuracy metrics, these metrics are most
useful when evaluating recommenders with binary or unary
ratings. In order to apply the classification accuracy metric
for datasets with numerical rating scales, for each user we
consider items rated more than his/her average rating as items
which he/she has liked. Precision, recall and F1 score metrics
belong to this group.

One problem with these metrics is that the items with
no real rating cannot be considered as irrelevant, because
the user might had not seen or consumed them at all [4].
In order to handle the sparsity of the input data, there are a
number of approaches. One simple solution is to eliminate
all unrated items and predict the top-N list only for items
for which we have the users’ rating. However, this method
likely leads to biased recommendation, i.e., the items which
the user has not yet consumed will never be measured and
get recommended to the user. The second solution for treating
sparse datasets is to consider slightly negative default ratings
in recommending items that has not been rated [64]. However,
the default rating may differ greatly from the true rating for
unobserved item [4]. A third approach, which is employed
in this manuscript, is to perform the predictions for all unob-
served items, but evaluate in only for top-N items in the list.

a: PRECISION AND RECALL
Precision and recall are among the most frequently used
metrics of information retrieval field introduced byCleverdon
and Kean [143] (1968). They have been among the first series
of the metrics used to evaluate recommendation algorithms
[54], [75], [76], [114]. These metrics use a confusion matrix
that divides the items into 4 different groups (Table 2). In this
matrix, relevant itemswhich are recommended by the system,
are placed in the true positive (TP) group, and those relevant
items that the system failed to detect as relevant for the user
go to false negative (FN) group. Irrelevant items which are
incorrectly recommended by the system are placed in the false
positive (FP) group, and finally, the irrelevant items that are

TABLE 2. Confusion matrix for calculating precision and recall metrics.
TP represents true positive, TN represents true negative, FP means false
positive and FN means false negatives.

VOLUME 6, 2018 74013



M. Jalili et al.: Evaluating Collaborative Filtering Recommender Algorithms: A Survey

correctly not recommended to the user are considered in the
true negative (TN) group.

Precision is calculated as the ratio of the relevant items
which are recommended to the number of all recommended
items, as:

P =
TP

TP+ FP
(33)

And recall is calculated as the ratio of the relevant items
which are recommended to the number of all relevant items,
as:

R =
TP

TP+ FN
(34)

As mentioned before, precision and recall are not directly
applicable to evaluate recommendation algorithms, and we
need to know each item is relevant or not, which means every
itemmust be rated by the user. Thus, we usedP@N andR@N
instead (N being the size of the recommendation list) defined
by [76]:

P@Nu =
TP
N

(35)

R@Nu =
TP
|Relu |

(36)

where Relu is the set of the items relevant to user u.

b: F1 SCORE
Since precision and recall are inversely correlated [143], it is
needed to consider both of them when evaluating different
algorithms. Moreover, P@N u and R@N u are dependent on
the length of the recommendation list. Therefore, researchers
have often used F1 score, as a combination of precision and
recall, as defines by [75], [76].

F1u =
2(P@Nu)× (R@Nu)
(P@Nu)+ (R@Nu)

(37)

B. RANK-BASED METRICS
Instead of comparing the exact value of the predicted ratings
with the real ones, rank-based metrics examine the order and
position of the items displayed to the user in the recommen-
dation list. Half-Life Utility, Discounted Cumulative Gain,
Rank-Biased Precision and Recovery Rate are among this
group of metrics.

1) HALF-LIFE UTILITY
Half-life utility metric evaluates the utility of a recommen-
dation list based on a hypothesis that as the rank of the
item in the recommendation list decreases, the probability
of user’s tendency to examine it reduces exponentially [64].
Since users usually tend to pay attention to items at the top of
the recommended list, a ‘‘half-life’’ threshold is defined as the
rank of the item on the list for which there is a 50-50 chance
that user will examine it. Half-life utility is defined by:

Hu =
N∑
i=1

max(rui−d, 0)

2(i−1)/(h−1)
(38)

where h is the half-life threshold and d is the neutral vote
(we set it as the user’s average rating. For simulations, we set
h = 5 as suggested by Breese et al. [64].We calculatedHu for
each user and obtained the average over all users to compute
the overall Htotal score; the greater the value of Htotal , the
better recommender acts according to this metric. This index
is calculated as:

Htotal =

m∑
u=1

Hu

m
(39)

2) NORMALIZED DISCOUNTED CUMULATIVE GAIN
Discounted Cumulative Gain (DCG) evaluates the usefulness
of an item based on its rank in a recommended list. The more
relevant items are with higher ranks, the more valuable the
recommendation list is for the user and one becomes more
satisfied with the system which saves his/her time. DCG is
defined by [144]:

DCG_bu =
b∑
i=1

Ri +
N∑

i=b+1

Ri
logb ri

(40)

DCG is calculated for each user regarding his/her real and
predicted lists. ri is the rank of the item in the recommenda-
tion list, e.g., for the first item at the top of the list we have
ri = 1. The lower is the rank of the item in the recommenda-
tion list (i.e., toward the end of the list), its share in the cumu-
lated gain becomes less. The discounting function to reduce
this share is log-harmonic. Different values of b, as the base
of the logarithm, control the degree of reduction in items’
shares in DCG; i.e., the greater the values of b, the slower
the shares decrease. For the item at rank 1 and smaller than b,
it is logical to use the first part of Eq. (4), rather than using
the logarithmic discount function. According to [144], we set
b = 2 for the experiments. Ri indicates the relevancy of item i
(with rank ri) in the recommendation list; asmentioned before
we consider an item relevant to a user, if he/she has rated it
more than the average rating of the total items he/she voted.
If the item is relevant, we have Ri = 1, otherwise Ri = 0.
For comparison purposes, we need to eliminate the effect of
different sizes of the recommendation lists in the metric. The
computed DCG value is normalized through dividing by the
maximum possible gain (i.e., the perfect ranking according to
user’s preference), which is the exact order of items given by
the user in real rating list:

NDCGu =
DCGu
DCGmax

(41)

We calculated NDCGu for each user and get the average
over all users, to compute the overall NDCGtotal score for the
dataset, as:

NDCGtotal =

m∑
u=1

NDCGu

m
(42)

This score will be between 0 and 1. The greater is the
value of NDCGtotal , the better the recommender works for

74014 VOLUME 6, 2018



M. Jalili et al.: Evaluating Collaborative Filtering Recommender Algorithms: A Survey

relevant items regarding their ranks in the recommendation
list.

3) RANK-BIASED PRECISION
Similar to DCG, the Rank-biased Precision (RBP) metric
attempts to evaluate the recommendation list through giv-
ing more shares to highly ranked relevant items for each
user. The difference here is the discounting function which
is a geometric sequence instead of the logarithmic one in
DCG [145]. The underlying assumption here is that users
often examine the first item of the recommended list, and then
with probability p, they may check the next item, i.e., there
is (1 − p) chance that they will not choose the next item. For
example, considering p = 0.8, the user will check the first
item, then examines the second item with probability of 0.8,
the third item with probability of 0.82, and finally the ith item
with probability of 0.8i−1. RBP for each user’s recommended
list is defined by:

RBPu = (1− p)
N∑
i=1

(Ri× pi−1) (43)

where ri and Ri are defined the same as for DCG.
Since

∑
∞

i=1 p
ri−1 = 1/(1− p), the value of RBP is between

0 and 1; the greater this value, the better the system performs
according to RBP. The overall RBP averaged for all users is
calculated as:

RBPtotal =

m∑
u=1

RBPu

m
(44)

The performance of the recommender depends on the
choice of p such that for small values of p, the user only
examines the top-ranked items, while for large values of p,
it may also examines the items in lower ranks.

4) RECOVERY RATE
Recovery Rate evaluates the performance based on the correct
ranking of the items. The value of Recovery metric for user u
is defined as:

Recoveryu =
1
|NR |

×

∑
i∈NR

ri
Ci

(45)

where NR is the set of relevant items in the real ratings list of
user u, ri indicates the rank of item i in the recommendation
list, and Ci is the number of candidate items to recommend to
user u. The average Recovery rate for the users is calculated
as:

Recoverytotal =

m∑
u=1

Recoveryu

m
(46)

C. DIVERSITY, NOVELTY AND COVERAGE
So far, we reviewed the accuracy and ranking of recommen-
dations generated by recommenders. However, we need to go
further and evaluate them based on other criteria; measures

to answer questions such as: what percentage of items in
the recommendation lists is new to user; how much they
surprise the user; how many of them are popular items; do
the algorithm always recommend the same group of items
to all users; how much similar are the users’ recommenda-
tion lists; and alike. Recently, there has been a shift in the
community to design recommenders that not only provide
accurate recommendations, but also brings the most satisfac-
tion to the users [146]–[148]. Indeed, in many real applica-
tions, the users would like to be recommended diverse and
novel items. In this section, we review a number of metrics
developed to measure how much a recommender is novel,
diverse or covers the items available in the system.

1) DIVERSITY
Diversity is a metric with two concepts: intra-diversity and
inter-diversity. Intra-diversity is to measure how different
are the items recommended to a user, i.e., the diversity of
each recommendation list. To this end, we need to measure
the similarities between item pairs in the recommenda-
tion lists. This similarity can be obtained from the content
information of items or using similarity measures such as
cosine or Pearson similarity for item rating vectors [149]. The
Intra-diversity of N items of recommendation list for user u
can be calculated as:

IntraDiversityu =
1

N (N− 1)
×

∑
i 6=j

s(Ii, Ij) (47)

where s(Ii, Ij) is the similarity between items i and j. Note that
the lower is the value of IntraDiversity, themore diverse items
the system recommends to the user. In order to compute the
overall IntraDiversitytotal(N ) for all users of a data set, one
can calculate IntraDiversityu(N ) for each user and then get
the average of them, as:

IntraDiversitytotal =

m∑
u=1

IntraDiversityu

m
(48)

Inter-diversity indicates the extent of difference between
the recommendation lists of all users [150]. We can measure
this notion using Hamming distance between the recommen-
dation lists of users’ u and u′ as:

Huu′ = 1− (
Quu′

N
) (49)

where Quu′ is the similarity between the two users’ recom-
mendation lists; this similarity is defined as the number of
common items in both lists. It is worth mentioning that the
value of this metric is highly dependent on the number of
users and the items. The average metric can be calculated as:

Hu =
1

m(m− 1)

m∑
u=1

∑
u 6=u′

Huu′ (50)

VOLUME 6, 2018 74015



M. Jalili et al.: Evaluating Collaborative Filtering Recommender Algorithms: A Survey

2) SELF-INFORMATION BASED NOVELTY
Although we assume that the users would like the items
similar to what they have liked in the past, it is also a logical
assumption that most users would also want to get recom-
mendations for items they have not yet seen, even the items
they won’t expect. If the novel recommendations get users’
attention and they like them, the recommender is successful
from this point of view. A number of metrics has been pro-
posed for evaluating RSs novelty [63] and several researchers
have used novelty to evaluate their recommenders [6], [123],
[151], [152]. In order to define a proper measure for the
novelty, let us first define a metric to measure popularity
of the recommendations. For more popular items, it is more
probable that a user have seen or consumed them, and thus,
they are less novel for him/her. One can simply measure the
popularity of an item by its degree, resulting in the average
popularity score as:

Popularity =
1

m× N

m∑
u=1

N∑
i=1

di (51)

where di is the degree of item i. According to a variation
of novelty which uses the notion of popularity, namely Self-
Information Based Novelty (SIBN), also known as surprisal
or unexpectedness, popular items are less novel. SIBN for
item i, SIBNi, is defined as [123],

SIBNi = log2(
m
di
) (52)

The average SIBN can be simply obtained by making the
average of the above relation over all users. For a user u,
we can calculate SIBN of all top-N items recommended to
him/her. We can also use an altered version of this metric,
effective novelty, which only considers the novelty of items
relevant to each user from the top-N recommendation list
[151], [152]. If we are evaluating a recommender based on
the novelty of its recommended items, it is logical to consider
only the novelty of those items which actually the user would
like and consume. Effective SIBN is defined as:

ESIBN =
1
m

N∑
i=1

Ri × SIBNi (53)

3) COVERAGE
A good recommender not only recommends likeable items
to users, but also covers a wide variety of items which the
system has to offer. In its simplest form, coverage indicates
that as the percentage of the items a recommender can suggest
grow higher, the system is performing better. Note that lower
values of coverage implies less diversity [61], [137].

a: CATALOG COVERAGE
Catalog coverage refers to the percentage of distinct items in
the top-N recommendation lists of users:

C =
Ir
n

(54)

where n is the total number of items in the system and
Ir indicates the total number of distinct items in users’ top-N
lists. An improvement to this definition is to consider only the
items which are relevant to a user.

b: ENTROPY COVERAGE
In addition to the number of items a recommender covers,
the frequency of offering different items may vary; some
items are frequently recommended to various users (probably
popular ones), and some appears less in the recommendation
lists. To consider how many times an item is recommended
to the users, one can use a modified version of the coverage
presented above. Entropy Coverage, EC, is defined as:

EC = −
m∑
i=1

pi log2 pi (55)

where pi is the percentage of the recommendation lists that
contains item i.

4) UNIFIED EVALUATION METRIC
In [147], a novel method is proposed to combine different
evaluation metrics as a unified metric for evaluating the
performance of recommendation systems. One can choose
a number of metrics and properly combine them to have a
unified evaluation metric. Here, we choose diversity, novelty,
coverage, precision, and RBP, as calculated using Eqs. (50),
(52), (54), (33), and (44), respectively. Then, the unified
metric is calculated based on the selected metrics using the
following equation:

UM
(
H ,N ,C,P,RBP

)
=

5
1
H
+

1
N
+

1
C
+

1
P
+

1
RBP

(56)

where, H , N , C , P, and RBP are the normalized values for
the diversity, novelty, coverage, precision, and RBP metrics,
respectively. [147] has proposed an approach to compute the
normalized values. Table 3 summarizes the evaluationmetrics
discussed above.

V. RESULTS AND DISCUSSION
In order to compare the performance of RSs in terms of
different evaluation metrics, we used a machine with Intel(R)
Corei7-3632 CPU @ 2.1GHz and 6GB of main memory,
and JAVA language on a Unix-based operating system
(Ubuntu 12.04). All the parameters affecting the computation
time (e.g. neighborhood size, learning rate, and number of
iterations) were set the same for all algorithms. We used
10-fold cross-validation strategy to compare the results of
the recommendation methods. In other words, each dataset is
divided into ten folds and in each run nine folds are used as the
training set and the remaining fold is used as the test set. The
experiments were performed in 10 independent runs, where
each time one of the folds was randomly selected and used
as the test set. Finally, the average results over these 10 runs
are reported. In the training phase of each recommendation
method, first a model is constructed and similarity values

74016 VOLUME 6, 2018



M. Jalili et al.: Evaluating Collaborative Filtering Recommender Algorithms: A Survey

TABLE 3. Summarization of evaluation metrics. The evaluation metrics are classified into four groups including accuracy-based metrics, rank-based
metrics, diversity-, novelty-, and coverage-based metrics, and unified metric.

are computed. Then, the model is used in the test phase
to predict ratings for the unseen items and also a list of
recommendations is generated to the users. The execution
time of a recommendation method refers to both training time
(i.e. offline execution time) and test time (i.e. online execution
time).

A. DATASET
We used five different datasets including Movielens,3

Epinions,4 LastFM,5 BookCrossing6 and Jester7 to perform
the experiments. The Movielens dataset is one of the most
frequently used datasets within the community of RSs.
In Movielens, items are movies and the ratings are in the
scale of 1 to 5 stars. This dataset is gathered over various
periods of time, depending on the size of the set, several ver-
sions of this dataset are available. We used Movielens_10M
dataset in this study, in which users with less than 20 ratings
have already been removed. It contains 10 million ratings
applied to 10,000 movies by 72,000 users. The Epinions
dataset includes the opinions of users about various types of
commercial items as numerical ratings in the range of 1 to 5.
This dataset consists of 49,290 users who rated at least once
on 139,738 items. The LastFM is a music recommendation
dataset which contains a list of top most listened songs
for each user. There are 2100 users and 18,745 songs in
this dataset. It should be noted that there is no ratings in
a specific range in LastFM dataset. Instead, this dataset

3https://grouplens.org/datasets/movielens/
4http://www.trustlet.org/epinions.html
5https://grouplens.org/datasets/hetrec-2011/
6http://www2.informatik.uni-freiburg.de/∼cziegler/BX/
7http://eigentaste.berkeley.edu/dataset/

includes the number of times those songs were played by the
users. Therefore, we normalized this information into a range
between 0 and 1 for our experiments. The BookCrossing is
a book recommendation dataset which contains 1.1 million
ratings of 270,000 books by 90,000 users. The ratings are on a
scale from 1 to 10, and implicit ratings are also included. The
Jester dataset contains the ratings about 100 jokes which are
provided by 24,938 users. In this dataset, the users have rated
between 15 and 35 jokes, and these ratings are real numbers
from −10 to 10.

B. PERFORMANCE EVALUATION
We implemented the memory-based and model-based CF
algorithms introduced in the previous sections, and the results
are summarized in Tables 4-8 for Movielens, Epinions,
LastFM, BookCrossing and Jester datasets, respectively.
In the tables, the top-performer algorithm is shown in bold-
face, while the one with the second best performance is
highlighted in underlined boldface. The results reveal that
the top-performing algorithms are spread across different
evaluation metrics. Furthermore, they exhibit rather different
profile for different datasets. For example, while UOS is
among the best-performers in Movielens and BookCrossing
datasets based on the precision and F1 measures, it has poor
performance in other datasets. User-based CF and MLCF
show weak performance in Jester dataset, being the top-
performer or the second top-performer in terms of none of
the evaluationmetrics. However, they are among themedium-
level performers inMovielens dataset. BPMF, PMF, UOS and
IGPE are the top-performers in Movielens dataset. Slope 1 is
among the top-performers in Epinions and Jester datasets.
PMF is among those with top performance in Epinions and

VOLUME 6, 2018 74017



M. Jalili et al.: Evaluating Collaborative Filtering Recommender Algorithms: A Survey

LastFM datasets. Moreover, RSVD has high performance on
Epinions dataset in terms of several evaluation measures. One
can also make pairwise comparisons between the algorithms.
For example, item-based CF often has better performance
than user-based CF. However, it has expensive computations
to test the algorithm, which is not a burden in real scenarios
in which only the training phase of the algorithm matters.

The performed experiments show that NMAE andNRMSE
metrics might not have significant correlation. NMAE is
used to measure the closeness of predicted ratings to the
ground-true rating scores. To calculate the absolute error
value, the predicted ratings are compared with the real ones.
This procedure is repeated for all of the taken-out ratings,
and then an average of all the values is considered as the
final NMAE measure reported in the tables. On the other
hand, NRMSE shows contributions of the absolute errors
between the predicted and actual ratings. It is clear that
lower NMAE and NRMSE correspond to higher prediction
accuracy. NMAE considers every error of equal value, while
NRMSE squares the error before summing it and tends to
penalize large errors more heavily. Therefore, these two met-
rics may have no correlations theoretically. Based on the
experimental results, NMAE and NRMSE metrics are com-
pletely correlated for the LastFM and BookCrossing datasets
as shown in Tables 6 and 7. Moreover, the results show that
NMAE and NRMSE metrics are correlated just for one of
the best methods based on the Epinions (Table 5) and Jester
(Table 8); NMAE and NRMSE metrics are correlated for
RSVD method and are not correlated for Item-based and
NMF methods based on the Epinions dataset. In addition,
NMAE and NRMSE metrics are correlated for Item-based
method and not for UOS and BPMF methods based on the
Jester dataset. Finally, the results of the experiments based on
the Movielens dataset show that NMAE and NRMSEmetrics
are correlated for the best methods. BPMF and NMFmethods
are respectively the best and second best predictors based on
both NMAE and NRMSE metrics.

Our experiments show that there is no golden recommen-
dation algorithm showing the best performance in all of the
evaluation metrics. Furthermore, there is rather large vari-
ability in the position of the algorithms in terms of different
evaluation metrics across different datasets. Therefore, there
would not be a best choice (i.e., golden algorithm), and one
should choose the most useful approach and corresponding
metrics according to the recommender’s goals and applica-
tion, while considering the limitation it would face regard-
ing the data and time available. Often, each research work
considers some of these evaluation metrics and assesses the
performance of their proposed algorithm on them. However,
to have a fair conclusion on the performance, one should
consider various evaluation metrics and apply the algorithms
on various datasets.

The unified metric as expressed by equation (56) makes
it possible to better compare the algorithms and find the
best performing one. Based on this metric, PMF is the best
algorithm in all datasets except for LastFM dataset for which

TABLE 4. Performance of CF algorithms on different evaluation metrics -
Movielens dataset. The best result for each metric is shown in boldface,
while the second best result is shown in underlined boldface.

74018 VOLUME 6, 2018



M. Jalili et al.: Evaluating Collaborative Filtering Recommender Algorithms: A Survey

TABLE 5. Performance of CF algorithms on different evaluation metrics –
EPINIONS dataset. The best result for each metric is shown in boldface,
while the second best result is shown in underlined boldface.

TABLE 6. Performance of CF algorithms on different evaluation metrics -
LastFM dataset. The best result for each metric is shown in boldface,
while the second best result is shown in underlined boldface.

VOLUME 6, 2018 74019



M. Jalili et al.: Evaluating Collaborative Filtering Recommender Algorithms: A Survey

TABLE 7. Performance of CF algorithms on different evaluation metrics -
BookCrossing dataset. The best result for each metric is shown in
boldface, while the second best result is shown in underlined boldface.

TABLE 8. Performance of CF algorithms on different evaluation metrics -
Jester dataset. The best result for each metric is shown in boldface, while
the second best result is shown in underlined boldface.

74020 VOLUME 6, 2018



M. Jalili et al.: Evaluating Collaborative Filtering Recommender Algorithms: A Survey

it is the second best algorithm. Note that the definition of the
unified metric is based on combining five different evaluation
metrics, and one can consider othermetrics as well in defining
the unified metric.

In the experiments, scalability metric is evaluated based
on execution time of the recommendation methods. The exe-
cution time refers to two different modes including training
time (i.e. offline execution time) and test time (i.e. online
execution time). In the training phase, a model is constructed
(for model-based CF) or similarity values are calculated (for
memory-based CF). The constructed model and calculated
similarity values are used in the test phase to predict ratings
for the unseen items. It should be noted that in some rec-
ommendation methods the stopping criteria is needed to be
initialized before performing the main procedure of the meth-
ods. These criteria are set based on the optimal conditions
that are suggested by their corresponding original papers.
A recommendation method with the lowest training/test
time can be more scalable than others for the offline/online
mode. It can be concluded from Tables 4-7 that user-
based CF and MLCF are best and second best, respectively,
in terms of the training time forMovielens, Epinions, LastFM
and BookCrossing datasets, while item-based and user-
based CF methods are the top-performers for Jester dataset
(Table 8). Moreover, the experimental results show that
BPMF and NMF methods achieve the best test times in most
cases.

VI. CONCLUSION
In this paper, we compared a number of well-knownmemory-
and model-based Collaborative Filtering (CF) algorithms in
terms of various evaluation metrics. Recommendation algo-
rithms can have different objectives and addressing the rec-
ommendation task from different aspects. We considered a
number of well-known and state-of-the-art CF algorithms
and briefly discussed their advantages and drawbacks. The
memory-based CF algorithms are usually faster at query time,
while model-based CF algorithms are more scalable and
have better performance for sparse data. However, the latter
have expensive model building, which increases the time of
training step. Therefore, there will be a trade-off between
performance and scalability to address. We considered vari-
ous evaluation metrics ranging from accuracy-based metrics,
to ranking-based metrics, execution time, coverage, novelty
and diversity metrics. We compared the RSs algorithms in
terms of these evaluation metrics on Movielens, Epinions,
LastFM, BookCrossing and Jester datasets which have been
frequently used as the benchmarks in RSs. Our results showed
that there is no a golden algorithm that outperforms others
in terms of all (or even most) evaluation metrics. The top-
performing algorithms are almost spread for different eval-
uation metrics, which indicates that the assessment criterion
specific to the particular application should be seriously taken
into account in choosing the appropriate recommendation
algorithm.We also assessed the algorithms based on a unified

evaluation metric, for which the probabilistic matrix factor-
ization recommendation algorithm showed the best perfor-
mance among others.

REFERENCES
[1] F. Zhang, T. Gong, V. E. Lee, G. Zhao, C. Rong, and G. Qu, ‘‘Fast

algorithms to evaluate collaborative filtering recommender systems,’’
Knowl.-Based Syst., vol. 96, pp. 96–103, Mar. 2015.

[2] F. Cacheda, V. Carneiro, D. Fernández, and V. Formoso, ‘‘Comparison of
collaborative filtering algorithms: Limitations of current techniques and
proposals for scalable, high-performance recommender systems,’’ ACM
Trans. Web, vol. 5, no. 1, 2011, Art. no. 2.

[3] L. Candillier, F. Meyer, and M. Boullé, ‘‘Comparing state-of-the-art col-
laborative filtering systems,’’ in Proc. Mach. Learn. Data Mining Pattern
Recognit. Berlin, Germany: Springer, 2007, pp. 548–562.

[4] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, ‘‘Evaluating
collaborative filtering recommender systems,’’ ACM Trans. Inf. Syst.,
vol. 22, no. 1, pp. 5–53, 2004.

[5] F. Ricci, L. Rokach, and B. Shapira, ‘‘Introduction to recommender
systems handbook,’’ in Recommender Systems Handbook. Boston, MA,
USA: Springer, 2011, pp. 1–35.

[6] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, ‘‘Item-based collaborative
filtering recommendation algorithms,’’ in Proc. ACM 10th Int. Conf.
World Wide Web, 2001, pp. 285–295.

[7] P. Winoto and T. Y. Tang, ‘‘The role of user mood in movie recommen-
dations,’’ Expert Syst. Appl., vol. 37, no. 8, pp. 6086–6092, 2010.

[8] W. Carrer-Neto, M. L. Hernández-Alcaraz, R. Valencia-García, and
F. García-Sánchez, ‘‘Social knowledge-based recommender system.
Application to the movies domain,’’ Expert Syst. Appl., vol. 39, no. 12,
pp. 10990–11000, 2012.

[9] A. Nanopoulos, D. Rafailidis, P. Symeonidis, and Y. Manolopoulos,
‘‘MusicBox: Personalized music recommendation based on cubic anal-
ysis of social tags,’’ IEEE Trans. Audio, Speech, Language Process.,
vol. 18, no. 2, pp. 407–412, Feb. 2010.

[10] S. K. Lee, Y. H. Cho, and S. H. Kim, ‘‘Collaborative filtering with ordinal
scale-based implicit ratings for mobile music recommendations,’’ Inf.
Sci., vol. 180, no. 11, pp. 2142–2155, 2010.

[11] C. Porcel and E. Herrera-Viedma, ‘‘Dealing with incomplete information
in a fuzzy linguistic recommender system to disseminate information in
university digital libraries,’’Knowl.-Based Syst., vol. 23, no. 1, pp. 32–39,
2010.

[12] E. R. Núñez-Valdéz, J. M. C. Lovelle, O. S. Martínez, V. García-Díaz,
P. O. de Pablos, and C. E. M. Marín, ‘‘Implicit feedback techniques
on recommender systems applied to electronic books,’’ Comput. Hum.
Behav., vol. 28, no. 4, pp. 1186–1193, 2012.

[13] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and
J. Riedl, ‘‘GroupLens: Applying collaborative filtering to Usenet news,’’
Commun. ACM, vol. 40, no. 3, pp. 77–87, 1997.

[14] H. J. Lee and S. J. Park, ‘‘MONERS: A news recommender for the mobile
Web,’’ Expert Syst. Appl., vol. 32, no. 1, pp. 143–150, 2007.

[15] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, ‘‘Eigentaste: A con-
stant time collaborative filtering algorithm,’’ Inf. Retr., vol. 4, no. 2,
pp. 133–151, 2001.

[16] T. Tang and G. McCalla, ‘‘Smart recommendation for an evolving e-
learning system: Architecture and experiment,’’ Int. J. e-Learn., vol. 4,
no. 1, pp. 105–129, 2005.

[17] J. Bobadilla, F. Serradilla, and A. Hernando, ‘‘Collaborative filtering
adapted to recommender systems of e-learning,’’ Knowl.-Based Syst.,
vol. 22, no. 4, pp. 261–265, 2009.

[18] Y. Wen and Y. Shui-Sheng, ‘‘A survey of collaborative filtering algo-
rithm applied in E-commerce recommender system,’’ Comput. Technol.
Develop., vol. 16, no. 9, pp. 70–72, 2006.

[19] J. J. Castro-Schez, R. Miguel, D. Vallejo, and L. M. López-López,
‘‘A highly adaptive recommender system based on fuzzy logic for B2C
e-commerce portals,’’ Expert Syst. Appl., vol. 38, no. 3, pp. 2441–2454,
2011.

[20] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez, ‘‘Recommender
systems survey,’’ Knowl.-Based Syst., vol. 46, pp. 109–132, Jul. 2013.

[21] S. Ahmadian, M. Meghdadi, and M. Afsharchi, ‘‘A social recommenda-
tion method based on an adaptive neighbor selection mechanism,’’ Inf.
Process. Manage., vol. 54, no. 4, pp. 707–725, 2018.

[22] S. Ahmadian, M. Meghdadi, and M. Afsharchi, ‘‘Incorporating reliable
virtual ratings into social recommendation systems,’’Appl. Intell., vol. 48,
no. 11, pp. 4448–4469, 2018.

VOLUME 6, 2018 74021



M. Jalili et al.: Evaluating Collaborative Filtering Recommender Algorithms: A Survey

[23] S. Ahmadian, M. Afsharchi, and M. Meghdadi, ‘‘An effective social rec-
ommendation method based on user reputation model and rating profile
enhancement,’’ J. Inf. Sci., p. 0165551518808191, Oct. 2018.

[24] L. Luo, H. Xie, Y. Rao, and F. LeeWang, ‘‘Personalized recommendation
by matrix co-factorization with tags and time information,’’ Expert Syst.
Appl., vol. 119, pp. 311–321, Apr. 2018.

[25] G. Adomavicius and A. Tuzhilin, ‘‘Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible exten-
sions,’’ IEEE Trans. Knowl. Data Eng., vol. 17, no. 6, pp. 734–749,
Jun. 2005.

[26] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, ‘‘Collaborative
filtering recommender systems,’’ in The Adaptive Web. Berlin, Germany:
Springer, 2007, pp. 291–324.

[27] R. Van Meteren and M. Van Someren, ‘‘Using content-based filtering for
recommendation,’’ in Proc. Mach. Learn. New Inf. Age, MLnet/ECML
Workshop, 2000, pp. 47–56.

[28] K. Lang, ‘‘Newsweeder: Learning to filter netnews,’’ in Proc. 12th Int.
Conf. Mach. Learn., 1995, pp. 331–339.

[29] P. Lops, M. de Gemmis, and G. Semeraro, ‘‘Content-based recommender
systems: State of the art and trends,’’ inRecommender SystemsHandbook.
Boston, MA, USA: Springer, 2011, pp. 73–105.

[30] D. Wang, Y. Liang, D. Xu, X. Feng, and R. Guan, ‘‘A content-based
recommender system for computer science publications,’’ Knowl.-Based
Syst., vol. 157, pp. 1–9, Oct. 2018.

[31] M. Pazzani andD. Billsus, ‘‘Learning and revising user profiles: The iden-
tification of interesting Web sites,’’Mach. Learn., vol. 27, no. 3, pp. 313–
331, 1997.

[32] B. Krulwich, ‘‘Lifestyle finder: Intelligent user profiling using large-scale
demographic data,’’ AI Mag., vol. 18, no. 2, p. 37, 1997.

[33] M. J. Pazzani, ‘‘A framework for collaborative, content-based and demo-
graphic filtering,’’ Artif. Intell. Rev., vol. 13, nos. 5–6, pp. 393–408, 1999.

[34] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, ‘‘Using collaborative
filtering to weave an information tapestry,’’ Commun. ACM, vol. 35,
no. 12, pp. 61–70, 1992.

[35] E. Bojnordi and P. Moradi, ‘‘A novel collaborative filtering model based
on combination of correlation method with matrix completion tech-
nique,’’ in Proc. 16th CSI Int. Symp. Artif. Intell. Signal Process. (AISP),
2012, pp. 191–194.

[36] M. Ranjbar, P. Moradi, M. Azami, and M. Jalili, ‘‘An imputation-based
matrix factorization method for improving accuracy of collaborative fil-
tering systems,’’ Eng. Appl. Artif. Intell., vol. 46, pp. 58–66, Nov. 2015.

[37] B. Marlin, ‘‘Collaborative filtering: A machine learning perspective,’’
M.S. thesis, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada,
2004.

[38] I. M. Soboroff and C. K. Nicholas, ‘‘Related, but not relevant: Content-
based collaborative filtering in TREC-8,’’ Inf. Retr., vol. 5, nos. 2–3,
pp. 189–208, 2002.

[39] R. Burke, ‘‘Hybrid recommender systems: Survey and experiments,’’
User Model. User-Adapted Interact., vol. 12, no. 4, pp. 331–370, 2002.

[40] K. Yoshii, M. Goto, K. Komatani, T. Ogata, and H. G. Okuno, ‘‘Hybrid
collaborative and content-based music recommendation using probabilis-
tic model with latent user preferences,’’ in Proc. ISMIR, vol. 6, 2006, p. 7.

[41] R. Xiong, J. Wang, N. Zhang, and Y. Ma, ‘‘Deep hybrid collaborative
filtering for Web service recommendation,’’ Expert Syst. Appl., vol. 110,
pp. 191–205, Nov. 2018.

[42] T. Miranda et al., ‘‘Combining content-based and collaborative filters
in an online newspaper,’’ in Proc. ACM SIGIR Workshop Recommender
Syst., 1999.

[43] M. Balabanović and Y. Shoham, ‘‘Fab: Content-based, collaborative rec-
ommendation,’’ Commun. ACM, vol. 40, no. 3, pp. 66–72, 1997.

[44] D. Billsus and M. J. Pazzani, ‘‘User modeling for adaptive news access,’’
User Model. User-Adapted Interact., vol. 10, nos. 2–3, pp. 147–180,
2000.

[45] I. Soboroff and C. Nicholas, ‘‘Combining content and collaboration in
text filtering,’’ in Proc. IJCAI, vol. 99, 1999, pp. 86–91.

[46] E. Aslanian, M. Radmanesh, and M. Jalili, ‘‘Hybrid recommender sys-
tems based on content feature relationship,’’ IEEE Trans. Ind. Informat.,
to be published.

[47] M. M. Azadjalal, P. Moradi, A. Abdollahpouri, and M. Jalili, ‘‘A trust-
aware recommendation method based on Pareto dominance and confi-
dence concepts,’’ Knowl.-Based Syst., vol. 115, pp. 130–143, Jan. 2017.

[48] W. S. Lee, ‘‘Collaborative learning for recommender systems,’’ in Proc.
ICML, 2001, pp. 314–321.

[49] P. Moradi, S. Ahmadian, and F. Akhlaghian, ‘‘An effective trust-based
recommendationmethod using a novel graph clustering algorithm,’’Phys.
A, Statist. Mech. Appl., vol. 436, pp. 462–481, Oct. 2015.

[50] C.-J. Zhang andA. Zeng, ‘‘Behavior patterns of online users and the effect
on information filtering,’’ Phys. A, Statist. Mech. Appl., vol. 391, no. 4,
pp. 1822–1830, 2012.

[51] L. Chen and P. Pu, ‘‘Critiquing-based recommenders: Survey and emerg-
ing trends,’’ User Model. User-Adapted Interact., vol. 22, nos. 1–2,
pp. 125–150, 2012.

[52] R. J. Mooney and L. Roy, ‘‘Content-based book recommending using
learning for text categorization,’’ in Proc. 5th ACMConf. Digit. Libraries,
2000, pp. 195–204.

[53] J. A. Konstan, J. Riedl, A. Borchers, and J. L. Herlocker, ‘‘Recommender
systems: A GroupLens perspective,’’ in Proc. Recommender Syst., Work-
shop (AAAI), 1998, pp. 60–64.

[54] C. Basu, H. Hirsh, and W. Cohen, ‘‘Recommendation as classification:
Using social and content-based information in recommendation,’’ inProc.
AAAI/IAAI, 1998, pp. 714–720.

[55] G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin, ‘‘Incor-
porating contextual information in recommender systems using a multidi-
mensional approach,’’ ACM Trans. Inf. Syst., vol. 23, no. 1, pp. 103–145,
2005.

[56] G. Adomavicius and A. Tuzhilin, ‘‘Context-aware recommender sys-
tems,’’ inRecommender SystemsHandbook. Boston,MA,USA: Springer,
2011, pp. 217–253.

[57] X. Ren, M. Song, E. Haihong, and J. Song, ‘‘Context-aware probabilistic
matrix factorization modeling for point-of-interest recommendation,’’
Neurocomputing, vol. 241, pp. 38–55, Jun. 2017.

[58] A. Abbasi, A. Javari, M. Jalili, and H. R. Rabiee, ‘‘Enhancing precision
of Markov-based recommenders using location information,’’ presented
at the Adv. Comput., Commun. Inform., 2014.

[59] D. W. Oard and J. Kim, ‘‘Implicit feedback for recommender systems,’’
in Proc. AAAI Workshop Recommender Syst., 1998, pp. 81–83.

[60] M. Jalili and M. Perc, ‘‘Information cascades in complex networks,’’
J. Complex Netw., vol. 5, no. 5, pp. 665–693, 2017.

[61] L. Lü, M. Medo, C. H. Yeung, Y.-C. Zhang, Z.-K. Zhang, and T. Zhou,
‘‘Recommender systems,’’ Phys. Rep., vol. 519, no. 1, pp. 1–49, 2012.

[62] F. H. del Olmo and E. Gaudioso, ‘‘Evaluation of recommender systems:
A new approach,’’ Expert Syst. Appl., vol. 35, no. 3, pp. 790–804, 2008.

[63] G. Shani and A. Gunawardana, ‘‘Evaluating recommendation systems,’’
in Recommender Systems Handbook. Boston, MA, USA: Springer, 2011,
pp. 257–297.

[64] J. S. Breese, D. Heckerman, and C. Kadie, ‘‘Empirical analysis of
predictive algorithms for collaborative filtering,’’ in Proc. 14th Conf.
Uncertainty Artif. Intell. SanMateo, CA, USA:Morgan Kaufmann, 1998,
pp. 43–52.

[65] G. Salton and M. J. McGill, Introduction to Modern Information
Retrieval. New York, NY, USA: McGraw-Hill, 1986.

[66] W. Zeng, M.-S. Shang, Q.-M. Zhang, L. LLü, and T. Zhou, ‘‘Can dissim-
ilar users contribute to accuracy and diversity of personalized recommen-
dation?’’ Int. J. Mod. Phys. C, vol. 21, no. 10, pp. 1217–1227, 2010.

[67] J. Wang, A. P. de Vries, andM. J. T. Reinders, ‘‘Unified relevance models
for rating prediction in collaborative filtering,’’ ACM Trans. Inf. Syst.,
vol. 26, no. 3, 2008, Art. no. 16.

[68] M.-S. Shang, L. Lü, W. Zeng, Y.-C. Zhang, and T. Zhou, ‘‘Relevance is
more significant than correlation: Information filtering on sparse data,’’
Europhys. Lett., vol. 88, no. 6, p. 68008, 2009.

[69] J. Bobadilla, A. Hernando, F. Ortega, and A. Gutiérrez, ‘‘Collaborative
filtering based on significances,’’ Inf. Sci., vol. 185, no. 1, pp. 1–17,
2012.

[70] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
‘‘GroupLens: An open architecture for collaborative filtering of net-
news,’’ in Proc. ACM Conf. Comput. Supported Cooperat. Work, 1994,
pp. 175–186.

[71] U. Shardanand and P. Maes, ‘‘Social information filtering: Algorithms
for automating ‘word of mouth,’’’ in Proc. SIGCHI Conf. Hum. Factors
Comput. Syst. Reading, MA, USA: Addison-Wesley, 1995, pp. 210–217.

[72] M. Deshpande and G. Karypis, ‘‘Item-based top-n recommendation algo-
rithms,’’ ACM Trans. Inf. Syst., vol. 22, no. 1, pp. 143–177, 2004.

[73] N. Good et al., ‘‘Combining collaborative filtering with personal agents
for better recommendations,’’ in Proc. AAAI/IAAI, 1999, pp. 439–446.

[74] B. M. Sarwar, J. A. Konstan, A. Borchers, J. Herlocker, B. Miller, and
J. Riedl, ‘‘Using filtering agents to improve prediction quality in the
grouplens research collaborative filtering system,’’ in Proc. ACM Conf.
Comput. Supported Cooperat. Work, 1998, pp. 345–354.

[75] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, ‘‘Application of
dimensionality reduction in recommender system—A case study,’’
Dept. Comput. Sci., Univ. Minnesota, Minneapolis, MN, USA,
Tech. Rep. TR-00-043, 2000.

74022 VOLUME 6, 2018



M. Jalili et al.: Evaluating Collaborative Filtering Recommender Algorithms: A Survey

[76] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, ‘‘Analysis of recommen-
dation algorithms for e-commerce,’’ in Proc. 2nd ACM Conf. Electron.
Commerce, 2000, pp. 158–167.

[77] D. Liben-Nowelly and J. Kleinberg, ‘‘The link prediction problem for
social networks,’’ in Proc. 12th Annu. ACM Int. Conf. Inf. Knowl.
Manage., 2003, pp. 556–559.

[78] L. Lü and T. Zhou, ‘‘Link prediction in complex networks: A sur-
vey,’’ Phys. A, Statist. Mech. Appl., vol. 390, no. 6, pp. 1150–1170,
2011.

[79] A. Javari, J. Gharibshah, and M. Jalili, ‘‘Recommender systems based
on collaborative filtering and resource allocation,’’ Social Netw. Anal.
Mining, vol. 4, no. 1, p. 234, Dec. 2014.

[80] L. Lü, T. Zhou, and Y.-C. Zhang, ‘‘Predicting missing links via local
information,’’ Eur. Phys., vol. 71, no. 4, pp. 623–630, 2009.

[81] X.-S. He, M.-Y. Zhou, Z. Zhuo, Z.-Q. Fu, and J.-G. Liu, ‘‘Predicting
online ratings based on the opinion spreading process,’’ Phys. A, Statist.
Mech. Appl., vol. 436, pp. 658–664, Oct. 2015.

[82] N. Polatidis and C. K. Georgiadis, ‘‘A multi-level collaborative filtering
method that improves recommendations,’’ Expert Syst. Appl., vol. 48,
pp. 100–110, Apr. 2015.

[83] V. Formoso, D. Fernández, F. Cacheda, and V. Carneiro, ‘‘Using profile
expansion techniques to alleviate the new user problem,’’ Inf. Process.
Manage., vol. 49, no. 3, pp. 659–672, 2013.

[84] J. Ben Schafer, J. A. Konstan, and J. Riedl, ‘‘E-commerce recommenda-
tion applications,’’ Data Mining Knowl. Discovery, vol. 5, pp. 115–153,
Jan. 2001.

[85] G. Karypis, ‘‘Evaluation of item-based top-N recommendation algo-
rithms,’’ in Proc. ACM 10th Int. Conf. Inf. Knowl. Manage., 2001,
pp. 247–254.

[86] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa, ‘‘Discovery and evalu-
ation of aggregate usage profiles for Web personalization,’’ Data Mining
Knowl. Discovery, vol. 6, no. 1, pp. 61–82, 2002.

[87] L. H. Ungar and D. P. Foster, ‘‘Clustering methods for collabora-
tive filtering,’’ in Proc. AAAI Workshop Recommendation Syst., 1998,
pp. 1–16.

[88] M. Ramezani, P. Moradi, and F. Akhlaghian, ‘‘A pattern mining approach
to enhance the accuracy of collaborative filtering in sparse data domains,’’
Phys. A, Statist. Mech. Appl., vol. 408, pp. 72–84, Aug. 2014.

[89] T. Hofmann, ‘‘Collaborative filtering via Gaussian probabilistic latent
semantic analysis,’’ in Proc. 26th Annu. Int. ACM SIGIR Conf. Res.
Develop. Informaion Retr., 2003, pp. 259–266.

[90] K. Yu, X. Xu, J. Tao, M. Ester, and H.-P. Kriegel, ‘‘Instance selection
techniques for memory-based collaborative filtering,’’ in Proc. SDM,
vol. 2, 2002, p. 16.

[91] D. Lemire and A. Maclachlan, ‘‘Slope one predictors for online rating-
based collaborative filtering,’’ in Proc. SIAM Int. Conf. Data Mining ,
vol. 5, 2005, pp. 471–480.

[92] D. Z. Navgaran, P. Moradi, and F. Akhlaghian, ‘‘Evolutionary based
matrix factorization method for collaborative filtering systems,’’ in Proc.
21st Iranian Conf. Electr. Eng. (ICEE), 2013, pp. 1–5.

[93] X. Yuan, L. Han, S. Qian, G. Xu, and H. Yan, ‘‘Singular value decompo-
sition based recommendation using imputed data,’’ Knowl.-Based Syst.,
vol. 163, pp. 485–494, Jan. 2018.

[94] T. V. R. Himabindu, V. Padmanabhan, and A. K. Pujari, ‘‘Conformal
matrix factorization based recommender system,’’ Inf. Sci., vol. 467,
pp. 685–707, Apr. 2018.

[95] K. Miyahara and M. J. Pazzani, ‘‘Improvement of collaborative filtering
with the simple Bayesian classifier,’’ Inf. Process. Soc. Jpn., vol. 43,
no. 11, pp. 3429–3437, 2002.

[96] M.-H. Park, J.-H. Hong, and S.-B. Cho, ‘‘Location-based recommenda-
tion system using Bayesian user’s preference model in mobile devices,’’
in Ubiquitous Intelligence and Computing. Berlin, Germany: Springer,
2007, pp. 1130–1139.

[97] M. O’Connor and J. Herlocker, ‘‘Clustering items for collaborative fil-
tering,’’ in Proc. ACM SIGIR Workshop Recommender Syst., vol. 128.
Berkeley, CA, USA: Univ. California, Berkeley, 1999, pp. 1–4.

[98] S. H. S. Chee, J. Han, and K. Wang, ‘‘RecTree: An efficient collabora-
tive filtering method,’’ in Data Warehousing and Knowledge Discovery.
Berlin, Germany: Springer, 2001, pp. 141–151.

[99] S. Ahmadian, N. Joorabloo, M. Jalili, M. Meghdadi, M. Afsharchi, and
Y. Ren, ‘‘A temporal clustering approach for social recommender sys-
tems,’’ in Proc. IEEE/ACM Int. Conf. Adv. Social Netw. Anal. Mining
(ASONAM), Barcelona, Spain, Aug. 2018, pp. 1139–1144.

[100] G. Noh, H. Oh, and J. Lee, ‘‘Power users are not always powerful:
The effect of social trust clusters in recommender systems,’’ Inf. Sci.,
vol. 462, pp. 1–15, Sep. 2018.

[101] L. Getoor and M. Sahami, ‘‘Using probabilistic relational models for
collaborative filtering,’’ in Proc. Workshop Web Usage Anal. User Pro-
filing (WEBKDD), 1999.

[102] H. Hong, B. J. Kim, M. Y. Choi, and H. Park, ‘‘Factors that predict
better synchronizability on complex networks,’’ Phys. Rev. E, Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Top., vol. 69, p. 067105, Jun. 2004.

[103] T. Hofmann, ‘‘Latent semantic models for collaborative filtering,’’ ACM
Trans. Inf. Syst., vol. 22, no. 1, pp. 89–115, Jan. 2004.

[104] L. Huang,W. Tan, and Y. Sun, ‘‘Collaborative recommendation algorithm
based on probabilistic matrix factorization in probabilistic latent semantic
analysis,’’ in Multimedia Tools and Applications. New York, NY, USA:
Springer, 2018.

[105] S. Vucetic and Z. Obradovic, ‘‘Collaborative filtering using a regression-
based approach,’’ Knowl. Inf. Syst., vol. 7, no. 1, pp. 1–22, 2005.

[106] D. Y. Pavlov and D. M. Pennock, ‘‘A maximum entropy approach to
collaborative filtering in dynamic, sparse, high-dimensional domains,’’
in Proc. Adv. Neural Inf. Process. Syst., 2002, pp. 1441–1448.

[107] B. M. Marlin, ‘‘Modeling user rating profiles for collaborative filtering,’’
in Proc. Adv. Neural Inf. Process. Syst., 2003, pp. 627–634.

[108] G. Shani, R. I. Brafman, and D. Heckerman, ‘‘An MDP-based recom-
mender system,’’ in Proc. 18th Conf. Uncertainty Artif. Intell. SanMateo,
CA, USA: Morgan Kaufmann, 2002, pp. 453–460.

[109] K. Honda, N. Sugiura, H. Ichihashi, and S. Araki, ‘‘Collaborative filtering
using principal component analysis and fuzzy clustering,’’ in Web Intel-
ligence: Research and Development. Berlin, Germany: Springer, 2001,
pp. 394–402.

[110] J. F. Canny, ‘‘Collaborative filtering with privacy,’’ in Proc. IEEE Symp.
Secur. Privacy, Feb. 2002, pp. 45–57.

[111] L. Terán and A. Meier, ‘‘A fuzzy recommender system for eElections,’’ in
Electronic Government and the Information Systems Perspective. Berlin,
Germany: Springer, 2010, pp. 62–76.

[112] C. Porcel, A. G. López-Herrera, and E. Herrera-Viedma, ‘‘A recom-
mender system for research resources based on fuzzy linguistic model-
ing,’’ Expert Syst. Appl., vol. 36, no. 3, pp. 5173–5183, 2009.

[113] Y. Koren, R. Bell, and C. Volinsky, ‘‘Matrix factorization techniques
for recommender systems,’’ IEEE Comput., vol. 42, no. 8, pp. 30–37,
Aug. 2009.

[114] D. Billsus and M. J. Pazzani, ‘‘Learning collaborative information fil-
ters,’’ in Proc. ICML, vol. 98, 1998, pp. 46–54.

[115] M. W. Berry, S. T. Dumais, and G. W. O’Brien, ‘‘Using linear algebra for
intelligent information retrieval,’’ SIAM Rev., vol. 37, no. 4, pp. 573–595,
1995.

[116] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, ‘‘Indexing by latent semantic analysis,’’ J. Amer. Soc. Inf.
Sci., vol. 41, no. 6, pp. 391–407, 1990.

[117] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, ‘‘Incremental singular
value decomposition algorithms for highly scalable recommender sys-
tems,’’ in Proc. 5th Int. Conf. Comput. Inf. Sci., 2002, pp. 27–28.

[118] D. DeCoste, ‘‘Collaborative prediction using ensembles of maximum
margin matrix factorizations,’’ in Proc. ACM 23rd Int. Conf. Mach.
Learn., 2006, pp. 249–256.

[119] M. Kurucz, A. A. Benczúr, and K. Csalogány, ‘‘Methods for large scale
SVD with missing values,’’ in Proc. KDD Cup Workshop, vol. 12, 2007,
pp. 31–38.

[120] B. Webb. (2006). Netflix Update: Try This at Home. [Online]. Available:
http://sifter.org/?simon/journal/20061211.html

[121] G. Takacs, I. Pilaszy, B. Nemeth, and D. Tikk, ‘‘On the gravity recom-
mendation system,’’ in Proc. KDD Cup Workshop, 2007, pp. 1–6.

[122] D. D. Lee and H. S. Seung, ‘‘Algorithms for non-negative matrix factor-
ization,’’ in Proc. 13th Int. Conf. Neural Inf. Process. Syst. (NIPS), 2000,
pp. 535–541.

[123] S. Vargas and P. Castells, ‘‘Rank and relevance in novelty and diversity
metrics for recommender systems,’’ in Proc. 5th ACM Conf. Recom-
mender Syst., 2011, pp. 109–116.

[124] A. Mnih and R. Salakhutdinov, ‘‘Probabilistic matrix factorization,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2007, pp. 1257–1264.

[125] R. Salakhutdinov and A. Mnih, ‘‘Bayesian probabilistic matrix factoriza-
tion using Markov chain Monte Carlo,’’ in Proc. ACM 25th Int. Conf.
Mach. Learn., 2008, pp. 880–887.

[126] N. D. Lawrence and R. Urtasun, ‘‘Non-linear matrix factorization with
Gaussian processes,’’ in Proc. ACM 26th Annu. Int. Conf. Mach. Learn.,
2009, pp. 601–608.

[127] X. Luo, M. Zhou, Y. Xia, and Q. Zhu, ‘‘An efficient non-negative matrix-
factorization-based approach to collaborative filtering for recommender
systems,’’ IEEE Trans. Ind. Informat., vol. 10, no. 2, pp. 1273–1284,
May 2014.

VOLUME 6, 2018 74023



M. Jalili et al.: Evaluating Collaborative Filtering Recommender Algorithms: A Survey

[128] X. Luo, M. Zhou, S. Li, Z. You, Y. Xia, and Q.-S. Zhu, ‘‘A nonnegative
latent factor model for large-scale sparse matrices in recommender sys-
tems via alternating direction method,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 27, no. 3, pp. 579–592, Mar. 2016.

[129] X. Luo, M. Zhou, S. Li, and M. Shang, ‘‘An inherently nonnegative latent
factor model for high-dimensional and sparse matrices from industrial
applications,’’ IEEE Trans. Ind. Informat., vol. 14, no. 5, pp. 2011–2022,
May 2018.

[130] X. Luo, M. C. Zhou, S. Li, Y. Xia, Z. You, Q. Zhu, and H. Leung,
‘‘An efficient second-order approach to factorize sparse matrices in rec-
ommender systems,’’ IEEE Trans. Ind. Informat., vol. 11, no. 4, pp. 946–
956, Aug. 2015.

[131] R. Xu, S. Wang, X. Zheng, and Y. Chen, ‘‘Distributed collaborative
filtering with singular ratings for large scale recommendation,’’ J. Syst.
Softw., vol. 95, pp. 231–241, Sep. 2014.

[132] A. Gunawardana and G. Shani, ‘‘A survey of accuracy evaluation met-
rics of recommendation tasks,’’ J. Mach. Learn. Res., vol. 10, 2009,
pp. 2935–2962.

[133] W.Wu, L. He, and J. Yang, ‘‘Evaluating recommender systems,’’ in Proc.
IEEE ICDIM, Aug. 2012, pp. 56–61.

[134] F. Rezaeimehr, P. Moradi, S. Ahmadian, N. N. Qader, and M. Jalili,
‘‘TCARS: Time- and community-aware recommendation system,’’
Future Gener. Comput. Syst., vol. 78, pp. 419–429, Jan. 2018.

[135] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa, ‘‘Effective personaliza-
tion based on association rule discovery from web usage data,’’ in Proc.
ACM 3rd Int. Workshop Web Inf. Data Manage., 2001, pp. 9–15.

[136] S. M. McNee et al., ‘‘On the recommending of citations for research
papers,’’ in Proc. ACM Conf. Comput. Supported Cooperat. Work, 2002,
pp. 116–125.

[137] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, ‘‘An algorithmic
framework for performing collaborative filtering,’’ in Proc. 22nd Annu.
Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., 1999, pp. 230–237.

[138] B. N. Miller, J. Riedl, and J. Konstan, ‘‘Experiences with GroupLens:
Making usenet useful again,’’ in Proc. Usenix Winter Tech. Conf., 1997,
pp. 219–231.

[139] W. Hill, L. Stead, M. Rosenstein, and G. Furnas, ‘‘Recommending and
evaluating choices in a virtual community of use,’’ in Proc. SIGCHI Conf.
Hum. Factors Comput. Syst. Reading, MA, USA: Addison-Wesley, 1995,
pp. 194–201.

[140] C. Spearman, ‘‘The proof and measurement of association between two
things,’’ Amer. J. Psychol., vol. 15, no. 1, pp. 72–101, 1904.

[141] M. G. Kendall, ‘‘A newmeasure of rank correlation,’’ Biometrika, vol. 30,
pp. 81–93, Jun. 1938.

[142] Y. Y. Yao, ‘‘Measuring retrieval effectiveness based on user preference of
documents,’’ J. Amer. Soc. Inf. Sci., vol. 46, no. 2, pp. 133–145,Mar. 1995.

[143] C. Cleverdon andM. Kean. (1966). Factors Determining the Performance
of Indexing Systems. [Online]. Available: http://dspace.lib.cranfield.
ac.uk/handle/1826/863

[144] K. Järvelin and J. Kekäläinen, ‘‘Cumulated gain-based evaluation of IR
techniques,’’ACMTrans. Inf. Syst., vol. 20, no. 4, pp. 422–446, Oct. 2002.

[145] A. Moffat and J. Zobel, ‘‘Rank-biased precision for measurement of
retrieval effectiveness,’’ ACM Trans. Inf. Syst., vol. 27, no. 1, 2008,
Art. no. 2.

[146] T. Zhou, Z. Kuscsik, J.-G. Liu,M.Medo, J. R.Wakeling, andY.-C. Zhang,
‘‘Solving the apparent diversity-accuracy dilemma of recommender sys-
tems,’’ Proc. Nat. Acad. Sci. USA, vol. 107, no. 10, pp. 4511–4515, 2010.

[147] M. Izadi, A. Javari, and M. Jalili, ‘‘Unifying inconsistent evaluation
metrics in recommender systems,’’ presented at the ACM Int. Workshop
Recommender Syst. Eval., Dimensions Design, 2014.

[148] A. Javari, M. Izadi, and M. Jalili, ‘‘Recommender systems for social
networks analysis and mining: Precision versus diversity,’’ in Complex
Systems and Networks: Dynamics, Controls and Applications, J. Lü,
X. Yu, G. Chen, and W. Yu, Eds. Berlin, Germany: Springer, 2016,
pp. 423–438.

[149] T. Zhou, R.-Q. Su, R.-R. Liu, L.-L. Jiang, B.-H. Wang, and Y.-C. Zhang,
‘‘Accurate and diverse recommendations via eliminating redundant cor-
relations,’’ New J. Phys., vol. 11, no. 12, p. 123008, 2009.

[150] T. Zhou, L.-L. Jiang, R.-Q. Su, and Y.-C. Zhang, ‘‘Effect of initial con-
figuration on network-based recommendation,’’ Europhys. Lett., vol. 81,
no. 5, p. 58004, 2008.

[151] A. Javari and M. Jalili, ‘‘Accurate and novel recommendations: An algo-
rithm based on popularity forecasting,’’ ACM Trans. Intell. Syst. Technol.,
vol. 5, no. 4, 2014, Art. no. 56.

[152] A. Javari and M. Jalili, ‘‘A probabilistic model to resolve diversity—
Accuracy challenge of recommendation systems,’’ Knowl. Inf. Syst.,
vol. 44, no. 3, pp. 609–627, 2015.

MAHDI JALILI (M’09–SM’16) received the Ph.D.
degree in computer and communications sciences
from the Swiss Federal Institute of Technol-
ogy Lausanne, Lausanne, Switzerland, in 2008.
He was an Assistant Professor with the Sharif
University of Technology, Tehran, Iran. He is
currently a Senior Lecturer with the School of
Engineering, RMIT University, Melbourne, VIC,
Australia, and holds the Australian Research
Council DECRA Fellowship and the RMIT Vice-

Chancellor Research Fellowship. He is also an Associate Editor of complex
adaptive systems modeling, complexity and mathematical problems in engi-
neering. His current research interests include network science, dynamical
systems, social networks analysis and mining, and human-brain functional
connectivity analysis.

SAJAD AHMADIAN received the B.S. degree
in computer engineering from Razi University,
Kermanshah, Iran, in 2011, and the M.S. degree
in computer engineering from the University of
Kurdistan, Sanandaj, Iran, in 2014. He is currently
pursuing the Ph.D. degree with the University of
Zanjan, Zanjan, Iran. His research interests include
recommender systems, social networks analysis,
and machine learning.

MALIHEH IZADI received the B.Sc. degree from
the University of Isfahan, Isafahan, Iran, in 2012,
and the M.Sc. degree in information technology
engineering from the Sharif University of Tech-
nology, Tehran, Iran, in 2014, where she is cur-
rently pursuing the Ph.D. degree in computer engi-
neering. Her research interests include applied
machine learning, natural language processing,
and recommender systems.

PARHAM MORADI received theM.Sc. and Ph.D.
degrees in computer science from the Amirk-
abir University of Technology in 2006 and 2011,
respectively. He conducted a part of his Ph.D.
research work at the Laboratory of Nonlinear Sys-
tems, École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland, form 2009 to 2010. He is
currently an Associate Professor with the Depart-
ment of Computer Engineering, University of Kur-
distan, Sanandaj, Iran. His current research areas

include machine learning, dimensionality reduction, social network analysis,
and recommender systems.

MOSTAFA SALEHI received the Ph.D. degree in
computer engineering from the Sharif University
of Technology, Iran, in 2012. In 2013, he joined
the University of Tehran as an Assistant Professor.
His research interests include network science and
multimedia networks.

74024 VOLUME 6, 2018


	INTRODUCTION
	RECOMMENDER SYSTEMS
	CONTENT-BASED RECOMMENDATION ALGORITHMS
	COLLABORATIVE FILTERING RECOMMENDATION ALGORITHMS
	HYBRID RECOMMENDATION ALGORITHMS

	COLLABORATIVE FILTERING RECOMMENDATION ALGORITHMS
	MEMORY-BASED COLLABORATIVE FILTERING
	USER-BASED COLLABORATIVE FILTERING
	ITEM-BASED COLLABORATIVE FILTERING
	RESOURCE ALLOCATION COLLABORATIVE FILTERING
	USER OPINION SPREADING
	MULTI-LEVEL COLLABORATIVE FILTERING
	ITEM GLOBAL PROFILE EXPANSION
	USER LOCAL PROFILE EXPANSION
	MORE ON MEMORY-BASED COLLABORATIVE FILTERING ALGORITHMS

	MODEL-BASED COLLABORATIVE FILTERING
	SLOPE ONE
	WEIGHTED SLOPE ONE
	MATRIX FACTORIZATION METHODS


	EVALUATION METRICS
	ACCURACY METRICS
	PREDICTIVE ACCURACY METRICS
	RANK ACCURACY METRICS
	CLASSIFICATION ACCURACY METRICS

	RANK-BASED METRICS
	HALF-LIFE UTILITY
	NORMALIZED DISCOUNTED CUMULATIVE GAIN
	RANK-BIASED PRECISION
	RECOVERY RATE

	DIVERSITY, NOVELTY AND COVERAGE
	DIVERSITY
	SELF-INFORMATION BASED NOVELTY
	COVERAGE
	UNIFIED EVALUATION METRIC


	RESULTS AND DISCUSSION
	DATASET
	PERFORMANCE EVALUATION

	CONCLUSION
	REFERENCES
	Biographies
	MAHDI JALILI
	SAJAD AHMADIAN
	MALIHEH IZADI
	PARHAM MORADI
	MOSTAFA SALEHI


