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ABSTRACT In this paper, the problem of estimating the spatial parameters of multiple coherently distributed
linear chirp sources is considered. In the fractional Fourier domain, a novel low-complexity algorithm based
on theMUSIC criterion is proposed to estimate the central angle and the extension width. For small extension
width scenarios, the 2-D spatial angle search in traditional estimators for the distributed sources estimation
is replaced by a two-step 1-D MUSIC search which dramatically decreases the computational complexity.
In the case of chirp signals with different frequency parameters, sources can be separated, and the spatial
parameters of each source can be estimated individually. When sources cannot be separated, this problem
can be considered as a classical direction-of-arrival estimation of multiple signals. In addition, the central
angle estimation does not require any assumption on the distribution of angular spread. Simulation results
show that the proposed algorithm obtains comparable performance in the parameters estimation accuracy
for small extension width scenarios with the reduced complexity compared with our previous work.

INDEX TERMS Chirp signals, localization, fractional Fourier transform, MUSIC estimator.

I. INTRODUCTION
The direction of arrival (DOA) estimation problem of chirp
sources for the far field point source model has been
widely studied [1]–[3]. However, in many practical situa-
tions, the local scattering and reflection may result in angu-
lar spreading of the source energy. For example, significant
angular scattering distributions can be observed in urban
wireless communications [4]–[6]. In these scenarios, the
transmitter is modeled as a spatially distributed source with
a central angle and an extension width that is better than a
point source, since angular spread may lead to inaccurate
estimators using the point source model [6].

The application of classical distributed sources
algorithms, such as the distributed source parameter
estimator (DSPE) [6], the dispersed signal parametric
estimation (DISPARE) [7] and themaximum likelihood (ML)
estimator [8], leads to a multidimensional optimization of
high computational cost. To reduce the complexity of esti-
mation, a distributed source is approximated by a two-ray
model in [9]. Then, the spatial parameters of the point sources
are estimated by ROOT-MUSIC. Nonetheless, special

approximations of the array covariance matrix may lead to
bias estimates. The extended invariance principle (EXIP)
algorithm [10] computes the central angle and the exten-
sion width in an efficient way by using two successive
1D searches. This algorithm is based on the single source
assumption and cannot be extended to the multiple source
case. In [11], a decoupled DOA estimator is proposed based
on Generalized ESPRIT [12], which needs more sensors
than MUSIC-type estimators. And MUSIC estimators gen-
erally outperform ESPRIT on the estimation performance.
On the other hand, these algorithms consider single-
frequency stationary signals as their incident sources, and
require the steering vector be time-invariant. Thus, they
cannot be used to estimate chirp signals, since time variable is
introduced into steering vectors while receiving chirp signals.

In [13], we focused on coherently distributed (CD) chirp
sources. Based on the fractional Fourier transform (FrFT),
the steering vector in the dechirped domain was derived,
in which the influence of the time parameter on the steering
vector was eliminated when the received signals are non-
stationary. Hence, spatial parameter estimation algorithms
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TABLE 1. The definition of symbols.

for distributed source, such as the conventional
DSPE algorithm [6], can be extended to their counterparts
in the dechirped domain. However, this estimator needs
2D spectral search.

To further reduce the complexity of our existing work,
we propose a low-complexity spatial parameter estimation
method on the basis of MUSIC estimator and give the
Cramér-Rao bound (CRB) in this paper. Instead of using
2D search, a two-step 1D procedure is proposed.

Compared to classical distributed source schemes, the pro-
posed algorithm has the following advantages:

1) The central angle estimation does not require any knowl-
edge of the distribution of scattering rays, which is robust to
mismodeling errors.

2) The proposed algorithm can even work in the case of the
number of sources exceeds the number of sensors, while the
sources are separable.

3) The deterministic angular signal density of incident
sources can be different which is assumed to be identical for
all sources in many traditional distributed source estimators.

4) The computational complexity of the proposed algo-
rithm is much lower than that of traditional distributed source
estimators while providing comparable performance.

The paper is organized as follows. In Section II, the defini-
tion of FrFT and some properties of chirp signals in the time-
frequency domain are presented. In Section III, the models
both in the time domain and in the fractional Fourier domain
are reviewed. The proposed method is drawn and the CRB of
the single source is addressed in Section IV. Simulation and
analysis are given in Section V, and our conclusions are given
in Section VI. Finally, the statistical property of signals in the
fractional Fourier domain and the steering vector factorizing
are derived in Appendix.

Some notations used throughout this paper are listed
in Table 1, as follows:

II. FRACTIONAL FOURIER TRANSFORM
To provide the mathematical background, we rigorously
define the FrFT in this section. Some properties of chirp
signals in the time-frequency domain are explored as well.

A. DEFINITION OF FrFT
The FrFT is a generalized form of the conventional Fourier
transform (FT), which reveals the variation tendency of
each frequency component of signals over time in the time-
frequency plane. The fractional Fourier domain contains both
the time and frequency characteristics of transformed signals.

The mathematical definition of FrFT can be given through
the following linear integral transform [14]–[16]

X (p, u) = Fp [x (t)] =
∫
∞

−∞

Kp(u, t)x(t)dt, (1)

where Fp [·] denotes the FrFT operator of the pth order,
kernel Kp(u,t) is defined as

Kp (u, t)

=


√
1− j cotαejπ

(
t2 cotα−2tu cscα+u2 cotα

)
, p 6= 2n

δ (t − u), p = 4n
δ (t + u), p = 4n± 2

(2)

and n is an integer. Note that the fractional Fourier domain can
be interpreted as it makes rotation angle α = pπ

/
2 with the

time domain. For convenience, both the FrFT operators Fp [·]
and Fα [·] can be considered as equivalent in this paper.

B. PROPERTIES OF CHIRP SIGNALS IN THE FRACTIONAL
FOURIER DOMAIN
The chirp signal we considered can be modeled as

x(t) = a0ejπ (2f0t+µ0t2)+jϕ0 , (3)

where a0 is the amplitude,f0 is the initial frequency, ϕ0 is the
initial phase, and µ0 = B/T is the chirp rate with
bandwidth B and duration time T .

The FrFT of x(t) can be represented as

X (α, u) = a0ejϕ0

√
1+j tanα

1+ µ0 tanα
e
[jπ

u2(µ0−tanα)+2uf0 secα−f
2
0 tanα

1+µ0 tanα
]
.

(4)

According to the rotation property of FrFT, the
Wigner-Ville distribution (WVD) of FrFT of a signal with
rotation angle α is the WVD of this signal rotated by a
rotation angle −α [14]. In Fig. 1, as the angle rotates from
the time domain, the fractional Fourier domain is defined
as the dechirped domain when the axis u coincides with the
energy bar of signal. Besides, the domain is perpendicular
to the dechirped domain can be defined as the Energy-
concentrated domain in which chirp signal acquires the best
energy concentration property [14]. The rotation angles of
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FIGURE 1. The energy spectrum of chirp signal in the time-frequency
domain with the rotation angle αe.

the dechirped domain and the Energy-concentrated domain
of x(t) are

αd = arctan µ0, (5)

αe = −arccot µ0. (6)

Obviously, according to the relationship between the rota-
tion angle αd and αe, we can obtain that αd = αe + π

/
2.

According to the additivity of FrFT, we have

X (αd , u) = F [X (αe, u)], (7)

which means that the FrFT of chirp signal in the dechirped
domain equals to the FT of the FrFT of this signal in the
Energy-concentrated domain.

In the dechirped domain, we have

X (αd , u) = B exp (j2π f0 cosαdu), (8)

where

B = a0 cosαd
√
1+ j tanαd

× exp
[
j
(
ϕ0 − π f 20 sinαd cosαd

)]
, (9)

is a constant.
As indicated by the equations above, a chirp signal can be

dechirped as a signal with single-frequency in the dechirped
domain, that is

fd = f0 cosαd . (10)

In the Energy-concentrated domain, we have

X (αe, u) = Cδ (u cscαe − f0), (11)

where

C = a0
√
−j− cotαe exp

[
j
(
ϕ0 + π

/
4
)]
, (12)

is a constant as well. In this domain, chirp signal acquires the
highest energy concentration that is indicated by an impulse.
The u coordinate of this impulse is

ue = f0 sinαe. (13)

In the following section, the coherently distributed source
model and the steering vector for chirp signals in the
dechirped domain will be reviewed.

III. DATA MODEL AND STEERING VECTOR
Consider the case of q distributed chirp sources in the far field
impinging on an array with r sensors, where each sensor has
the same gain, phase, and sensitivity pattern. The complex
envelope of the output vector in the array can be modeled
as [13]

y(t) =
q∑
i=1

∫
ϑ∈2

a(ϑ, t)ςi(ϑ,ψ i; t) dϑ + n(t), (14)

where the steering vector a(ϑ, t) of the array is time-varying,
ςi(ϑ,ψ i; t) is the angular density of the ith chirp source in
the direction ϑ ∈ 2, ψ i is the unknown location parameter
vector of the ith chirp source including the central angle θi
and the extension width 1i, and n(t) is an additive zero-
mean noise vector. A number of N independent observations,
y(1), y(2), . . . , y(N ), are collected by the array. Given these
observations, we aim to estimate the location parameters of
sources. Nevertheless, other unknowns usually exist in the
parameter as well, such as initial frequency and chirp rate,
which will seriously increase the complexity of estimation.

When the components at different angles from the same
source can be regarded as the delayed and scaled repli-
cas of the same signal, the source can be considered as
a CD source [6]. For CD sources, the angle signal density
can be represented by

ςi(ϑ,ψ i; t) = si(t) · `i(ϑ,ψ i), (15)

where si(t) is a random variable which reflects the temporal
property of distributed source, while `i(ϑ,ψ i) is the determin-
istic angular signal density which is a complex deterministic
function of ϑ .
In this paper, the vector of signal waveforms s(t) is

assumed to be a zero-mean, temporally complex Gaussian
distributed random variable.

For CD sources, the FrFT of (14) can be expressed as

Y(α, u)=
q∑
i=1

∫
ϑ∈2

A(α, ϑ; u)Si(α, u)`i(ϑ,ψ i) dϑ+N(α, u)

(16)

where Si(α, u) is the FrFT of si(t),N(α, u) is the FrFT of n(t),
and A(α, ϑ; u) is the steering vector in the fractional Fourier
domain.

Let b(α,ψ i; u) be defined as

b(α,ψ i; u) =
∫
ϑ∈2

A(α, ϑ; u)`i(ϑ,ψ i) dϑ. (17)

For a uniform linear array (ULA), the steering vector on
the kth sensor in the dechirped domain can be given by [13]

Ak (αd , θ) = ejπ
[
(τk )

2 sinαd cosαd−2f0 cos2 αd τk
]
, (18)
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where τk = (k − 1)d sin(θ )/c represents the time delay
which performs on the kth sensor, d is the distance between
two adjacent sensors in the array, θ is the incident angle of
the signal and c is the speed of signal propagation.

Finally, the steering vector can be written as

A(αd , θ) = [1,A2(αd , θ), · · · ,Ar (αd , θ)]T. (19)

In the dechirped domain, the influence of the time vari-
able and the variable u in the steering vector are eliminated.
Then, (18) in the dechirped domain can be written as

Y(αd , u) =
q∑
i=1

b(αd ,ψ i)Si(αd , u)+ N(αd , u), (20)

where

b(αd ,ψ i) =
∫ A(αd ,ϑ)`i(ϑ,ψ i)

ϑ∈2

dϑ. (21)

For the array Y, the covariance matrix in the dechirped
domain is given by

RYY =

q∑
i=1

q∑
j=1

b(αd ,ψ i)E{Si(αd , u)S
H
j

× (αd , u)}bH (αd ,ψ j)+ RNN

= B(αd ,ψ)PB
H (αd ,ψ) C RNN (22)

where

B(αd ,ψ) =
[
b(αd ,ψ1) b(αd ,ψ2) · · · b(αd ,ψq)

]
, (23)

[P]ij = E
{
Si(αd , u)SHj (αd , u)

}
, (24)

RNN = σ
2
n I, (25)

and σ 2
n is the noise variance. Notice that the statistical char-

acteristic of random signals is not affected by the FrFT
(see Appendix A).

Performing the eigendecomposition on RYY renders

RYY = US6SUH
S + UN6NUH

N , (26)

where the column vectors of US and UN respectively are the
eigenvectors that span the signal subspace and the noise sub-
space ofRYY with the associated eigenvalues on the matrixes
of 6S and 6N .
Hence, (20) can be rewritten as

Y(αd , u) = B(αd ,ψ)S(αd , u)+ N(αd , u), (27)

where

S(αd , u)=
[
S1(αd , u) S2(αd , u) · · · Sq(αd , u)

]T
. (28)

Based on these analyses, a novel low-complexity
MUSIC- type estimator of the spatial parameters for multiple
sources will be proposed in the next section.

IV. SPATIAL PARAMETER ESTIMATION
The excessive computational complexity, which needs to
carry out complicated searches over unknown parameters
in multidimensional spaces, is one of the major disadvan-
tages of traditional distributed source estimators. To address
this problem, we propose a method that combines the fre-
quency parameter estimationwith a two-step 1DMUSIC over
reduced dimension parameter search spaces.

A. DIMENSION REDUCTION
We will discuss the case of one distributed chirp source
(i.e. q = 1 in (14)) first. The unknown model parameters η in
the estimate can be given by

η =
[
ψT ,wT

]T
, (29)

where ψ = [θ1 11]T is the spatial parameter vector, and
w = [f1 µ1]T is the frequency parameter vector.
As we can see from (29), the parameter estimation

algorithm for a distributed chirp sourcemodel requires a high-
dimensional optimization which causes substantial compu-
tational complexity. To address this issue, we try to reduce
dimension parameter search spaces through estimating the
frequency parameter which is easily obtained by (6) and (13)
in the Energy-concentrated domain. The estimation results
also can be written as{

f̂0 = ûe csc α̂e
µ̂0 = − cot α̂e.

(30)

The observed signal is processed with a continuously
varying rotation angle α, and the estimation

(
α̂e, ûe

)
can be

determined by finding the coordinate of spectrum peak in the
fractional Fourier domain.

Since the frequency parameters can be estimated previ-
ously, the number of the unknown parameters in (29) is
reduced and then η can be reformed as

η′ = [ψ]. (31)

Then, the MUSIC-type estimate of the unknown parame-
ter ψ can be easily extended to the proposed model. Then,
we have

ψ̂ = argmax
ψ

BHB
BH5nB

, (32)

where 5N = UNUH
N . This estimator needs to carry out

a 2D search over the parameter ψ using (32).

B. TWO-STEP 1D MUSIC
To further reduce the computational complexity of the pro-
posed approach, we present a lower cost strategy in this
part. According to the measurement results of [17] and [18],
depending on the environment of the mobile, the base-
mobile distance and the base station height, the extension
width less than 6o can be commonly observed in practice.
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Thus, considering ϑ ∈ 2 in (17) is small, the steering
vector B can be factorized as (see Appendix B)

B = A�G. (33)

Inserting (33) into the expression of MUSIC estimator (32)
yields

ψ̂ = argmax
ψ

GH
� AHA�G

GH � AH5nA�G
, (34)

It should be noted that there exists a matrix Ḡ satisfy-
ing Ḡ � G = 1 where 1 is a matrix with all entries are 1.
Then, (33) can be simplified as

θ̂ = argmax
θ

AHA
AH5nA

. (35)

The maximization of (35) can be performed using the
1D search over the central angle. After that, substituting the
estimated central angle into (32), the extension width can
be obtained by the second step 1D MUSIC. Note that the
estimation of central angle does not rely on any assumption
of deterministic angular signal densities and should be robust
to mismodeling `(ϑ,ψ).

The main idea of the EXIP is to reparameterize the estimat-
ing criterion in terms of a less detailed parameter vector with
a view to facilitate solving the minimization problem [10].
Based on the EXIP, the convergence will be discussed as
follow.

Maximizing (32) is equivalent to minimizing

V (ψ) = BH5nB

= (A�G)H 5n (A�G)

= AH5nA�GHG (36)

Let γ= GHG. Differentiating (36) with respect to γ ,
we obtain

∂V (ψ)
∂γ

= AH5nA (37)

Theoretically, the variable γ can minimize (36), only
when AH5nA =0 (i.e., the maximization of (35)) is satis-
fied. Hence, the two spatial parameter estimation ensures the
convergence.

C. MULTIPLE SOURCES ESTIMATION ALGORITHM
1) SEPARABLE CASES
According to (11) and (13), we know that chirp signals with
different initial frequencies or chirp rates have different sup-
port positions in the fractional Fourier domain, which ensures
that the signals are separable. Fig. 2 shows the spectrum
distributions of the two chirp signals with different initial
frequencies and different chirp rates in the fractional Fourier
domain. As mentioned in section II, the energy distribution of
each chirp source in its Energy-concentrated domain shows
a distinct spectral peak, while that of other signals with
different chirp rates and noise is dispersing in this domain.

FIGURE 2. The spectrum distributions of chirp signals in the fractional
Fourier domain.

FIGURE 3. The spectrum distributions of chirp signals in the
Energy-concentrated domain.

Therefore, multiple chirp sources can be conveniently sepa-
rated in their own Energy-concentrated domain by applying
a band-pass filter, as shown in Fig. 3.

After the filtered signal is transformed into the dechirped
domain by the FT, the aforementioned method for single
source can be applied. Finally, by repeating the above steps,
the desired parameters of all distributed chirp sources can be
obtained respectively.

When q chirp sources all have different frequency parame-
ters, the steps used for the proposed estimator in the separable
cases are carried out by the following steps.

In the frequency parameter estimation (step 1 to 3), the iter-
ative search based on quasi-Newton method proposed in [19]
can observably reduce the computation complexity
of 2D search in the (α, u) plane. The computation complexity
of this iterative method is O (mN logN ), where m is the
number of the steps in the scanning, which is likely to be
much less than N when the resolution and the range are
selected properly. Then, αd can be acquired by the relation-
ship between αd and αe in (7). And the filter processing
(step 4) costs O (N ) to find the peak and filter.
Since the operation of complex multiplication is the

major computation when estimating spatial parameter,
we mainly consider that cost in step 5 and step 6.
The eigen-decomposition needs O

(
Nr2 + r3

)
. Solving

5n costs O
(
r2 (r − q)

)
. In the proposed estimator, the
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Algorithm 1 Estimation of Spatial Parameters of Separable
Sources
Step 1: Search over parameters (α, u) is performed on the

received signals of the first sensor by the FrFT.
Step 2: Estimate

{
α̂ei, ûei

}q
i=1 by peak searching of the

energy spectrum in the (α, u) plane.
Step 3: Estimate

{
f̂ei, µ̂ei

}q
i=1

based on (30).
for i = 1 : q do

Step 4: Obtain the filtered signal si (t) on each sensor by
the filter processing in its Energy-concentrated
domain.

Step 5: Estimate θ̂i from (35) in the dechirped domain of
si (t).

Step 6: Estimate 1̂i from (32) with θ = θ̂i.
end for

1D spectral search for the central angle and the extension
width require O

(
m̄
(
r2 + 2r

))
and O

(
n̄
(
r2 + 2r

))
, where

m̄ and n̄ are the number of the steps in the scanning
for the central angle and the extension width respec-
tively. Thus, the complexity of estimating spatial param-
eter is O

(
r2 (r − q)+ m̄

(
r2 + 2r

)
+ n̄

(
r2 + 2r

))
, while

the 2D searches within the method in [13] requires
O
(
r2 (r − q)+ m̄n̄

(
r2 + 2r

))
. The two spatial parameters

can be simply acquired by a two-step 1D MUSIC algorithm
which dramatically decreases the computational complex-
ity. The refinement method can also be exploited in our
proposed method. A coarse search is performed firstly, and
then we get a refined grid around the location of the peak
acquired at the first step. This refinement process is repeated
until the location of the peak is found. In our simulations,
the uniform sampling grid is utilized. To avoid introducing
substantial bias, the sampling interval of the first step is set
to 1◦.

2) INSEPARABLE CASES
While chirp signals possess the same frequency parameters,
they share the same peak position in the fractional Fourier
domain and cannot be separated from each other. These sig-
nals possess the same dechirped domain with the same rota-
tion angle. This case can be simply considered as a classical
DOA estimation problem of multiple signals, since all the
sources share the same manifold in that domain. The central
angles of sources with the same frequency parameters can
be simultaneously estimated by (35) in the same dechirped
domain. After that, each extension width can be obtained
by (32) respectively.

Assume q chirp source groups have q different frequency
parameters and the ith source group contains {Li}

q
i=1 sources

sharing the same frequency parameter. That means the
{Li}

q
i=1 (Li < r) sources in the ith source group have the

same chirp rate and the same dechirped domain. In this case,
the major steps of the proposed algorithm are summarized as
follows:

Algorithm 2 Estimation of Spatial Parameters of Inseparable
Sources
Step 1: Search over parameters (α, u) is performed on the

received signals of the first sensor by the FrFT.
Step 2: Estimate

{
α̂ei, ûei

}q
i=1 by peak searching of the

energy spectrum in the (α, u) plane.
Step 3: Estimate

{
f̂ei, µ̂ei

}q
i=1

based on (30).
for i = 1 : q do

Step 4: Obtain the filtered ith source group on each
sensor by the filter processing in its Energy-
concentrated domain.

Step 5: Estimate
{
θ̂ik

}Li
k=1

from (35) in the dechirped
domain of the ith source group.

for k = 1 : Li do
Step 6: Estimate 1̂ik from (32) with θ = θ̂ik .

end for
end for

In the proposed algorithm, the deterministic angular signal
densities of incident sources can be different, because the
extension width of each source is independently estimated
by (32). Furthermore, a Toeplitz matrix is applied to remove
the coherency when chirp signals are coherent, and then (22)
can be transformed into

RYY =


R11 R12 · · · R1r
R∗12 R11 · · · R1(r−1)
...

...
. . .

...

R∗1r R∗1(r−1) · · · R11


r×r

(38)

3) CRB IN THE DECHIRPED DOMAIN
CRB serves as a well-known benchmark for the variance of
unbiased estimators in signal processing. Generally, twomain
types of the DOA’s CRB of the received signal are studied:
deterministic and stochastic. In this paper, the received signal
in the model can be interpreted as multiple Gaussian stochas-
tic signals with certain angle spread. Hence, we will focus
on the stochastic CRB study. In previous works, the stochas-
tic CRB for the DOA estimation of narrowband signals in
array processing is indirectly derived as the (asymptotic)
covariance matrix of the ML estimator in [20] and [21].
Stoica et al. [22] provide a standard form for calculating the
stochastic CRB. According to the analysis in Section II. B,
those conclusions can be easily extended to the model in this
paper. Then, in the dechirped domain, we obtain

CRB (ψ) =
σ 2
n

2N

{
Re
[
H�

(
PBHR−1XXBP

)T]}−1
, (39)

where

H = DH
[
I− B

(
BHB

)−1
BH
]
D, (40)

D = [d1 · · · dr ] , (41)
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and

d i = dB
/
dψ |ψ=ψ i

. (42)

Notice that, there are four variables in the CRB rep-
resentation in (39). Therefore, the exact determination of
the CRB cannot be done directly. To evaluate the perfor-
mance of proposed algorithm by the CRB in the simulation,
except for the desired variable, the other three are assumed
to be known during the whole observation time. Then, the
CRB of desired variable can be obtained under this assump-
tion, which is referred as the essential benchmark of the
proposed algorithm.

V. SIMULATION STUDY & RESULTS
A. DIGITAL CALCULATION OF THE FrFT
In our simulation, we employ the fast implementation of the
digital calculation of FrFT based on the fast Fourier transform
(FFT) [23], which has a lower complexity of O(N logN ) and
high accuracy.

Because the chirp signal cannot be compact both in the
time and frequency domain, the energy of signal may be out
of the valid domain with the rotation of the FrFT. To solve this
problem, Liu et al. [24] published details of the dimensional
normalization processing when dealing with discrete signals
in the fractional Fourier domain. Let the chirp signal in the
time domain be confined to the interval [−1T/2, 1T/2]
and its frequency domain representation be confined to the
interval [−1F/2, 1F/2] . Under this assumption, most of
the signal energy is confined to these intervals. To satisfy the
requirement that the time and frequency domain are compact
at the same time, the scaling parameter κ =

√
1T/1F

is introduced. The time domain and the frequency domain
representations are confined to intervals of length1T/κ and
1Fκ respectively. Thus, the lengths of both intervals become
the dimensionless quantity

√
1T1F , while the sample inter-

val satisfies that 1x =
√
N = 1

/√
1T1F , which is

scaled to 1 for simplicity. We assume that1T is the duration
time T and1F is the sample frequency fs. By employing the
dimensional normalization processing, the representations
of (αe, ue) can be restated as{

α̃e = −arc cot(µ0N
/
f 2s )

ũe = f0N sin α̃e
/
fs.

(43)

B. SIMULATION SETUP
In the simulation, a ULA of r = 8 sensors is considered.
The deterministic angular signal densities of two coherently
Gaussian-distribution linear chirp sources, are defined as

`(ϑ,ψ) =
1

√
2π1i

exp

(
−
(ϑ − θi)

2

212
i

)∣∣∣∣∣
i=1,2

, (44)

while the signal-to-noise ratio is defined as

SNR = 10 log
E
[
|s (t)|2

]
Tσ 2

n
. (45)

TABLE 2. The parameters of signals in simulations.

FIGURE 4. The energy spectra of tested chirp sources in the (α,u) plane.

Monte Carlo simulations of 1000 independent runs are
performed for each simulation. The method proposed in [13],
which is a generalized DSPE for distributed chirp source,
is chosen as the benchmark algorithm for estimating the
central angle and the extension width of the incident source.
The parameters of two received signals in these simulations
are summarized in Table 2.

C. RESULTS AND ANALYSIS
1) FREQUENCY PARAMETER ESTIMATION AND
FILTERING PROCESS
In the following part, we focus on studying the source one
for conciseness, and stress that the similar conclusion can
be easily extended to the source two. The spectrum of the
both sources in the (α, u) plane is shown in Fig. 4. The true
values (α̃e1, ũe1) and the estimation values (α̂e1, ûe1) are pre-
sented respectively as follow:{

α̃e1 = −1.5374
ũe1 = −100.2774,

(46){
α̂e1 = −1.5367
ûe1 = −100.

(47)

As illustrated in Fig. 5(a), the energy spectrum of tested
chirp signal one without noise on the first sensor in the
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FIGURE 5. The energy spectrum of chirp signal and noise on the first
sensor in the Energy-concentrated domain. (a) tested chirp signal one
without noise (b) noise (c) tested chirp signal with noise (d) filtered
signal.

Energy-concentrated domain shows an obvious energy con-
centration around ûe1. In this Energy-concentrated domain,
the chirp signal forms a sinc function and the majority of
energy spectrum focuses on its support. The energy spec-
trum of noise and other signals is relatively lower and more
dispersed, which affects the support of chirp signal slightly,
as shown in Fig. 5(b) and (c). Similarly, the single spectrum
peak will appear on the other sensors as well. Therefore,
the desired chirp signal can be separated from the other
signals and the noise.

For selecting a bandwidth L of the band-pass filtering,
we must estimate the width of chirp signal’s support in the
Energy-concentrated domain using [24]

ρα =
∣∣1x (cosα + µ11T

/
1f sinα

)∣∣ . (48)

According to (48), we know that ρα=αe1 can be easily
obtained based on the estimation results in (43) and (48). The
simplest selection method is that the bandwidth L is rounded
up to the integer value of ρα , which ensures that the majority

FIGURE 6. RMSEs for the central angle and the extension width estimates
versus SNRs.

of energy of the signal is reserved while that of the noise and
other signals is eliminated. Using a rectangular window with
the bandwidth L, the filtered signal is presented in Fig. 5(d).

2) LOCATION PARAMETERS ESTIMATION FOR SOURCE ONE
Next, we study the estimation performance of unknown loca-
tion parameters for the proposed method and the generalized
DSPE when different parameters in Table 2 are varied one at
a time. The methods in [25] and [26], which are proposed to
estimate the DOA of chirp signals based on the point source
model, are also chosen as the comparisons to demonstrate that
the proposed algorithm has better performance when estimat-
ing distributed sources. The simulation results of source one
are shown in following parts.

The simulation is carried out in a range of SNR values.
The root-mean square error (RMSE) for the central angle
and the extension width estimates versus different SNRs are
shown in Fig. 6. As we can see, the proposedmethod provides
similar performance to the DSPE on the central angle and
the extension width estimation versus different SNRs. The
empirical results of the proposed method and the general-
ized DSPE are close to the CRB in the distributed source
condition.

The influence of extension widths on the performance
can be observed in Fig. 7. When the extension width is
smaller than 5◦, the proposed estimator has similar per-
formance to the DSPE. As the extension width increases,
the RMSEs for the central angle estimates of the proposed
estimator increase faster than the DSPE. The main reason
is that the approximations of (B3) and (B4) introduce more
bias with the increase of the extension width. Since the
proposed estimator in (35) is based on this approximation,
the estimation accuracy deteriorates with the extension width
increasing.

The influence of sample number and sensor number are
presented in Fig. 8 and Fig. 9, respectively. The proposed
estimator performs very close simulation results to the DSPE
for small extension width. When sample number or sensor
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FIGURE 7. RMSEs for the central angle and the extension width estimates
versus extension widths.

FIGURE 8. RMSEs for the central angle and the extension width estimates
versus sample numbers.

number increases, the estimation performance improves.
The estimations of location parameters are similarly affected
by the increase of sample number.While the sensor number is
large enough, the estimation of extension width is better than
that of central angle. The estimation performance of location
parameters for the two estimators are closer to the CRB as
sensor number increases.

We consider the coherent and the inseparable sources
scenarios in the following test. The source two has the
same frequency parameters as the source one and their
correlation coefficient is set to 1. The two sources cannot
be separated in this case. The covariance matrix is recon-
structed as the Toeplitz matrix (38) which removes the
coherency. The results for source one are shown in Fig. 10.
The proposed estimator remains similar performance with
the DSPE.

As we can see from the results in this section, the
estimators [25], [26] based on the point source assumption
cannot work well to estimate distributed chirp sources, while
the proposed algorithm has the similar performance to the
DSPE and the CRB.

FIGURE 9. RMSEs for the central angle and the extension width estimates
versus sensor numbers.

FIGURE 10. RMSEs for the central angle and the extension width
estimates versus SNRs in the case of coherent and inseparable sources.

3) LOCATION PARAMETERS ESTIMATION FOR
MULTIPLE SOURCES
Finally, we demonstrate the resolution performance of the
proposed algorithm versus different source number. In this
experiment, all sources have the same initial frequencies,
and three different chirp rate intervals are tested. The
SNR is 0dB. The RMSE of the estimated central angle
using the proposed algorithm is shown in Fig. 11. The pro-
posed algorithm contains filter and separation process which
reduces the interference caused by noise and other interfer-
ence signals. However, the finite duration chirp signal in
its Energy-concentrated domain is not a simple Dirac delta
function but a sinc function. The separation performance
and the rotation angle determination of Energy-concentrated
domain will be seriously affected as the growth of source
number because of the interference of superposed signal
energy. A larger chirp rate interval can decrease this bidirec-
tional interference effectively, since it provides a longer dis-
tance between two supports in the fractional Fourier domain.
Therefore, the good resolution performance of the proposed
estimator can be maintained if the frequency parameter
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FIGURE 11. RMSEs for the central angle versus different source numbers.

interval of each source is large enough and the source number
is not too many.

VI. CONCLUSION
In this paper, we considered the problem of the parametric
localization of multiple coherently distributed linear chirp
sources. A novel low-complexity MUSIC-type estimator
of source parameters and the corresponding CRB in the
dechirped domain were proposed. By using the properties
of chirp signals in the fractional Fourier domain, the fre-
quency parameters can be acquired firstly. After that, a two-
step 1D MUSIC method was applied to estimate the spatial
parameters of sources. Numerical results demonstrated that
the proposed method provided an acceptable spatial reso-
lution performance for distributed linear chirp source with
significantly decreased complexity for small extension width.

APPENDIX
A. THE STATISTICAL PROPERTY OF RANDOM SIGNAL IN
THE FRACTIONAL FOURIER DOMAIN
In this section, we demonstrate that the statistical property of
signals will not be affected after applying the FrFT with any
rotation angle.

Firstly, three significant properties of the FrFT used in our
demonstration are as follow:

(Fp)−1 = (Fp)H , (A1)

(Fp)−1 = F−p, (A2)

Fp1Fp2 = Fp1+p2 , (A3)

and we assume that

E
{
s(ti)sH (tj)

}
= Pij, (A4)

E
{
s(ti)sT (tj)

}
= Qij (for allti and tj). (A5)

When the FrFT with the rotation angle α performed on the
signal s(t), the equation (A4) in the fraction Fourier domain

can be written as

E
{
Fα [s(ti)]

(
Fα

[
s(tj)

])H}
= E

[∫ T/2

−T/2

√
1− j cotαejπ

(
t21 cotα−2tiu cscα+u

2 cotα
)
s (ti) dti

×

∫ T/2

−T/2

√
1+j cotαejπ

(
−t22 cotα+2tju cscα−u

2 cotα
)
sH
(
tj
)
dtj

]
= E

[√
1+ cot2 α

∫ T/2

−T/2
dti

×

∫ T/2

−T/2
e
jπ
(
t2i −t

2
j

)
cotα

e−j2π(ti−tj)u cscαs (ti) sH
(
tj
)
dtj

]
(A6)

Then, we assume that ti − tj = τ , such that

E
{
Fα [s(ti)]

(
Fα

[
s(tj)

])H}
=

√
1+ cot2 α

∫ T/2−tj

−T/2−tj
dτ

×

∫ T/2

−T/2
ejπ(2tj+τ)τ cotαe−j2πτu cscαE

[
s(tj + τ )sH (tj)

]
dtj

= Pij
√
1+ cot2 α

∫ T/2−tj

−T/2−tj
dτ

×

∫ T/2

−T/2
ejπ(2tj+τ)τ cotαe−j2πτu cscαdtj

= PijFα (1)F−α (1)

= Pij (A7)

Similarly, we can easily get that

E
{
Fα [s(ti)]

(
Fα

[
s(tj)

])T}
= Qij. (A8)

As a result, the 2-order statistical properties of signals are
not affected by the FrFT.

B. THE STEERING VECTOR FACTORIZING
In the dechirped domain, the steering vector on the kth sensor
for the ith signal is

bk =
∫
ϑ∈2

Ak (αd , ϑ)`i(ϑ,ψ i) dϑ. (B1)

Since2 depends on the extension width1i that is small in
most scenarios, we assume that ϑ − θi = ϑ̄ and the value of
ϑ̄ is small. (B.1) can be reconstructed by the above term as

bk =
∫
ϑ̄∈2̄

Ak (αd , θi + ϑ̄)`i(θi + ϑ̄,ψ i) d ϑ̄ . (B2)

Considering ϑ̄ is a small number, the term sin(θi + ϑ̄)
can be approximated by using the first-order Taylor Series
expansion, that is

sin(θi + ϑ̄) ∼= sin (θi)+ ϑ̄ cos
(
ϑ̄
)
. (B3)

Then, the term Ak (αd , θi+ ϑ̄) in (B2) can be approximated
as (B4), shown at the top of the next page.
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Ak (αd , θi + ϑ̄)

= e
jπ
{[
(k−1)d sin(θi+ϑ̄)/c

]2 sinαd cosαd−2f0 cos2 αd [(k−1)d sin(θi+ϑ̄)/c]}
∼= ejπ

[
((k−1)d sin(θi)/c)2 sinαd cosαd−2f0 cos2 αd ((k−1)d sin(θi)/c)

]
×ejπ

[
(k−1)2d2

(
2ϑ̄ sin(θi) cos(ϑ̄)+ϑ̄2 cos2(ϑ̄)

)
sinαd cosαd/c−2f0 cos2 αd((k−1)d ϑ̄ cos(ϑ̄)/c)

]
(B4)

Inserting (B4) into (B2), we have

bk = Ak (αd , θi)Gk (ψ i), (B5)

and

b(αd ,ψ i) = A(αd , θi)�G(ψ i), (B6)

where

Gk (ψ i)

=

∫
ϑ̄∈2̄

ejπ
[
(k−1)2d2

(
2ϑ̄ sin(θi) cos(ϑ̄)+ϑ̄2 cos2(ϑ̄)

)
sinαd cosαd/c

]
× ejπ

[
−2f0 cos2 αd((k−1)d ϑ̄ cos(ϑ̄)/c)

]
× `i(θi + ϑ̄,ψ i)d ϑ̄

(B7)

G(ψ i) = [1,G2(ψ i), · · · ,Gr (ψ i)]
T . (B8)
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