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ABSTRACT Customers often suffer from the variability of data access time in (edge) cloud storage service,
caused by network congestion, load dynamics, and so on. One efficient solution to guarantee a reliable
latency-sensitive service (e.g., for industrial Internet of Things application) is to issue requests with multiple
download/upload sessions which access the required data (replicas) stored in one or more servers, and use
the earliest response from those sessions. In order to minimize the total storage costs, how to optimally
allocate data in a minimum number of servers without violating latency guarantees remains to be a crucial
issue for the cloud provider to deal with. In this paper, we study the latency-sensitive data allocation
problem, the latency-sensitive data reallocation problem and the latency-sensitive workload consolidation
problem for cloud storage. We model the data access time as a given distribution whose cumulative density
function is known, and prove that these three problems are NP-hard. To solve them, we propose an exact
integer nonlinear program (INLP) and a Tabu Search-based heuristic. The simulation results reveal that the
INLP can always achieve the best performance in terms of lower number of used nodes and higher storage
and throughput utilization, but this comes at the expense of much higher running time. The Tabu Search-
based heuristic, on the other hand, can obtain close-to-optimal performance, but in a much lower running
time.

INDEX TERMS Cloud Storage, data allocation, latency, workload consolidation.

I. INTRODUCTION
Cloud storage (e.g., Amazon S3, Windows Azure, Google
Cloud Storage) is emerging as a business solution for remote
data storage due to its features in ubiquitous network access,
low maintenance, elasticity and scalability. The current cloud
storage systems have successfully provided data storing and
accessing services to both enterprises and individual users.
For example, Netflix, one of the most popular Internet video-
streaming providers, has put all its content on Amazon
S3 storage [1]. Another example is the cloud storage tool such
as Dropbox or Google drive, which can enable individuals
to store their data in the cloud and access it anywhere over
the Internet. It is reported that the number of the registered
users of dropbox has raised to 400 million by 2015, with

daily 1.2 billion uploaded files [2]. It can be expected that
more and more enterprises and individuals will transfer their
data workloads to the cloud in the future due to the increasing
capital expenditures for maintaining private infrastructures.

In current cloud storage systems, the data access
time or latency is usually uncertain [3] because of network
congestion, load dynamics, disk I/O interference, mainte-
nance activity, etc. [4], [5]. For example, for a 32 Mb data file
inAmazon S3, wemeasure the data GET (download) and data
PUT (upload) latencies among 1000 requests. Fig. 1 shows
that the data access time is random and dynamic for both GET
and PUT operations. This uncertainty also exists in mobile
edge computing or Internet of Things (IoT) network because
of wireless transmitting channel attenuation, radio access
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FIGURE 1. Latency for 32 Mb data file among 1000 requests in
Amazon S3: (a) GET latency (b) PUT latency. (a) GET latency.
(b) PUT latency.

FIGURE 2. Cumulative Density Function (CDF) of accessing 32 Mb data
file in Amazon S3 with 3 replicas (redundant) issuing and no replicas
(single) issuing. (a) CDF of GET latency. (b) CDF of PUT latency.

control [6], etc. As a result, the uncertainty of data access
time deteriorates the Quality of Service (QoS) to customers
and affects the end user’s experience, which may reduce
the number of customers and hence the profit of the cloud
providers [7], [8]. Therefore, how to guarantee a reliable
latency-sensitive service remains to be a crucial issue for the
cloud provider to tackle.

According to [5], [9], and [10] , to deal with the latency
uncertainty so as to guarantee a reliable latency-sensitive
storage service, one way is to concurrently issue each request
with multiple sessions, and use the earliest response from
those sessions. The redundant sessions can be accommodated
by one or more replicas on different servers, which mainly
depends on server’s I/O rate as we will explain later. For
example, we conduct experiments on Amazon S3 to con-
currently use three replicas of a 32 Mb data file to issue
1000 sequential requests. Fig. 2 shows that this approach can
efficiently decrease latency, compared to the approach via
no replica provisioning (single issuing) as shown in Fig. 1,
although this comes at the cost of the increased network
resource (e.g., bandwidth).

Another approach is to increase throughput by increasing
the I/O rate so as to reduce latency. For example, different
on-demand I/O parameters can be selected by customers in
Google Cloud Storage service [11]. Accordingly, a higher
I/O rate provisioning may decrease latency but also charges
higher since it consumes more computing resources. Never-
theless, we need to guarantee that all the demands’ volume on
one certain server should not exceed its maximum workload,
otherwise the overloaded server will become a bottleneck
and thereby rendering response time significantly higher. For
example, in [12], for a data block with a size of 32 Mb
in a VM on Windows Azure, it is measured that the total

data access time over 1000 requests is more than 10 seconds
at 50 reads/sec and 20 writes/sec, compared to 20 reads/sec
and 10 writes/sec, respectively.

Similar to [13] and [14], we formulate the uncertain
GET/PUT latency for each storage server as a given distri-
bution based on its historical data. In this paper, we use data
access to refer to data GET or PUT operation, and make no
difference between latency, data access time and response
time. In [15], we studied how to allocate data file(s) on a
minimum number of servers to concurrently issue the data
requests, such that for each request, the probability of access-
ing a data file within its requested response time is no less
than a specified value. In this paper, we extend our work [15]
to further study (i) latency-sensitive data reallocation problem
and (ii) latency-sensitive workload consolidation problem.
The addressed problems in this paper can be applied to
and benefit industrial fields and applications. For instance,
the cloud provider can implement the proposed algorithm
in a ‘‘software-defined’’ manner (similar to the concept of
software-defined storage in [16]). In this way, based on data
accessing requests, the requested data files will be placed
on the minimized number of servers (saving electricity bills
for the enterprise) without violating the requested delay con-
straint. Moreover, our work can also be applied to Internet-
of-Things (IoT) related scenarios. For instance, the requested
data can also refer to the Industrial Internet-of-Things (IIoT)
data, which are collected from e.g., wireless sensors. Since
the IIoT service has a severe latency requirement [17], [18],
our proposed algorithms can guide how to place the requested
data in a minimum number of edge and/or cloud servers
without violating the delay constraints. Our key contributions
are as follows:
• We present a latency-sensitive cloud storage service
model.

• We propose the Latency-Sensitive Data Allocation
(LSDA) problem and its two variants, and analyze their
complexities.

• We propose both exact and heuristic solutions to solve
all the proposed problems.

• We evaluate the proposed algorithms in terms of perfor-
mance via simulations.

The remainder of this paper is organized as follows:
Section II presents the related work. In Section III, we present
the proposed latency-sensitive cloud storage service model.
In Section IV, we propose the Latency-Sensitive Data Allo-
cation (LSDA) problem, the Latency-Sensitive Data Reallo-
cation (LSDR) problem, and the Latency-SensitiveWorkload
Consolidation (LSWC) problem. We also analyze their com-
plexities in this section. In Section V, we propose an exact
Integer Nonlinear Program (INLP) and a Tabu Search-based
heuristic to solve each of these 3 problems. Section VI pro-
vides our simulation results, and we conclude in Section VII.

II. RELATED WORK
A survey about data replication techniques in the cloud envi-
ronment can be found in [19]. Mansouri et al. [20] propose
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a survey that covers key aspects of cloud-based data storage
issues, e.g., data model, data consistency, data management,
etc. Wu et al. [21] conduct a comprehensive measurement
study of the performance (e.g., delay, failure rates, etc.) from
five popular cloud storage service providers based on their
provided Web APIs.

Lin et al. [22] study the QoS-aware Data Replication
(QADR) problem, which is to find an optimal data replica
placement strategy, such that both the total replication cost
of all data blocks and the total number of QoS-violated
(i.e., data access time) data replicas are minimized.
Lin et al. [22] first formulate the QADR problem as an ILP.
Subsequently, they transform the QADR problem to the Min-
Cost Max-Flow problem and solve it in polynomial time.
However, Lin et al. [22] assume that the data access time
is a deterministic value, which is not the case in reality as
we mentioned earlier in Fig. 1. Bai et al. [23] deal with
how to place data replicas in cloud storage systems without
violating latency constraint. It is assumed that the expected
service time of a data file d on a server s is calculated
as |d |·RsNTCs

, where Rs denotes the number of concurrent requests
on s for d , and NTCs represents the network transmis-
sion capability of server s. Subsequently, they propose a
graph-based heuristic to allocate data replicas with data
access latency guarantee. However, using expected value
to model ‘‘uncertain’’ or ‘‘probabilistic’’ data access time
cannot accurately or comprehensively reflect the ‘‘uncer-
tainty’’ of data access time in realistic cloud storage systems.
Kumar et al. [24] present an exact and a greedy algorithm
to solve the latency-aware data placement problem in dis-
tributed Cloud-based Internet of Things (IoT) Networks,
in which the IoT gateways and distributed clouds are con-
nected. Boukhelef et al. [25] propose two cost based object
placement strategies (a genetic-based heuristic and an ad-hoc
heuristic based on incremental optimization) for hybrid stor-
age systems, which consists of the solid state drives and hard
disk drives. However, the data access time is not considered
in [24] and [25]. Liu et al. [26] target how to allocate data
items on different datacenters with minimized prices such
that the requested data access time is obeyed. They propose a
genetic algorithm to solve this problem.

In order to minimize the latency variation,
Arumugam et al. [27] present a dynamic I/O redirection and
caching mechanism called VirtCache. Shekhar et al. [28]
propose an online data-driven model which applies Gaussian
Processes-based machine learning techniques to predict the
performance of the system under different levels of interfer-
ence. They subsequently utilize the proposed model to scale
resources such that performance interference is minimized
and latency requirements of applications are satisfied.

Liu et al. [14] tackle the deadline-guaranteed data real-
location problem in cloud storage. They first formulate this
problem as an INLP formulation, with the objective of min-
imizing both the number of used servers and traffic load
caused by replication through a network. It is assumed that
each server is modeled as an M/M/1 queuing system to serve

TABLE 1. Notations.

requests. They calculate upperbound λgsn of service rate for
server sk to guarantee that each request from tenant tk has a
latency no longer than ddk and its realizing probability is no
less than Ptk . Subsequently, they propose the Parallel Dead-
lineGuarantee (PDG) scheme, which dynamically reallocates
data from an overloaded server to an underloaded server to
guarantee that, for each tenant tk , at most εtk percentage of all
requests have service latency larger than a given deadline dtk .
Hu et al. [13] address how to determine the smallest number
of servers under a two interactive job classes model. Suppose
that the job arrival process is Poisson with rate λ and service
time distribution is exponential with mean 1

µ
. They propose

a Probability dependent priority (PDP) scheduling policy to
maximize the probability of meeting a given response time
goal. However, in reality, the arrival rate of traffic requests
such as bursty traffic does not always follow the Poisson
process and the service times are also not always exponen-
tial [29]. The solutions of [13] and [14] become invalid for
bursty traffic and non-exponential service time.

III. THE LATENCY-SENSITIVE CLOUD STORAGE SERVICE
MODEL
We assume that a data chunk is the basic data storing unit,
whose size is represented by b and hence, it cannot be further
partitioned. In this context, the size of any data file d can
be represented by b · |d |, where |d | represents the number
of chunks that constitute it. For simplicity, we assume that
a whole/entire data file can only be placed on one server,
i.e., it cannot be separated and stored on separate servers. The
notations used in this paper are summarized in Table 1.

We consider a heterogeneous cloud storage system consist-
ing of a set of |S| servers S. For a particular server s ∈ S in
the cloud storage system, L(s) denotes its maximum afford-
able I/O rates or maximum workload without degrading the
performance and C(s) represents its storage limit. Suppose
there are g possible data access I/O rates, a1, a2, . . . , ag.
We assume that the data access (GET or PUT) time follows a
given distribution [13], [14]. Therefore, its Cumulative Den-
sity Function (CDF) f bs (x) represents the probability that one
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data chunk can be retrieved at most x time units.1 Under the
server’s maximum workload, the CDF is dependent on server
load in some sense, but it does not change much, e.g., when
the server load increases, the latency may be a bit higher.
To deal with this issue, we only adopt the ‘‘conservative’’
CDF for when the server’s workload is close to its maximum
workload, i.e., the ‘‘upper bound’’ of the latency distribution
function. By doing this, (1) the latency constraint can be
maximally guaranteed, although this comes at the expense
of a bit higher server usage than optimum. (2) The problem
complexity is largely reduced, otherwise we need latency
probability functions corresponding to different degrees of
server loads. We use the term ‘‘session’’ to represent one
GET/PUT thread or process to serve a data request from
a data file located/placed in one server to the user’s end.
In this context, multiple sessions can be established to issue
one or more data requests on one server (say s), but the total
consumed I/O rates should not exceed L(s).
Without loss of generality, for a data request r(d,T , δ, α),

T indicates the requested data access time for data file d
with size |d |, δ implies the requested probability of retriev-
ing d within time T , and α represents the requested I/O rate.
Suppose r has been issued by k servers (replicas), where Ns
sessions are established on server s. Let us use f ds (x) to denote
the probability of accessing d within time x on server s.
Consequently, the total probability of accessing d within T
is:

1−
k∏
s=1

(
1− f ds (T )

)Ns
(1)

where (1 − f ds (T ))
Ns denotes the unsuccessful probability

of accessing D within time T on server s for Ns sessions,
and

∏k
s=1

(
(1− f ds (T ))

Ns
)
is the unsuccessful probability of

accessingDwithin time T on k servers for all their respective
sessions. As a result, 1−

∏k
s=1

(
(1− f ds (T ))

Ns
)
indicates the

probability that at least one session on one server can accessD
within time T .
Let us take an example to better illustrate it, where we

do not differentiate GET and PUT for simplicity. Suppose
there are two servers A and B, and their Probability Density
Functions (PDF) of accessing a data file d (|d | = 20 Gb)
within time x (in ms) follow:

f dA (x) =


0.9 : x ≤ 10
0.05 : 10 < x ≤ 15,
0.05 : x > 15

f dB (x) =


0.75 : x ≤ 6
0.2 : 6<x≤10
0.05 : x > 10

We first assume that server A has a storage of 100 Gb and
an available server load of 60Mb/s, and server B has a storage
of 120 Gb and an available server load of 70 Mb/s. Suppose
there arrives a request r to access data file d under I/O rate
α = 50 Mb/s with T = 10 ms, and δ = 0.995. According
to their PDFs, placing d on server A alone can guarantee

1It is worthwhile to mention that f bs (x) does not mean the failure proba-
bility and we also do not consider the server failure probability in this paper.

FIGURE 3. Placing data files on two servers using one session on each
server to satisfy accessing data latency probability.

FIGURE 4. Placing data file on single server using multiple sessions to
satisfy accessing data latency probability. (a) Establishing 3 sessions
on A. (b) Establishing 2 sessions on B.

a probability 0.9 with latency no less than 10 ms, and
placing d on server B solely can promise probability 0.95
with latency at most 10 ms. Since only one session can
be established on each of servers (either 60 < 2 · 50 =
100 or 70 < 2 · 50 = 100), placing D on either server
A orB cannot satisfy the requested δ. On the other hand, Fig. 3
shows that simultaneously placing d on both A and B leads to
a probability of 1−(1−0.9) ·(1−0.95) = 0.995 with latency
at most 10 ms, which can meet the requested probability.

Next, let us consider the scenario when each server can
simultaneously support multiple sessions for data access.
Since CDF f bs (x) is calculated based on server s’ historical
latency performance, it already includes the scenario when
multiple sessions may access the shared resources such as
buffers on the same server. Therefore each session on server
A can statically guarantee a probability of accessing data file
within time 10 at least 0.9. In this sense, Eq. (1) still holds for
the case when multiple sessions to be established on the same
server. For example, we assume that both server A and B have
an available server load of 180 Mb/s. In this sense, to satisfy
the requested latency probability, we do not need to place d
on two servers. Instead, we can issue the request with only
one copy stored in any server but more sessions are needed
to be established. For instance, on server A, three sessions are
needed to simultaneously accommodate the request (shown
in Fig. 4(a)), since the probabilities of using two sessions and
three sessions are 1 − (1 − 0.9)2 = 0.99 < δ and 1 − (1 −
0.9)3 > δ. Similarly, on server B, two sessions are needed
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(shown in Fig. 4(b)) since 1−(1−0.95)2 = 0.9975 > δ. From
the above example we see that in order to satisfy the latency
probability constraint, more sessions are sometimes needed to
establish from different data copies/locations (Fig. 3) or the
same data location (Fig. 4). Clearly, the latter case can save
more storage space.

IV. PROBLEMS DEFINITION AND ANALYSIS
A. LATENCY-SENSITIVE DATA ALLOCATION
Definition 1: Assuming that a cloud storage system con-

sists of a set of |S| servers S. For a server s ∈ S,
L(s) denotes its maximum affordable workload or I/O rates
without degrading the performance, and C(s) represents its
storage limit. Given a set of R data requests R, the Latency-
Sensitive Data Allocation (LSDA) problem for cloud storage
is to place all the requested data d ∈ 1 in a minimum number
of servers without violating each server’s storage and maxi-
mum workload, such that for each request r(d,T , δ, α) ∈ R,
the probability of accessing data d within time T is at least δ.
In the LSDA problem, we mention that if a data file dm for

one request r1 is placed on a server s, when another request r2
which stills requests dm is issued by the server s, there is no
need to place dm on server s again. In this sense, issuing r1
and r2 by server s only consumes one time of storage |dm|
but consumes the sum of their requested I/O rates. Moreover,
for a certain data GET/PUT request, perhaps more than one
redundant sessions are established to issue it, the client will
use the first finished response from those redundant sessions
and then drop the other sessions. This will of course consume
more network resource such as bandwidth, but the specified
probability of accessing data within requested latency can be
guaranteed.
Theorem 1: The LSDA problem is NP-hard.
Proof 1: Let us first introduce the Bin-Packing problem:

Given n items with sizes e1, e2, . . . , en, and a set of m bins
with capacity c1, c2, . . . , cm, the Bin-Packing problem is to
pack all the items into minimized number of bins without
violating the bin capacity size. The Bin-Packing problem is
proved NP-hard [30].

Assume for each request r(d,T , δ, α) ∈ R, placing d
on any single server (say s) is enough to guarantee that
f ds (T ) ≥ δ. We also assume that each server has enough
storage capacity but each server has limited I/O rate. That
is to say, the data access time constraint and server’s storage
constraint are not considered. Now, if we map/regard the item
with its size in the bin packing problem to the request with
its requested I/O rate in the LSDA problem, respectively,
the LSDA problem is equivalent to the bin-packing problem
and hence is NP-hard.

B. LATENCY-SENSITIVE DATA REALLOCATION
In realistic cloud storage applications, the data accessing fre-
quency often varies with time. For instance, for a certain data
file (e.g., on-line video resource), we call it ‘‘hot data’’ when
it is accessed much more frequently than the average, and call
it ‘‘cold data’’ when it is seldom visited. Consequently, when

a data file becomes ‘‘hot’’, the current servers that store it
will be overloaded, leading to a performance degradation in
terms of latency. To solve it, we need to place more of this
data file’ replicas on some other (empty) servers.When a data
becomes ‘‘cold’’, we could also reduce/remove some of its
replicas in order to savemore capacity. Formally, the Latency-
Sensitive Data Reallocation (LSDR) problem can be defined
as follows:
Definition 2: Given is a set of servers Se ⊆ S which store

some existing data file 1e. For a set of |R| data requests R,
the Latency-Sensitive Data Reallocation (LSDR) problem
for cloud storage is to place all the requested data 1 in a
minimum number of servers Sx ⊆ S, such that:
1) ∃s ∈ S\Se if s ∈ Sx , then Se ⊂ Sx
2) For each request r(d,T , δ, α) ∈ R, the probability of

accessing data d within time T is at least δ.
Constraint 1 indicates that we need to firstly allocate

already used servers in Se to issue requests by placing data
files in order to better utilize storage resource. Only when all
the servers in Se cannot be placed bymore data files, we could
place requested data on servers in S\Se. More specifically,
suppose servers Se are in use to store some data files 1e
for the current being. In next time period, when a set of
requests R arrive, we need to try to use those |Se| servers to
accommodate it. If those |Se| servers are not enough, we need
to add a minimum number of servers in S\Se together with Se
to issue all the requests. If |Se| servers are over-provisioned
for R, we could use a portion of the servers in Se to issue
it, and ‘‘turn off’’ the rest of servers in Se in order to save
storage costs or reduce the extra maintaining expenditures
(e.g., energy). Considering that duplicating data may be time
consuming especially for large data files, the data reallocation
should be done before the requests in the next period arrive,
otherwise it will incur more waiting time for customers and
hence prolong the data access latency. We suggest to apply
traffic prediction such asMarkov chain [31], Auto Regressive
(AR) process [32], etc. However, we omit the details about
those traffic predictionmechanisms since it is out of the scope
of this paper. We refer readers for more details about traffic
prediction to [33]. Instead, we assume in the LSDR problem
that,R is known or given.
Theorem 2: The LSDR problem is NP-hard.
Proof 2: The LSDR problem is equivalent to the LSDA

problem when Se = ∅. Since the LSDA problem is
NP-hard according to Theorem 1, the LSDR problem is there-
fore NP-hard.

C. LATENCY-SENSITIVE WORKLOAD CONSOLIDATION
The aforementioned LSDA and LSDR problem only deal
with how to place data files in a cost-efficient manner. For
instance, in the LSDR problem, two servers are assumed
to have sufficient free capacity and each of them stores
only one different data file. When these two data files are
accessed by requests, we have to use these two servers to
accommodate the requests, even though these two servers
are not well utilized. In order to further improve servers’

76102 VOLUME 6, 2018



S. Yang et al.: LSDA and Workload Consolidation for Cloud Storage

utilization in terms of capacity, we could also move some
data file(s) from a not well-utilized server to a well-
utilized server, and switch off the empty server. This is
known as workload consolidation. Formally, the Latency-
Sensitive Workload Consolidation problem can be defined as
follows:
Definition 3: Given is a set of servers S, and each server

s ∈ S stores some data files to accommodate |Rs| requests.
The Latency-Sensitive Workload Consolidation (LSWC)
problem is to use a minimum number of a subset of servers in
S to provision all the requests without violating their latency
requirement such that the total data moving cost is no greater
than MC .
Here the data moving cost MC for a data file is calculated

as the data size multiplied by a coefficient γ . For simplicity,
we set γ = 1 in the LSWC problem.
Theorem 3: The LSWC problem is NP-hard.
Proof 3: The LSWC problem is equivalent to the LSDA

problem when MC = +∞. Since the LSDA problem is
NP-hard according to Theorem 1, the LSWC problem is
therefore NP-hard.

V. EXACT AND HEURISTIC ALGORITHMS
A. EXACT SOLUTION FOR THE LSDA AND
LSDR PROBLEM
In this subsection, we propose an exact solution to solve both
the LSDA problem and the LSDR problem. Since the LSDA
problem is a special case of the LSDR problem, we propose a
general INLP to solve the LSDR problem, which in turn can
also solve the LSDA problem. We start by some necessary
notations and variables:

INLP notation:
R(T , d, α, δ): The set of requests.
1: The set of the requested data files.
S: The set of servers.
1e: The set of data files already stored in existing

servers Se, where Se ⊆ S.
L(s) and C(s): The maximum workload and storage limit

of server s, respectively, where s ∈ S.
CDFd,αs (x): The CDF for server s for accessing

(GET or PUT operation which depends on the request) data
with size d for I/O rate α.
Ns: Maximum number of sessions that can be established

on server s ∈ S for one request.
A[s][d]: A given boolean array value indicating whether

server s ∈ S has already stored data file d .
INLP variable:
Prs,i: A boolean value indicating whether request r is

accommodated by placing its requested data d on server s
and is served by i-th session.
Y ds : A boolean value indicating whether data d ∈ 1 is

stored in server s ∈ S.
Objective:

min
∑
s∈S

max
d∈D

Y ds (2)

Constraints:
Data request time probability constraint:

1−
∏
s∈S

Ns∏
i=1

(
1− Prs,i · CDF

|d |,α
s (T )

)
≥ δ

∀r(T , d, α, δ) ∈ R (3)

I/O rate constraint:∑
r(T ,d,α,δ)∈R

N∑
i=1

Prs,i · α ≤ L(s) ∀s ∈ S (4)

Determine data allocation on a specific server:

Y sd ′ = max
1≤i≤N ,r∈R

Prs,i ∀d
′
∈ 1, s ∈ S, where r .d = d ′

(5)

Server capacity constraint:∑
d∈1

Y sd · |d | ≤ C(s) ∀s ∈ S (6)

Server allocation constraint:

A[s][d] · Y ds ≥ Y
d
s′ ∀d ∈ 1e, s ∈ Se, s′ ∈ S\Se (7)

Eq. (2) minimizes the number of total used servers. For
instance, we first calculate the maximum value of Y ds for
server s ∈ S, and as long as Y ds = 1 for some d ∈ 1,
it means that server s is in use to store some data d . After that,
we take the sum of maxd∈D Y ds for each server s ∈ S and try
to minimize this value. Eq. (3) ensures that for each request
r(T , d, α, δ) ∈ R, the probability of accessing data d within
time T is at least δ. More specifically, Prs,i · CDF

|d |,α
s (T )

denotes the probability of accessingDwithin time T on server
s by establishing i-th session. In this sense, by taking into
account all Ns possible sessions on each server s ∈ S, Eq. (3)
represents that at least one session on one server s ∈ S has
a probability of accessing D within time T no less than δ.
Eq. (4) ensures that the total consumed I/O rates on each
server s ∈ S do not exceed its maximum workload. Eq. (5)
determines whether a data file d ∈ 1 is placed on server
s ∈ S. Eq. (6) ensures that each server does not violate its
storage limit. Eq. (7) ensures that the server which stores
existing data file should be firstly used to accommodate the
request. More specifically, when the current loaded servers
Se are not sufficient to issue the requests, Eq. (7) ensures to
firstly allocate the servers in Se to accommodate the requests
as many as possible. After that, the INLP in Eqs. (2)-(6)
will assign (minimum) new empty servers to accommodate
the rest of the requests. On the other hand, when the traffic
requests can be issued by less than |Se| servers, Eq. (7)
ensures to allocate some of existing |Se| servers to serve all
the requests and set the variable Y [d][s] to be 0 for the other
servers in Se.
In all, Eqs. (2)-(7) can solve the LSDR problem. Mean-

while, when Se = ∅ and all the entities in A[s][d] are 0
(the input of the LSDA problem), Eqs. (2)-(7) can solve the
LSDA problem as well.
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Algorithm 1 TSDA (S,R,M ,T , µ, γ )
1: Sort the servers in decreasing order according to m(s)
2: Accommodate each request with each server that first

fits in the order. In case servers are not enough, dummy
servers are created with tiny value of m(s).

3: P ← ∅, Li ← ∅, Ls ← ∅, k ← 0 and store this initial
solution into Li.

4: Select the target loaded server st with minimum value of
l
L +

c
C + γ

r
R

5: While time limit T is not reached do
6: fd ← false;
7: A(S) =Search (S,M , st , fd,Li,Ls)
8: If fd == true then
9: k ← 0; In case there exists a server su satisfying
m(su) < m(st ), then use st to host all the requests from su
and empty su if possible.

10: Else if fd == false and k < µ · |A(S)| then
11: k ++;
12: Else Call Diversification(A(S),Li,Ls,P)
13: Determine next loaded server st with minimum l

L +
c
C + γ

r
R

14: return min(P).

B. EXACT SOLUTION FOR THE LSWC PROBLEM
To solve the LSWC problem, we additionally define the
following INLP notations.
H [r][s]: A given/known array indicating whether request

r ∈ R is originally issued by the server s ∈ S.
MC : The data moving cost upperbound.
Migration cost constraint:∑

r∈R,s∈S
(1− H [r][s]) · (

Ns
max
i=1

Prs,i) · r .|d | ≤ MC (8)

Eq. (8) ensures that the total data moving cost is less than
the specified. As a result, Eqs. (2)-(7) together with Eq. (8)
can solve the LSWC problem exactly, where Se = ∅ and all
the entities in A[s][d] are 0.

C. HEURISTIC
In this subsection, we propose a Tabu Search-based heuris-

tic to solve all 3 proposed problems in Section IV. We first
solve the LSDA problem. Tabu search is an advanced local
search algorithm, which is introduced by Glover [34], [35].
The local search algorithm starts with an initial solution,
and improves this solution by moving to a better neighbor
solution iteratively. It will stop if the current solution can-
not be further optimized. Different from local search, Tabu
search allows the solution to deteriorate in the searching
procedure. By keeping track of recent moves in a so-called
Tabu list, cyclic moves in the search space are banned in
order to save running time. Moreover, Tabu Search can be
enhanced by (1) Intensification: to (slightly) modify the cur-
rent neighbor solution to encourage move combinations and
make search region more attractive and (2) Diversification:

Algorithm 2 Search (S,M , st , fd,Li,Ls)
1: counter← 0
2: While counter ≤ M
3: Foreach request r in st
4: Try to issue it with the server(s) which already stores

its required data file, otherwise use first fit server to host
the request. The server allocation should not be in Ls.
Denote A(S) as the result of server allocation for the
requests.

5: If all the requests have been accommodated by current
loaded servers then

6: fd ← true; Return A(S)
7: Else
8: Call Intensification(A(S),Li,Ls, st )
9: counter++
10: return A(S)

Algorithm 3 Intensification (A(S),Li,Ls, st )
1: Sort the loaded servers in A(S) except for st according to

cs
C(s) ·

ls
L(s) in decreasing order.

2: Assign the first η percentage of servers to GroupG1, and
put all the other servers in Group G2.

3: Use one server in G1 to issue the accommodated
request(s) from one server in G2 if possible.

4: Swap accommodated request(s) between two servers in
G1 if possible.

5: Record the Ls with the original data placement in each
server before its change.

Algorithm 4 Diversification (A(S),Li,Ls,P)
1: P← A(S).
2: Remove from solution A(S) the 1

2 servers with smallest
u(s) value, and issue each request from a removed server
with each empty server. The 1 : 1 request to server
allocation should not be in the Tabu list Li.

3: Reset Ls to empty and add the initial solution to Li.

to guide the search toward the unexplored areas of search
space.

Our proposed heuristic, called Tabu Search-based Data
Allocation (TSDA) algorithm, is presented in Algorithm 1.
In Step 1, we first sort the servers based on the following
equation in a decreasing order.

m(s) =
C(s) · L(s)
µ(s)

(9)

where C(s) and L(s) imply the capacity and maximum load
of server s, and µ(s) =

∫
∞

0 (1 − CDF(x))d(x) denotes the
mean value of a given distribution based on its cumulative dis-
tributed function. In this context, a biggerm(s) value indicates
that server s is ‘‘good’’ in terms of having greater capacity
and workload, and ‘‘faster’’ response time. Following that,
in Step 2, each request is accommodated by the first suit-
able server in that order. We store this initial solution in Ti
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in Step 3, and define Ts to be the Tabu list during the searching
procedure. In particular, Ts stores which request cannot be
issued by which server. We also define a queue P to store
the solution that cannot be further optimized during searching
round (local optimal). k is initially equal to 0 and denotes the
times that the current solution is not improved after calling
Search function in Algorithm 2. After that, we first select one
server with the minimum value of the metric in Eq. (10):

u(s) =
cs
C(s)
+

ls
L(s)
+ γ

rs
R

(10)

where cs and ls represent the total consumed capacity and
I/O rates by all the data requests stored on it, rs denotes
the number of requests that are accommodated by it, and
γ is an user specified parameter. Therefore, a bigger u(s)
indicates that this server is well utilized, and a smaller u(s)
value implies that this server is not well utilized. As long
as the time limit T is not reached, Step 5-Step 13 is going
to search a solution with a minimum number of servers to
issue all the requests. In Step 6, fd is initially set to be false
which represents whether the selected server is emptied. The
general idea of Steps 7-13 is to first select a not well-utilized
server st according to Eq. (10), and try to use other current
loaded servers to issue all the requests from st (Algorithm 2
which we will specify later). More specifically, if calling
Algorithm 2 in Step 7 returns a feasible solution, then k is
set to 0 and st can be emptied in Step 9. In case a ‘‘better’’
server st is emptied, st will replace the current loaded server
su which has a smaller metric in terms of Eq. (9) than it if
possible. If st cannot be emptied but k is less than µ · |A(S)|,
where µ is a fractional number and |A(S)| denotes the current
total number of used servers, k is increased by 1 in Step 11.
Otherwise we call Diversification function in Algorithm 4 in
Step 12. The general idea of Diversification function is first
to store the current found solution A(S) in P. Then it empties
half of the (not well-utilized) servers and accommodates each
of those requests from those emptied servers by each empty
server. We then select next server st to be emptied in Step 13.
When the time limit is exceeded, in Step 14, we return a so-far
best solution from P.
Algorithm 2 performs how to empty a selected server,

by using current loaded servers to host all the requests from st .
In Step 1, a variable counter is set to 0 and denotes the max-
imum times that it can call Intensification function. As long
as it is less than M , for each request r which is originally
accommodated by st , Step 4 searches for one (or more) cur-
rent loaded server(s) to issue it. If all the requests originally
issued by st have been accommodated by the other servers,
then we return this solution in Step 6. Otherwise, we call
Intensification function in Algorithm 3 and increase counter
value by 1. In Algorithm 3, if a data file d which is stored
in one server s1 in group G1 or G2 has been accessed by
multiple requests, then we prefer to swap or move its whole
associated requests. Otherwise we only ‘‘swap’’ or ‘‘move’’
single request issued by the servers in different groups. In all,
Fig. 5 depicts an overview of TSDA.

FIGURE 5. An overview of TSDA.

We could slightly modify Algorithm 1 (and keep all
the others same) to solve the LSDR problem. Denote Se as
the set of servers that currently store data files, and Sg as the
set of all the other free servers such that Se ∪ Sg = S. The
(minor) modification is on selecting a target server to empty
in Step 2 and 13. More specifically, in Step 2, for request
r(T , d, α, δ), we need to firstly allocate the server which
already stores d as an initial solution, otherwise we select a
server from Sg. In Step 13, s ∈ Se can be selected as a targeted
server to be emptied only when none of the servers in Sg store
data in the solutionA(S). The reason is that wemust guarantee
that servers in Se should be firstly used to issue the requests.
When they are not sufficient enough, we use other servers to
issue the rest of the requests.

To solve the LSWC problem, we can still use Algorithm 1.
The only difference is that the initial solution stored in Li
on Step 3 in Algorithm 1 is |S| used servers together with
R − |S| dummy servers and each server is accommodating
one request.

VI. SIMULATION-BASED EVALUATION
A. SIMULATION SETUP
We simulate a cloud storage system consisting of 30 servers,
in which the simulation setup is in line with the real cloud
storage latency performance as in [21]. The storage capacity
and maximum workload of each (free) server are assumed
to be 1 TB and 1.26 Gb/s,2 respectively. There are in total
40 data files of 5 types. The size in Gb is (randomly) chosen

2We use a fractional number 0.7 in [12] to multiply the referred value 1.8
in [36], which leads to 1.8 ∗ 0.7 = 1.26 Gb/s=1260 Mb/s.
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FIGURE 6. The number of used servers in the LSDA problem for different number of traffic requests (R): (a) R = 100 (b) R = 200 (c) R = 300.

from one of the intervals: [1, 1], [4, 9], [25, 40], [45, 60],
[95, 110], for each type respectively. By doing this, we want
data sizes are different from each other in order to make the
optimal solution not easy to find. The requested I/O rate is in
the set of {5, 10, 20, 50, 100} in Mb/s. We randomly generate
100, 200 and 300 requests. In order that at most Ns = 5
sessions are enough for accommodating any data request on
any empty server s ∈ S, the simulation parameters are set
like this: for each request r(d,T , δ, α), d and α are randomly
generated. T is chosen among [8, 20], [40, 100], [250, 600],
[500, 900] and [800, 2000] in ms for 5 aforementioned types
of data files, respectively. δ is selected among [50%, 70%],
[70%, 85%], [80%, 90%], [85%, 95%] and [90%, 98%] for
α = 5, 10, 20, 50 and 100 Mb/s, respectively. For sim-
plicity, we assume that the GET latency and PUT latency
of a data file follow a totally identical distribution on the
same sever. We assume three kinds of distributions for data
access time of the server, namely (1) exponential distribution,
(2) geometric distribution and (3) uniform distribution. In the
exponential distribution 1− e−λx , λ is chosen from the inter-
vals [0.01, 0.03], [0.04, 0.06], [0.08, 0.1], [0.12, 0.15] and
[0.2, 0.25] for α = 5, 10, 20, 50 and 100 Mb/s, respectively.
In the uniform distribution x−τ

β−τ
, τ = 0 and β is chosen from

the intervals [20, 25], [16, 20], [12, 16], [11, 14] and [8, 13]
for α = 5, 10, 20, 50 and 100 Mb/s, respectively. In the
geometric distribution 1−(1−p)x , p is selected from the inter-
vals [0.07, 0.09], [0.1, 0.12], [0.12, 0.15], [0.15, 0.18] and
[0.18, 0.2] for α = 5, 10, 20, 50 and 100 Mb/s, respectively.
According to [37], the data access time is increasing approx-
imately linearly with the data size. Therefore, for simplicity,
we assume that if a data file consisting of c data chunks is
stored in server s, it follows that CDFcbs (x) = CDFbs (

x
c ),

where b = 1 Gb in this context. The above simulation
setup is for the LSDA problem. On basis of it, for the LSDR
problem, we randomly choose 7 out of 30 servers to store 5
out of 40 data files. The storage and maximum workload
of these ‘‘opened’’ servers are set to 700 Gb and 700 Mb/s,
respectively.

The simulations are run on a desktop PC with 2.7 GHz and
8 GB memory. We use an Intel(R)Core(TM)i5-4310M CPU
2.70GHz x64-based processor in our simulations. We use
IBM ILOG CPLEX 12.6 to implement the proposed INLP,

but we found it is very time consuming to return a (final) solu-
tion because of its nonlinear constraint in Eq. (3). For exam-
ple, for exponential distribution when R = 300, the INLP
keeps on running for one day and still does not terminate.
In order to let the INLP return the result in a reasonable time,
we set a running time limit of 3 hours for R = 300 requests.
TSDA is implemented by C# and compiled on Visual Studio
2015 (using .NET Framework 4.5). From our simulations
on TSDA for the LSDA problem, we found that it starts to
return a ‘‘reasonable’’ solution at T = 60, 450, 1000 ms
for when R = 100, 200 and 300, respectively, and it ends
by returning a relatively stable solution at T = 100, 500
and 2000, respectively. Therefore, we set the time limit T =
60, 80, 100, 200 ms for R = 100, T = 450, 480, 500, 1000
ms for R = 200, and T = 1000, 1500, 2000, 3000 ms for
R = 300. We also found a similar trend for the LSDR and the
LSWC problem, but for simplicity, we only show the results
of TSDA in the LSDR problem and the LSWC problem for
R = 100, 200, 300 when T = 200, 1000, 3000, respectively.
Moreover, we set M = 30, γ = 10, η = 20 and µ = 0.8.

B. SIMULATION RESULTS FOR THE LSDA PROBLEM
We first evaluate the algorithms in terms of the number of
used servers. From Fig. 6, we see that the INLP and TSDA
for T = 100, 200 have the same performance when R = 100.
Except for that, the INLP always consumes the minimum
number of servers for different amount of requests, which also
validates its correctness. The number of servers consumed by
TSDA decreases when the time limit T increases, and TSDA
can achieve a close-to-optimal performance with the exact
INLP when (T ,R) = {(200, 100), (1000, 200), (3000, 300)}.
In particular, TSDA performs poorly when the time limit T
is not sufficient enough. For example, when T = 450 and
R = 200 for exponential distribution scenario, TSDA uses
more than 30 servers. Since there are in total 30 available
servers to issue requests, the extra servers are dummy servers
according to Alg. 1. For comparison reason, if more than 30
servers are consumed by TSDA, we regard that it consumes
30 servers.

Next, we compare the algorithms with regard to (1) storage
utilization percentage: (total used storage in Gb) divided by
(1000∗ number of used servers in Sg+700∗ number of used

76106 VOLUME 6, 2018



S. Yang et al.: LSDA and Workload Consolidation for Cloud Storage

FIGURE 7. Storage utilization percentage in the LSDA problem for different number of traffic requests (R): (a) R = 100 (b) R = 200 (c) R = 300.

FIGURE 8. Throughput utilization percentage in the LSDA problem for different number of traffic requests (R): (a) R = 100 (b) R = 200 (c) R = 300.

servers in Se), and (2) Throughput utilization percentage:
(total consumed I/O rates in Mb/s) divided by (1260∗ number
of used servers in Sg + 700∗ number of used servers in Se).
Fig. 7 and 8 plot the performance of INLP and TSDA in
terms of these two metrics. As expected, the INLP obtains the
maximum utilization of storage and throughput (or equal uti-
lization with TSDA for T = 100, 200 when R = 100), since
it consumes a minimum number of servers (or equal number
of used servers with TSDA for T = 100, 200 when R = 100)
as shown in Fig. (6). The value achieved by TSDA increases
when T grows. We see that it obtains the same or close
performance with INLP when T = 200, 1000, 3000 for
R = 100, 200, 300, respectively. In all, the exact INLP can
always achieve the best performance, so it can be used when
the computation speed is not a big concern. This is because its
running time will increase exponentially when the problem
size grows. On the other hand, TSDA can be a preferred
choice especially for when data requests arrive in a bursty
manner, since its running time (≤ 3 sec.) is significantly
less than INLP (≥ 1 hour) and it can obtain a close-to-
optimal performance. The running time comparison between
INLP and TSDA (under the maximum time limit) is depicted
in Fig. 9.

C. SIMULATION RESULTS FOR THE LSDR PROBLEM
Fig. 10 illustrates the number of used servers of these
two algorithms for the LSDR problem. Since 7 servers are
assumed to be in use and their available storage and workload
are reduced, the number of used servers in Fig. 10 is larger
than Fig. 6 for the same set of data requests. We see that

FIGURE 9. Running time.

FIGURE 10. Number of used servers for the LSDR problem.

the exact INLP has equal or less server usage than TSDA
for different R. This also verifies its correctness. The
TSDA achieves the same performance with the INLP when
R = 100 and has a slightly higher server consumption
than the INLP when R = 200 and 300, but its running
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TABLE 2. Storage utilization percentage of two algorithms for the LSDR
problem.

TABLE 3. Throughput utilization percentage of two algorithms for the
LSDR problem.

FIGURE 11. Number of used servers for the LSWC problem.

TABLE 4. Storage utilization percentage of two algorithms for the LSWC
problem.

TABLE 5. Throughput utilization percentage of two algorithms for the
LSWC problem.

time (≤ 3 sec.) is much less than the INLP (≥ 1 hour) as
Fig. 9 shows. Tables 2 and 3 show the storage and throughput
utilization percentage. When R = 200 and 300, the INLP has
a higher utilization in terms of both storage and throughput
than TSDA, since it consumes a smaller number of servers
than TSDA. When R = 100, both algorithms have the same
storage and throughput utilization.

D. SIMULATION RESULTS FOR THE LSWC PROBLEM
In terms of the LSWC problem, the total data moving
cost limit MC is set to 2000, 4000 and 6000, respectively.
We assume that 15 servers are in use to accommodate
requests, and the number of traffic requests accommodated

by each server varies in [3, 10]. Fig. 11 presents the number
of used servers after workload consolidation. As expected,
the INLP can always save (switch off) more servers after data
moving than the heuristic. We also see that withMC increas-
ing, more servers can be emptied (and switched off) by work-
load consolidation for both INLP and TSDA. Finally, Tables 4
and 5 show the storage and throughput utilization percentage
for the INLP and TSDA.

VII. CONCLUSION
In this paper, we have studied the Latency-Sensitive Data
Allocation (LSDA) problem, the Latency-Sensitive Data
Reallocation (LSDR) problem and the Latency-Sensitive
Workload Consolidation (LSWC) problem. Under the
assumption that the data access time follows a given distribu-
tion and its CDF is known, we have proved these 3 problems
are all NP-hard. Subsequently, we propose an exact Integer
Nonlinear Program (INLP) and a Tabu Search-based heuristic
to solve them. Simulation results reveal that the exact INLP
can always achieve the best performance in terms of the
number of used servers, storage utilization percentage and
throughput utilization percentage. The Tabu Search-based
heuristic, on the other hand, can achieve a close-to-optimal
value with the INLP, but its running time is much less than
the INLP.
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