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ABSTRACT Change point detection is essential to understand the time-evolving structure of dynamic
networks. Recent research shows that a latent semantic indexing (LSI)-based algorithm effectively detects the
change points of a dynamic network. The LSI-based method involves a singular value decomposition (SVD)
on the data matrix. In a dynamic scenario, recomputing the SVD of a large matrix each time new data
arrives is prohibitively expensive and impractical. A more efficient approach is to incrementally update the
decomposition. However, in the classical incremental SVD (incSVD) algorithm, the information of the newly
added columns is not fully considered in updating the right singular space, resulting in an approximation
error which cannot be ignored. This paper proposes an enhanced incSVD (EincSVD) algorithm, in which the
right singular matrix is calculated in an alternative way. An adaptive EincSVD (AEincSVD) algorithm is also
proposed to further reduce the computational complexity. Theoretical analysis proves that the approximation
error of the EincSVD is smaller than that of the incSVD. Simulation results demonstrate that the EincSVD
and the AEincSVD perform much better than the incSVD on change point detection, and the performance
of the EincSVD is comparable to the batch SVD algorithm.

INDEX TERMS Change point detection, dynamic networks, incremental algorithm, singular value
decomposition.

I. INTRODUCTION
Most real networks, including social networks, sensor net-
works, World Wide Web, and biological networks, etc.,
exhibit structural changes over time. These dynamic networks
are always characterized as graph streams, where nodes
represent individual objects, and edges represent relation-
ships or interactions among these objects. The changes in
the network are expressed by dynamic relationships among
the nodes. Change point detection is an inherent problem
in dynamic networks, where one needs to discover the
unknown structures in the network, and detect their anoma-
lous changes. As change points always correspond to anoma-
lies in networks, detecting the change points is very helpful
to understand the anomalous behaviours or faults in dynamic
networks [1]–[4]. For example, in the public safety case,
change point detection may assist to identify terrorist activi-
ties at an early stage [5]. In addition, the detection of change
points is the first step to summarize the network activity with

a fewer number of static graphs [6], which can be used to
reduce the amount of data for representing a highly dynamic
network.

Many statistical measures have been proposed to detect the
change points of dynamic networks. Authors in [6] define an
average distance between consecutive graph snapshots based
on nodes’ connectivity. A change point is declared when this
distance exceeds some threshold. In [7], the authors consider
an anomaly score based on the eigen decomposition of the
adjacency matrix. Then a statistical test based on random-
ized power martingale is used to detect the change points.
In [8], scan statistics, which capture the history of a node’s
neighborhood, are introduced to detect the change points.
The work in [9] describes a parameter free method based
on information theoretic principles to find the community
structure and change points. A family of distances which
can be tuned to quantify structural changes of dynamic net-
works was proposed in [10] and [11]. Although the above
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detection methods are able to detect the changes of com-
munity structures, metrics and algorithms in [6], [7], [10],
and [11] are designed for undirected networks, and algo-
rithms in [8] and [9] are designed for unweighted networks.
In dynamic social networks, a statistical infinite feature cas-
cade approach to the anomaly detection problem is proposed
in [12]. Yet, as the authors state, the paper merely stud-
ies directed networks. The work in [13] considers dynamic
weighted directed graphs. The detection algorithm compares
a simple similarity measure to a predefined threshold. How-
ever, as shown in [13], the performance is severely influ-
enced by the choice of the threshold. In [14], a novel latent
semantic indexing (LSI)-based approach is proposed, which
is able to detect the change points in directed/undirected
and weighted/unweighted dynamic networks. The LSI-based
algorithm involves a singular value decomposition (SVD)
of the edge-segment matrix. It is shown that the algo-
rithm clearly identifies latent changes of the community
structure and outperforms the detection method proposed
in [13].

Despite of its good performance in detecting the change
points, computing the SVD of a very large dataset is pro-
hibitively expensive. Especially, in a dynamic scenario,
the dataset is frequently updated with new columns or rows.
Recomputing the batch SVD1 of the matrix is impracti-
cal. In this case, incremental methods which compute the
decomposition by successively updating the previous results
would be preferred. In [15], folding-in is proposed as a com-
putationally inexpensive approach for updating the SVD.
It uses an existing SVD to represent the new information.
However, the results produced by folding-in may deteriorate
after only a small number of updates, because the new data
has no effect on the decomposition of the original matrix.
A more reliable approach, which is referred as incremental
SVD (incSVD) in this work, is to incrementally update the
partial SVD [16]. In this approach, the partial SVD of the
updated matrix is obtained by modifying the decomposition
of the original matrix. Compared with folding-in, the incSVD
method is more accurate but more complex. As a trade-off of
folding-in and incSVD, folding-up is proposed in [17]. The
folding-up method switches from the process of folding-in to
incSVD before the accuracy of the decomposition degrades
significantly.

A. RELATED WORK AND MAIN CONTRIBUTION
As will be discussed in Section II-D, in incSVD, the orthogo-
nal component of the added columns, which is perpendicular
to the dominant component of previous columns, is not fully
utilized in updating the right singular space. This leads to an
inaccurate decomposition of the updated matrix. The result-
ing approximation error is more serious when the column
space spanned by the new columns changes significantly
from previous ones, which indicates an obvious change point.

1Here, batch SVD refers to the standard SVDwhich calculates the decom-
position from scratch with all the data.

In addition, the error will accumulate in the updating process.
To overcome this problem, an enhanced incSVD (EincSVD)
algorithm is proposed in this work. In EincSVD, the right
singular matrix is updated alternatively. More information on
the newly added columns is captured in the right singular
space. It is proved that the approximation error of EincSVD
is smaller than that of incSVD. To reduce the complexity
of EincSVD, an adaptive EincSVD (AEincSVD) algorithm,
which combines incSVD and EincSVD, is also proposed.
The advantages of EincSVD and AEincSVD over incSVD
in detecting change points are verified through simulation
results.

The main contributions of this work are summarized as
follows,
• We propose an EincSVD algorithm, in which the right
singular matrix is calculated in an alternative way. It is
proved that the approximation error of EincSVD is
smaller than that of incSVD.

• An AEincSVD algorithm is proposed as an adaptive
combination of incSVD and EincSVD. The computa-
tion complexity of AEincSVD is lower than that of
EincSVD. Meanwhile, AEincSVD can provide much
better performance than incSVD in terms of approxima-
tion error and in detecting the change points of dynamic
networks.

• Simulations on change point detection in dynamic net-
works are conducted. The effectiveness and efficiency
of the proposed algorithms are verified via numerical
experiments.

B. PAPER ORGANIZATION
The remainder of this paper is organized as follows. Related
work and the motivation of this work are provided in
Section II. In Section III, the EincSVD algorithm is proposed
and the approximation error of EincSVD is proved to be
smaller than that of incSVD. In addition, the AEincSVD
algorithm is also proposed. In Section IV, the complexity
of the related incremental SVD algorithms is analyzed and
compared. In Section V, simulation results are provided.
Finally, the conclusion goes in Section VI.

C. NOTATIONS
In the sequel, vectors are denoted by boldface lower-case
letters, and matrices by boldface upper-case letters. For a
matrixA, letAT denote the transpose ofA. Let ran(A) denote
the range (or column space) ofA. Vector ai is the i-th column
of A. Let vec(A) denote the vector of columns of A stacked
one under the other. Let ||A||F denote the Frobenius norm of
A and ‖ai‖2 be the l2 norm of ai. The best rank-k approxi-
mation of A is denoted by Ak , while Ac

k = A − Ak is the
complement of Ak . By an abuse of notation, SA,k denotes the
diagonal matrix with only the largest k singular values of A;
UA,k and VA,k denote the left and right singular matrices
with the corresponding k dominant singular vectors, respec-
tively. Symbol σk (A) denotes the k-th largest singular value
of A.
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II. PRELIMINARIES AND MOTIVATION
In this section, the LSI-based change point detection
method [14] and the incSVD algorithm [16] are reviewed.
Moreover, the motivation of proposing the EincSVD algo-
rithm is also discussed.

A. LATENT SEMANTIC INDEXING (LSI)
LSI [18] is an important algorithm in the area of information
retrieval. In LSI, the ij-th entry of the term-document matrix
A corresponds to the term frequency of the i-th term in the
j-th document. Terms are characterized by their appearance
in the documents and documents are characterized by the
terms that they contain. By performing a rank-k SVD on
the term-document matrix, the dimensionality of the infor-
mation retrieval problem is reduced. Terms and documents
are represented by the row vectors of UA,k and VA,k in the
latent space, respectively. The term-term, term-document,
and document-document similarities are readily to compute.
LSI has the potential to overcome the synonym and polysemy
problems observed in traditional models. Another advantage
of LSI is that relevant documents can be retrieved even when
they do not match any query terms.

B. LSI-BASED CHANGE POINT DETECTION IN
DYNAMIC NETWORKS
A dynamic network can be represented as a sequence of
random graphs G = {G(1),G(2), · · · ,G(T )

}, T < ∞. Each
snapshot G(t)

= (V (t),E (t)) is a static graph with vertex set
V (t), edge set E (t) and adjacency matrix A(t)

= [A(t)i,j ], where

A(t)i,j represents weight of the edge from vertex i to j. Without
loss of generality, it is assumed that the vertex set V (t) is the
same for all graph snapshots.

To track how the structure of the graphsG(t), t ≥ 1, evolves
over time, the consecutive timestamps are grouped into seg-
ments. Then a graph segment is defined as a set of con-
secutive graphs G(s)

= {G(ts),G(ts+1), · · · ,G(ts+1−1)}, where
ts < ts+1 [9]. For the s-th graph segment G(s), we define
an adjacency matrix As, whose (i, j)-th element is [As]i,j =∑ts+1−1

t=ts A(t)i,j .
Let e(s) = vec(As). That is, e(s) is a vector containing the

weights of all the edges in the s-th graph segment G(s). For
undirected graphs,As is a symmetric matrix. In this case, only
the upper (or equivalently, the lower) triangular part of the
adjacency matrix is needed to represent As.
Then, the edge-segment matrix can be defined as E =

[e(1), e(2), · · · , e(Ts)], where Ts is the number of graph seg-
ments. For the purpose of a fair comparison between different
graph segments, it is assumed that each segment is of equal
length. The length can be chosen appropriately according to
the size of data sets and the requirement of applications [3].

Similar to the term-document matrix in LSI, the (i, j)-th
element Ei,j of the above edge-segment matrix E can be
viewed as the frequency that the i-th edge appears in
the j-th graph segment [18]. As in LSI, by performing an
SVD on E, and projecting the decomposition into a lower

dimensional latent space, the dissimilarity between two graph
segments can be evaluated by the cosine distance between
their low-dimensional representations. Explicitly, suppose
the SVD of E is

E = UESEVT
E.

From the Eckhart-Young theorem [19], it is known that
the rank-k SVD provides the best rank-k approximation of
the matrix in the Frobenius norm sense. Mathematically,
the rank-k approximation of E is expressed as

Ek = UE,kSE,kVT
E,k .

According to LSI [18], the graph segments are now rep-
resented by the column vectors of SE,kVT

E,k . The relation
between two consecutive graph segments can be character-
ized by the cosine distance between their corresponding k-
dimensional representations,

dcos(i, i+ 1) = 1−
qTi qi+1

‖qi‖2‖qi+1‖2
, (1)

where qi is the i-th column of SE,kVT
E,k .

Intuitively, if the community structure of the dynamic net-
work does not change much over time, consecutive graph
segments will have similar descriptions and a small cosine
distance. Whenever a graph segment changes severely com-
pared to previous ones, the cosine distance is usually large.
Based on the cosine distance between the consecutive graph
segments, change points are detected by comparing the dis-
tance to an empirical threshold.

C. THE INCSVD ALGORITHM
In a dynamic scenario, new data arrives sequentially. In this
case, rather than recomputing the decomposition from scratch
each time the data matrix is updated, an incremental SVD
algorithm would be preferred.
Let E ∈ Rm×n be the original edge-segment matrix. The

SVD of E is E = UESEVT
E. Let Ek = UE,kSE,kVT

E,k be the
best rank-k approximation of E. Assume that there are p new
columns D ∈ Rm×p to be appended to E, yielding a matrix
B = [E,D]. The goal is to calculate the rank-k SVD of B
through updating methods.
Let D̃ = (I−UE,kUT

E,k )D. The columns of D̃ are orthogonal
to the subspace spanned by columns of UE,k . In general,
rank(Ek ) = k and ran(UE,k ) = ran(Ek ). Therefore, D̃ is
the component of D orthogonal to the column space of Ek .
As a consequence, D̃ is referred to be the orthogonal compo-
nent of D. The thin QR-decomposition of D̃ is expressed as
D̃ = QR, where Q ∈ Rm×p and R ∈ Rp×p.
Define B̂ = [Ek ,D], which can be expressed as,

B̂ =
[
UE,k Q

]
M
[
VT
E,k 0
0 I,

]
where M =

[
SE,k UT

E,kD
0 R

]
and I is the identity matrix of

appropriate size. Denote the SVD of M as M = UMSMVT
M.
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Consequently, the rank-k SVD of B̂ is given by
B̂k = UB̂,kSB̂,kV

T
B̂,k

[16], where

UB̂,k =
[
UE,k Q

]
UM,k , SB̂,k = SM,k ,

VB̂,k =

[
VE,k 0
0 I

]
VM,k . (2)

D. MOTIVATION
Notice that UB̂,k and VB̂,k are the exact dominant singular

matrices of B̂. In [20], it is shown that if

(Ec
k )

TD = 0

and σk (B̂) > σk+1(B), (3)

then B̂k = Bk . That is, the best rank-k approximation of B̂ is
exactly that ofB. In this case, there is no loss in approximating
E by Ek in the updating procedure. The first condition in (3)
indicates that, for B̂k = Bk to occur, the new columns in
D should be orthogonal to the discarded component Ec

k . For
example, if the columns of D lie in the column space of Ek ,
one has (Ec

k )
TD = 0. A class of matrices which satisfies (3)

is the low-rank-plus-shift matrices [16]. Matrices with this
structure can be represented as BTB = C + α2I, where C
is positive semidefinite with rank(C) = k .
However, since the new columns in D may lie in arbi-

trary subspaces of Rm, conditions (3) cannot be satisfied in
most circumstances. Especially, when a change point occurs,
the column space of D may change severely from that of Ek .
In this case, the above updating procedure will lead to an
inaccurate matrix decomposition. As a consequence, UB̂,k
and VB̂,k are only approximations of the dominant singular
matrices of B.
Generally, suppose D̃ has full column rank. Then the

orthonormal columns of Q span the column space of D̃.
Therefore, in this work, we say that Q contains the column
information of the orthogonal component D̃. In equation (2),
it is shown that Q is utilized in calculating UB̂,k . But in the
calculation of VB̂,k , this information is not utilized.
However, in some applications, it is important to capture

the column information of D̃ in the right singular space.
For example, in LSI, each document is represented by the
corresponding length-k vector in the right singular matrix
VB̂,k [18]. However, when the column space of the added
columns D changes significantly from ran(Ek ), the major
component of D is contained in D̃. In this case, due to the
loss of the column information of D̃ inVB̂,k , the newly added
documents (columns) may not be reasonably characterized in
the updated right singular space. Consequently, one apparent
source of the inaccuracy in the updating of VB̂,k is that it
captures less information of the orthogonal component D̃.
Worse still, the resulting error will accumulate over the SVD
updating iterations. This will be verified by simulation results
in Section V-B.

Based on incSVD, this work proposes an EincSVD algo-
rithm. In EincSVD, more information of the orthogonal com-
ponent D̃ is utilized in updating the right singular space. It will

be shown that the approximation error of EincSVD is smaller
than that of incSVD. Furthermore, EincSVD performs much
better than incSVD in detecting the change points of dynamic
networks.

III. PROPOSED ALGORITHMS
In this section, the proposed EincSVD algorithm is provided.
Moveover, theoretical analysis on the approximation error
demonstrates that EincSVD is a more accurate decomposi-
tion than incSVD. To reduce the computational complexity,
an AEincSVD algorithm is proposed as an adaptive combi-
nation of EincSVD and incSVD.

A. ENHANCED INCREMENTAL SVD (EINCSVD)
In order to overcome the above mentioned problem,
an enhanced version of incSVD is proposed. EincSVD differs
from incSVD only in the calculation of the right singular
matrix. In EincSVD, the modified right singular matrix is
computed as

V′
B̂,k
= BTUB̂,kS

′
−1
B,k , (4)

where S
′
−1
B,k is a diagonal matrix used to normalize the

columns of BTUB̂,k .
Consider the range of V′

B̂,k
,

ran(V′
B̂,k

)

= ran(BTUB̂,k )

= ran
([

ET

DT

] [
UE,k Q

]
UM,k

)
= ran

([
ETUE,kSE,k ETUE,kUT

E,kD+ ETD̃
DTUE,kSE,k DTUE,kUT

E,kD+ DTD̃

]
VM,k

)
.

(5)

The third equation uses the fact that UM,k = MkVM,k
S−1M,k =MVM,kS−1M,k .
Recall that the right singular matrix VB̂,k in incSVD can

be expressed as,

VB̂,k = B̂T
kUB̂,kS

−1
B̂,k
. (6)

Using ET
kUE,k = ETUE,k , B̂T

kUB̂,k = B̂TUB̂,k and ET
k D̃ = 0,

one has

ran(VB̂,k )

= ran(B̂T
kUB̂,k )

= ran

([
ETUE,kSE,k ETUE,kUT

E,kD
DTUE,kSE,k DTUE,kUT

E,kD+ DTD̃

]
VM,k

)
.

(7)

Comparing (5) and (7), one observes that there is an addi-
tional ETD̃ in the upper right submatrix in (5). Therefore,
EincSVD is different from incSVD in that more information
of D̃ is utilized in calculating the right singular space.
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When the graph stream is updated with a new graph seg-
ment being added, the SVD of the new edge-segment matrix
can be obtained through incremental SVD algorithms. Analo-
gous to LSI [18], the graph segments and edges are character-
ized by the row vectors in the right and left singular matrices,
respectively. The interpretation of the proposed EincSVD
algorithm (4) is that, each graph segment is represented as a
combination of its constituent edge vectors, weighted by the
real edge-segment matrix B rather than B̂k in (6). Intuitively,
UB̂,k and V′

B̂,k
will be a more accurate decomposition of B.

This will be verified in Theorem 1.
Define B̂′k = UB̂,kSB̂,kV

′T
B̂,k

, and one has the following
theorem.
Theorem 1: Compared with B̂k , B̂′k is a better approxima-

tion to the original matrix B in the Frobenius norm. That is,
||B− B̂′k ||

2
F ≤ ||B− B̂k ||2F.

Proof: To prove Theorem 1 is equivalent to prove

tr
(
(B− B̂′k )

T(B− B̂′k )
)
≤ tr

(
(B− B̂k )T(B− B̂k )

)
, (8)

where tr(·) denotes the trace of a matrix.
Equation (8) is equivalent to

−2tr(BTB̂′k )+ tr(B̂
′T
k B̂
′
k ) ≤ −2tr(B

TB̂k )+ tr(B̂T
k B̂k ). (9)

Notice that

tr(B̂
′T
k B̂
′
k ) = tr(V′

B̂,k
SB̂,kU

T
B̂,k

UB̂,kSB̂,kV
′T
B̂,k

)

= tr(S2
B̂,k

), (10)

tr(B̂T
k B̂k ) = tr(VB̂,kSB̂,kU

T
B̂,k

UB̂,kSB̂,kV
T
B̂,k

)

= tr(S2
B̂,k

). (11)

Substituting (10) and (11) into (9), one has tr(BTB̂′k ) ≥
tr(BTB̂k ), which can be written as

tr(BTUB̂,kSB̂,kV
′T
B̂,k

) ≥ tr(BTUB̂,kSB̂,kV
T
B̂,k

). (12)

Equation (12) can be further expressed as,

tr(BTUB̂,kSB̂,kS
′
−1
B,kU

T
B̂,k

B) ≥ tr(BTUB̂,kSB̂,kS
−1
B̂,k

UT
B̂,k

B̂k ).

(13)

Define X = BTUB̂,kSB̂,k , Y
∗
= BTUB̂,kS

′
−1
B,k and Z =

B̂T
kUB̂,kS

−1
B̂,k

. Equation (13) can be rewritten as

tr(XY∗T) ≥ tr(XZT),

or equivalently,

tr(XTY∗) ≥ tr(XTZ). (14)

Let FX denote the set of matrices, which are of the same
size asX and have normalized columns. Apparently,Y∗,Z ∈
FX, and y∗i = xi/|xi|.
In the following, it will be proved that tr(XTY∗) ≥ tr(XTY)

holds for all Y ∈ FX.

Consider the optimization problem

maximize
Y

tr(XTY)

subject to Y ∈ FX.

The object function can be written as tr(XTY) =∑k
i=1 x

T
i yi. From Cauchy-Schwarz inequality [21], it is

known that for each item max
|yi|=1

xTi yi, the optimal point is y∗i =

xi/|xi|. As a consequence, tr(XTY∗) ≥ tr(XTY) satisfies for
all matrix Y ∈ FX.
This completes the proof.
Theorem 1 shows that through an alternative way to cal-

culate the right singular matrix, EincSVD provides a better
decomposition of the updated matrix.

B. ADAPTIVE EINCSVD (AEINCSVD)
As proposed in (4), the EincSVD algorithm involves a matrix
multiplication with matrix B. In general, EincSVD is more
complex than the less accurate alternative incSVD. In this
subsection, AEincSVD is proposed as an adaptive combina-
tion of incSVD and EincSVD to reduce the complexity.

According to the discussions in Section II-D, if the column
space ran(D) does not change much from ran(UE,k ), one has
D̃ ≈ 0. In this case, the loss of the column information of
D̃ in VB̂,k is negligible. The approximation error of incSVD
is more obvious when ran(D) changes significantly from
ran(UE,k ) = ran(Ek ). Therefore, in order to reduce the updat-
ing complexity, the deviation of ran(D) from ran(UE,k ) can be
monitored to determine when it is necessary to switch from
incSVD to EincSVD. In the updating procedure, EincSVD is
invoked only when necessary.

To this end, one can monitor the cosine similarities si,j
between the added columns di (1 ≤ i ≤ p) and the columns
of UE,k = [u1,u2, · · · ,uk ],

si,j =
dTi uj
|di||uj|

=
dTi
|di|

uj, 1 ≤ i ≤ p, 1 ≤ j ≤ k.

The deviation of di from ran(UE,k ) is characterized
by di [22], where

di = 1−
k∑
j=1

s2i,j.

The cosine similarity si,j is the projection of unit vector
dTi /|di| onto unit vector uj. Since UE,k forms an orthonormal
basis in Euclidean space, the squares of these projections can
at most sum to one. Therefore, it is easy to verify that the
range of di is [0, 1]. If vector di lies in the column space
of UE,k , then one has di = 0. At the other extreme, one
has di = 1 if di is orthogonal to each column in UE,k .
Define d = maxi{di} to denote the deviation of ran(D) from
ran(UE,k ). In the AEincSVDAlgorithm, EincSVD is invoked
when d is larger than some empirical threshold.
AEincSVD offers an improvement in complexity when

compared with EincSVD or recomputing the batch SVD.
The complexity of AEincSVD is only slightly higher than
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that of incSVD. At the same time, as will be shown in
Section V, AEincSVD can provide much better performance
than incSVD in terms of approximation error and in detecting
the change points of dynamic networks.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS
In this section, the computational cost of incSVD [16],
the proposed EincSVD, and the batch SVD is compared.
It will be shown that EincSVD is more efficient than the batch
SVD algorithm.

For the complexity of incSVD, calculating D̃ requires
O(mkp) operations. The complexity of performing a QR
decomposition on D̃ is O(mp2). The SVD of matrix
M costs O

(
(k + p)3

)
. At last, computing UB̂,k and

VB̂,k requires complexity O (mk(k + p)) and O(nk2),
respectively.

EincSVD differs from incSVD only in calculating the right
singular matrix. It is generally more complex than the less
accurate incSVD algorithm. Equation (4) involves a matrix
multiplication with complexity O(mnk). On the other hand,
BTUB̂,k can be expressed as,

BTUB̂,k =

[
ETUE,k ETQ
DTUE,k DTQ

]
Uk . (15)

If ETUE,k is already calculated in the previous iteration,
the complexity of computing (15) is O(mnp). There-
fore, computing V′

B̂,k
in the proposed algorithm requires

O (mn min{k, p}) operations. Notice that most of the compu-
tational cost of the proposed algorithm is spent in the matrix
multiplication of (4). If only one column is added in each step,
the complexity is reduced to O(mn). In the case that B is a
binary matrix or B is sparse, the computational cost can be
tremendously reduced.

The standard procedures for computing the batch SVD
have a computational complexity of O(n2 m) (with
m ≤ n) [19]. For the rank-k SVD, Lanczos method [23]
is often used. The Lanczos method consists of a bidiago-
nalization step, a step of SVD on the bidiagonal matrix,
and a Ritz transformation step. The most expensive step
is the first one, which requires iterations of matrix-vector
multiplications with matrix B and the complexity is at least
O(mnk).

Focus on the most expensive steps in the proposed
EincSVD algorithm and Lanczos method. The matrix mul-
tiplication (4) in EincSVD requires at most m(n + p)k
scalar multiplications. However, although the bidiagonaliza-
tion in Lanczos method can be computed with a complexity
on the order of at least O(mnk), a substantial number of
matrix-vector multiplications is required until the algorithm
converges. The cost of bidiagonalization is in fact Km(n +
p)k with K � 1. Therefore, although the proposed incre-
mental algorithm EincSVD is more complex than incSVD,
it is still much more efficient than computing the SVD from
scratch. This can also be demonstrated by comparisons of
computational time in Section V-D.

V. PERFORMANCE EVALUATION
In this section, we present performance evaluations of the
proposed algorithms. Firstly, a synthetic dataset demonstrat-
ing a dynamic network is introduced. Then comparisons
of different algorithms in terms of approximation error,
in detecting change points and in computational complexity
are sequentially provided.

A. SYNTHETIC DATASET
In the simulation, the performance of the proposed algorithms
is evaluated with a synthetic network model similar to [13],
which is an extended dynamic stochastic block model [24].
A graph stream including 80 random graphs are generated.
In each graph snapshot, a total of 64 nodes is partitioned
into 4 equal-size communities of 16 nodes. Three synthetic
change points separate the stream into 4 fragments: G(1) ∼
G(20), G(21) ∼ G(40), G(41) ∼ G(60) and G(61) ∼ G(80). The
community structure is shown in Table 1.

Suppose each node has on average 6 edges within the
community and 2 edges to members of other commu-
nities. The weight of an edge is drawn uniformly from
1 to 10 for intra-community edges, while from 1 to 6 for
inter-community edges.

In the graph stream, each graph snapshot comes in one
after the other. A graph segment is assumed to consist of one
snapshot. As a start point, it is assumed that one has a rank-
k batch SVD of the edge-segment matrix E at t0 = 10. Then
one column is added toE at each step. Incremental algorithms
incSVD and EincSVD are applied iteratively to update the
SVD of E. In the following, it is assumed that k = 3 unless
specified otherwise.

B. APPROXIMATION ERROR OF INCREMENTAL
ALGORITHMS
The relative error of the best rank-k approximation Ek is
defined as,

eopt,k =
||E− Ek ||2F
||E||2F

. (16)

In the following, the subscript k will be omitted when it is
clear from the context. Relative errors einc, eEinc, and eAEinc
can be defined similarly if incSVD, EincSVD andAEincSVD
are used in updating the SVD.

The difference between the relative errors of incremental
SVD algorithms and that of the best rank-k approximation
is depicted in Fig. 1. Theorem 1 is verified by the result
since the difference between EincSVD and the best rank-k
approximation is always smaller than that of incSVD. Notice
that after the change points at t = 20 and t = 40, there are
obvious increases in the approximation error for incremental
algorithms. The performance of the proposed EincSVD is
much better than that of incSVD. Fig. 1 shows that EincSVD
gradually reduces the difference for some extent. But the
difference between incSVD and the best approximation tends
to diverge.
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TABLE 1. The community structure of the dynamic graphs.

FIGURE 1. Difference between relative errors of different SVD algorithms.

FIGURE 2. Deviation d of each graph snapshot from previous ones.

In Section III-B, AEincSVD is proposed as a combination
of incSVD and EincSVD. In the updating procedure, incSVD
is performed if the direction of the new columns does not
change much from previous columns. When the derivation of
newly added columns from existing ones exceeds a threshold,
the algorithm switches to EincSVD to recover the column
information of D̃.

The deviation d of each column from previous ones is plot-
ted in Fig. 2. The curve shows three overshoots at the change
points, indicating that the direction of newly added columns
deviates severely from existing ones. According to Fig. 2,
it is assumed that incSVD is switched to EincSVD if d >

0.86 in the AEincSVD algorithm. Therefore, the complexity

of AEincSVD is much lower than that of EincSVD. The
difference between the relative error of AEincSVD and that
of the best rank-k approximation is also depicted in Fig. 1.
As shown in Fig. 1, the relative error of AEincSVD is close
to that of EincSVD and much smaller than that of incSVD.

C. INCREMENTAL SVD ALGORITHMS FOR CHANGE
POINT DETECTION
In this subsection, the performance of the proposed algo-
rithms in detecting change points is evaluated.

Fig. 3 and Fig. 4 depict the cosine distance between consec-
utive graph segments at time t = 60 and t = 61, respectively.
In the interval of t = 1 ∼ 60, there are two change points
at t = 20 and t = 40, which are successfully detected by
the proposed EincSVD algorithm (see Fig. 3(b)). However,
Fig. 3(a) shows that incSVD does not clearly identify the two
change points. The advantage of EincSVD over incSVD is
obviously shown.

FIGURE 3. Change point detection results at t = 60 of (a) incSVD;
(b) EincSVD.

An additional change point occurs between t = 60 and t =
61. As illustrated in Fig. 4, the two incremental algorithms
clearly identify the third change point at time t = 61. Com-
parison between Fig. 3 and Fig. 4 indicates that by updating
the SVD through incremental algorithms, the changes of the
dynamic network can be detected in real time, rather than
waiting to collect all the graph data. In addition, the updating
method avoids recomputing the SVD from scratch when new
graphs are added to the data collection.

In the following, the algorithms will be compared in more
detail. Unless specified otherwise, the detection results at
t = 80 are considered.
The results of change point detection at t = 80 of

rank-k batch SVD, incSVD, EincSVD, and AEincSVD are
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FIGURE 4. Change point detection results at t = 61 of (a) incSVD;
(b) EincSVD.

illustrated in Fig. 5. It is shown that the three change points
are clearly and correctly identified by the rank-k batch SVD,
the proposed EincSVD and AEincSVD algorithms. However,
similar to Fig. 3(a) and Fig. 4(a), Fig. 5(b) shows that the
incSVD algorithm only detects a real change point at t = 60
and returns lots of false alarms. This indicates that incSVD
is not appropriate for the use of change point detection.
According to (1), the detection is mainly based on the right
singular space. Through an alternative approach to calculate
the right singular matrix, the proposed algorithms perform
much better than incSVD in detecting the change points.

FIGURE 5. Change point detection results at t = 80 of (a) Batch SVD;
(b) incSVD; (c) EincSVD; (d) AEincSVD.

To proceed, the precision-recall performance of different
algorithms is examined. The simulation consists of 100 ran-
dom realizations of the above described dynamic network.

FIGURE 6. Precision-recall curves of different algorithms.

Fig. 6 depicts the precision-recall curves of the change point
detection results at time t = 80. Precision is calculated as
the ratio of correctly detected change points relative to the
total number of points detected, and recall as the ratio of
correctly detected change points relative to the total number
of change points. As illustrated in Fig. 6, the precision of the
rank-k batch SVD remains perfect at 100% for all levels of
recall in our simulation. This demonstrates that the LSI-based
approach can effectively detect changes of the community
structure in dynamic networks. The performance of EincSVD
is extremely close the batch SVD. It is shown that 98% of
the change points are identified by EincSVD with 100%
precision. However, the incSVD performs much worse. With
incSVD, less than 5% of the change points are detected with
full precision. The precision level drops rapidly to below
0.1 for high recall values. As analyzed in Section II-D, this
is mainly due to the loss of the colulmn information of D̃ in
the approximated right singular space, and the accumulation
of this error in the iterative updating procedure. Following the
results in Section V-B, the threshold of deviation measure in
the AEincSVD algorithm is set to be 0.86. As a combination
of incSVD and EincSVD, the complexity of AEincSVD is
slightly higher than that of incSVD, and it provides excellent
detection performance comparable to EincSVD (see Fig. 6).

D. COMPARISON OF COMPUTATIONAL COMPLEXITY
In the following, the computational complexity of different
SVD algorithms is compared. The complexity is tested on the
MED dataset [25]. The MED matrix consists of 5831 rows
and 1033 columns with 52003 nonzero elements. For the
computation time of the rank-k batch SVD, the minimum
among the running times of the thin SVD, the Lanc-
zos SVD [26] and the partial SVD (by calling the Matlab
built-in function svds) is returned. For incSVD and EincSVD,
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FIGURE 7. Computational complexity of different algorithms.

the results are presented for different k and numbers of added
columns p. For example, with p = 100, the computation time
corresponds to updating the rank-k SVD from E ∈ R5831×933

to B = [E,D] ∈ R5831×1033 by using incSVD or EincSVD.
As illustrated in Fig. 7, the complexity of incremental

SVD algorithms increases with k and p. The computation
time of the batch algorithm increases only with k since it
is irrelevant to p. It is shown that although the proposed
EincSVD ismore complex than incSVD, it requiresmuch less
complexity than computing the batch SVD from scratch.With
k = 100 and various p, EincSVD is more efficient than the
batch SVD by more than one order of magnitude. When p is
small, for example, if only one column is added at each time,
the improvement of EincSVD over batch SVD in complexity
is especially obvious. These results validate the efficiency of
using incremental algorithms in updating the SVD of large
matrices.

VI. CONCLUSIONS
In order to dynamically detect the change points of net-
work structures, an enhanced incremental SVD algorithm
EincSVD is proposed in this work. In the EincSVD algo-
rithm, more information of the added columns is utilized
in updating the right singular space. It is proved that the
approximation error of EincSVD is always smaller than that
of the traditional incSVD algorithm. Although EincSVD
requires more computational cost than incSVD, it is still
much more efficient than recomputing the batch SVD from
scratch. To further reduce the complexity, another AEincSVD
algorithm is proposed as an adaptive combination of incSVD
and EincSVD. Simulations on detecting the change points
in dynamic networks are conducted. It is shown that the
proposed incremental algorithms are effective in detect-
ing the changes of the community structure. In addition,

the performance of EincSVD is very close to that of the
batch SVD approach. Both EincSVD and AEincSVD per-
form much better than the incSVD algorithm.
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