IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 22, 2018, accepted November 6, 2018, date of publication November 27, 2018,

date of current version December 31, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2883533

Mining Variable-Method Correlation for

Change Impact Analysis

CHUNLING HU'", BIXIN LI2*“, AND XIAOBING SUN2-3, (Senior Member, IEEE)

! Department of Computer Science and Technology, Hefei University, Hefei 230026, China
2School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
3School of Information Engineering, Yangzhou University, Yangzhou 225009, China

Corresponding author: Bixin Li (bx.li@seu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61806068 and Grant 61672204, in part
by the Visiting Scholar at Home and Aboard Funded Project of Universities of Anhui Province under Grant gxfxZD2016209, in part by the
Key Technologies R&D Program of Anhui Province under Grant 1804a09020058, in part by the Major Program for Scientific and
Technological of Anhui Province under Grant 17030901026, and in part by the Talent Research Foundation Project of Hefei University

under Grant 16-17RC23.

ABSTRACT Software change impact analysis (CIA) is a key technique to identify the potential ripple effects
of the changes to software. Coarse-grained CIA techniques such as file, class and method level techniques
often gain less precise change impacts, which are difficult for practical use. Fine-grained CIA techniques,
such as slicing, can be used to gain more precise change impacts, but need more time and space cost. In this
paper, by combining the features of the coarse-grained technique and the fine-grained technique, a variable-
method (VM) correlation-based CIA technique called VM-CIA is proposed to improve the precision of
static CIA. First, the VM-CIA technique uses the abstract syntax tree (AST) of program to construct a
novel intermediate representation called variable and method triple (VMT), which is used to analyze the
correlation between the variables and methods. Second, the VM-CIA technique proposes the single-change
impact analysis algorithm and multi-change impact analysis algorithm to compute the impact set based on the
VMT representation. In addition, the VM-CIA technique can get a sorted impact set which is more accurate
than the existing CIA techniques. The empirical results show that the VM-CIA technique can greatly improve
the precision (19%) over traditional the CIA techniques, while at the cost of a little recall (5%). Moreover,
the empirical studies also show that the VM-CIA technique predicts a ranked list of potential impact results
according to the distance measure, which can greatly facilitate the practical use.

INDEX TERMS Change impact analysis, variable-method correlation, variable and method triple, impact

propagation, call graph, impact set, abstract syntax tree.

I. INTRODUCTION

Software change impact analysis (CIA) is a process used
to identify the potential ripple effects of the proposed
changes [1]. The source code of software must be changed
ultimately in the process of software maintenance. A change
to a system, however small, can lead to several unintended
effects, which are often not obvious or easy to detect [2].
Therefore, the change impact information is important for
software maintenance activities. For example, it can be used
to evaluate the feasibility of the change report so that we can
select the best decision with minimal change impacts from
all alternative change proposals [3]. In addition, it can also be
used to judge whether the change impacts need secondary-
changes after the changes are implemented to keep consis-
tency [4]. Furthermore, the change impact information is

useful for regression testing because the results of CIA is
helpful for sorting or selecting the test suites [1], [3], [5], [6].

Most of current CIA techniques have a similar process,
i.e., with a set of changed elements in a software system,
called the change set, CIA attempts to determine a possibly
larger set of elements, called the impact set, that requires
attention or maintenance effort due to these changes [3]. The
items in the change set and impact set can be either the
specification of design or requirement, or the source code ele-
ments. At present, the resultant CIA results are often directly
used for the modification task during software maintenance,
so most current CIA techniques are performed on the source
code [3]. The commonly used CIA techniques can be divided
into two categories, static CIA and dynamic CIA techniques.
Static CIA techniques are often performed by analyzing the

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 6, 2018

Personal use is also permitted, but republication/redistribution requires IEEE permission.

77581

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1601-5413
https://orcid.org/0000-0001-9916-4790

IEEE Access

C. Hu et al.: Mining Variable-Method Correlation for CIA

syntax and semantic, or evolutionary dependence of the pro-
gram (or its change history repositories) [7], [8]. The resul-
tant impact set often has many false-positives, with many of
its elements not really impacted [5], [9]. Thus this impact
set they compute is very large and difficult for practical
use [4]. Whereas dynamic CIA techniques consider some
specific inputs, and rely on the analysis of the information
collected during program execution to calculate the impact
set [5], [9], [10]. Their impact set often includes some false-
negatives, i.e., some of the real impacted elements are not
identified [3]. In addition, the cost of dynamic CIA tech-
niques is usually higher than that of static CIA because of the
overhead of expensive dependency analysis during program
execution [11].

The impact set is usually expected to be safe and easy
to compute, so static CIA techniques have advantages in
terms of the above aspects. In addition, most of current static
CIA techniques compute the impact set at method-granularity
level [3]. However, as the programs are always complex,
the method-granularity level impact set has large size and
low accuracy [3], [5], [9], which obstructs its practical use.
At present, among the static method-level CIA techniques,
Breech presented a technique, which is simply called as
Influence-CIA [12], with higher accuracy than traditional
techniques. It uses parameter passing between methods to
propagate the impacts of the change. On the one hand, if a
method a calls method b, a passes parameter to b, and b
returns value to a. Thus a and b will impact mutually. On the
other hand, if method a calls method b and a passes reference
parameter to b, in this case, a and b will impact mutually. This
CIA technique analyzes fine-grained information between
method calls, and has higher precision than transitive closure
on call graph. However, it does not take into account the fine-
grained dependence relationship within the method. Hence,
its precision is also limited.

In this paper, the VM-CIA technique is performed at
method and statement level to take into account variable-
method correlation within method to improve the accuracy
of CIA. More specifically, we combine coarse-grained and
fine-grained techniques to improve precision. Firstly, we use
the abstract syntax tree (AST) of program [13] to construct
a novel intermediate representation structure named variable
and method triple(VMT). Secondly, based on VMT represen-
tation, we propose single-change impact analysis algorithm
Single-CIA to compute single-change impact set, and pro-
pose multiple-change impact analysis algorithm Multi-CIA
to compute impact set. Moreover, VM-CIA technique can
get a sorted impact set which is more accurate than the
existing CIA techniques. Finally, an illustrative example
and empirical study are presented to show the proposed
VM-CIA can greatly improve the precision over traditional
CIA techniques.

The rest of this paper is organized as follows: Section II
presents the intermediate representation needed for the pro-
posed VM-CIA technique. Section III introduces VM-CIA
technique. Section IV presents an illustrative example to

77582

clearly show the process of VM-CIA technique Section V
presents our empirical evaluation of VM-CIA technique.
Section VI explores the related work. Finally, Section VII
discusses the conclusions and future work.

II. INTERMEDIATE REPRESENTATION
Call graph has been widely used as the program intermediate
representation for method-level CIA [3]. As the relation of
method call is needed to analyze the propagation of the
method change, call graph is also used as the intermediate
representation in this paper, which is defined as follows.

Definition I (Call Graph): Call graph CG = (V, E) is com-
posed of a set of vertices and edges. V represents the methods
of programs. E = V x V represents the call relationship.
Specifically if method M; calls method M;, then a directed
edge should be added on the call graph CG.

Figure 1 is a call graph of the example program in the
Appendix.

FIGURE 1. Call graph of the example program.

As call graph is a coarse-grained representation, and can
only represent the call relationship which does not provide
sufficient information to support CIA [2]. The accuracy of
such kind of CIA is not satisfactory. Hence, we need to ana-
lyze fine-grained dependence information in the program to
facilitate CIA. In this paper, we analyze deep into statements
level, and extract their dependence relationship by parsing the
source codes into the VMT set.

For the statements in the program, we mainly consider the
dependence between variables and methods. In the object-
oriented program, variables can be divided into class field,
method parameter, and local variable within a method.
Within a method, variables in different statements have differ-
ent expressions and meanings. To distinguish them, we define
variable var as follows.

var = cName.mName.vName : vIype

This structure defines four attributes of the variable var,
i.e., class name, method name, variable name and variable
type, respectively. So the qualified name of a variable (the first
three attributes of the structure) and variable type uniquely

VOLUME 6, 2018

C. Hu et al.: Mining Variable-Method Correlation for CIA

IEEE Access

identify a variable. If the var is not the local variable of a
method but a class field, the value of mName is null. Similarly,
to uniquely identify a method, we define method as a structure
as follows.

method = cName.mName.parameterList

The structure defines class name, method name, and
parameter list of the method respectively. The method name
and parameter list are the signature of a method. Since
method call is usually binding with class instance with
regards to object-oriented programs, besides the common
variables, the class instance also belongs to the variable
structure. Based on these structure definitions, the variable-
method correlation is defined as follows.

Definition 2 (VariableMethod Correlation): There is a
direct correlation between variable and method when their
relation satisfies the following five forms:

1) Variable definition

Statement var represents the declaration or definition of
a variable, and it does not correlate to other variables or
methods.

2) Variable assignment

Statement varl = var2 represents that the variable
varl correlates to variable var2.

Statement var = f() represents that the variable var
correlates to the method f.

Statement var = obj.f() represents that the variable var
correlates to the method f* and the variable obj.

3) Method invocation

Method call statement obj.f() represents that the variable
obj correlates to the method f.

Statement f (arg) represents that the method f correlates to
the parameter arg.

Statement f() represents that f does not correlate to any
other variables.

4) Method as parameter

Statement f (obj.g(arg)) represents that the method f cor-
relates to the variable obj and method g, and g correlates to
the parameter arg.

5) Method chain invocation

Statement var = f().g().h() represents that the variable
var correlates to method f, g and h.

The forms of variable-method correlations are extracted
from method invocation, variable assignment and parameter
passing statements in the program. And then, a more formal
definition of variable-method correlation, called as variable
and method triple, is defined as follows.

Definition 3 (Variable and Method Triple (VMT)):
VMT = <vary, var,, MS>, where var; and var, represent
the variables in the program. MS is a set of methods having
direct correlation with var; or var,, defined as MS = {m|m
defined as MT}, where MT = <method, var, VS, MS>. For
MT, method represents the identification of MT var represents
the object called by the method, and the set V'S represents the
set of method parameters.

VOLUME 6, 2018

In the above definition, MT defines a method declara-
tion or a method invocation which has direct correlation with
variables, parameters and other method invocations Method
is the identification of method invocation and VS is a vari-
able set directly correlated with method, such as the actual
arguments for a method. MS represents the methods nested
in the parameter list of method or the method invocation
chains. The variables in VMT include class fields, formal
parameters of the method, actual arguments of the method,
and local variables of the method. As stated above, the VMT
is mainly used to represent the definition and assignment of
the variable, parameter passing, and the relation of method
invocation. To further illustrate the VMT clearly, we give six
VMTs of variable-method correlation which have listed in
Definition 2 as follows.

1) varl = var2

VMT = <varl, var2, null >
2)var =f()

VMT = <var, null, MS>MS = {MT},

MT = <f, null, null, null >
3) var = obj.f()

VMT = <var, obj, MS>, MS = {MT},

MT = <f, obj, null, null>
4) obj. f()

VMT = <null, obj, MS>, MS = {MT}.

MT = <f, obj, null, null>
5) f(par, obj.g(arg))

VMT = <null, null, MS>, MS = {MT},

MT = <f,null, VS, MS'>, VS = {par},

MS' = {MT'IMT' = <g, obj, VS', null>VS' = {arg}
6)var = f().h().g()

VMT = <var, null, MS>, MS = {MTI, MT2, MT3},

MTI = <f, null, null, null >,

MT2 = <g, null, null, null >,

MT3 = <h, null, null, null >

If there is only a variable declaration without variable
definition or initialization in the statement of the program,
we define VMT = <var, null, null>, for example, as declara-
tion of a class field. Figure 2 is the VMT example of statement

v = objny.f (arg1args, obja.g(args)).

VMT
| T
varl valrz MS
v obj1

o

method var VS MS

| | | |
f obj1 {arglarg2} {MT}

method var VS MS

.
g obj2 {arg3} null

FIGURE 2. A Example of VMT of statement
v = obj, .f(arg,, arg,, obj, .g(args)).

77583

IEEE Access

C. Hu et al.: Mining Variable-Method Correlation for CIA

With the definition of VMT, we can parse the program
statements into the VMT structure. The parsed program is
defined as follows.

Definition 4 (Program Representation): Program P =
{C1, C3, ...} represents all the classes of program P, and its
class C; = {FieldSet;, MethodSet;} where

FieldSet; = {VMT;;, VM Tp, ...} is a VMT set which
consists of the parsed fields of class C;.

MethodSet; = {Method;, Method;, . ..} is a method set
of class C;.

Method; = {method;, VMT;;, VMTyp, ...} is a VMT set
which consists of the parsed statements related to variable
definition and use within Method;.

These intermediate representations are used to perform
impact analysis.

Ill. CHANGE IMPACT ANALYSIS

Given the change set, CIA is employed to estimate the impact
set of software. In practical modification process, there are
many elements needed to change. VM-CIA technique per-
forms through two steps. First, we consider the single change
impact analysis which computes the impacts of single change
element in the program. Then, we merge all the single impact
sets into the final impact set, which is called multiple change
impact analysis. The VM-CIA technique is performed at
method and statement level, and takes into account the defi-
nition and use of class fields, method parameters and local
variables of method as the change source. The change set
is composed of a set of variables. In order to evaluate the
results of our VM-CIA and compare with other techniques,
we compute the impact set at method level. This situation fits
to single change impact analysis. That is, if a single statement
related to a variable is changed, the methods correlated with
this variable will be impacted. When multiple variables are
changed, we can compute the impact set through merging all
the impact sets of single change into the final impact set.

VM-CIA technique performs CIA after the programs are
parsed into the set of VMTs We redefine the change set and
impact set as follows.

Definition 5 (Change Set, CS): 1t is a set of VMT which
consists of parsed statements related to changed variables,
defined as: CS = {VMT|3var € VMT A VMT € P A
var is changed}.

Variable var changed in program P could be class fields,
method parameters and local variables within a method. The
change type could be addition, deletion or type change of
the variable. As the program has been parsed into the set of
VMTs, the variables in the program can be mapped to their
corresponding VMTs.

With the change set, impact set is computed and its form is
defined as follows.

Definition 6 (Impact Set, 1S): Impact set is defined as a set
of two-tuples in which the first item is the method impacted
by the changes, and the second item is the distance between
the method and the changed element. Here, the distance
corresponds to the distance between two vertices v and v,

77584

on the call graph (CG), i.e., it is defined as the least number
of edges reaching from vy to v, or reaching from v; fo vy.
Hence, the definition of impact set can be denoted as follows.

IS = {<Method, distance>|Method € CG A Method is
obtained by CIAAdistance is the shortest distance between
Method and the methods in which variable is changed}.

Intuitively, the smaller the distance between the element
in the impact set and the element in the change set is,
the bigger the probability of this element will be impacted
by the change [15]. The distance here can be also used to
rank the probability of the elements to be impacted in the
impact set. According to the definition of CS and IS, the input
of VM-CIA is a set of VMTs and the output is a set of
methods. The process of VM-CIA is divided into three steps.
Figure 3 shows the architecture of the proposed VM-CIA
technique.

o Compute the direct impact set of changes
« Perform single change impact analysis
o Perform multiple change impact analysis

Syntax Abstract
Tree

|

i
} Change Set
I
I
I
I
l
I
Source Code ; >
I
I
I
I
I
I
I
I

i [

(]

Direct Impact Set
Computation

VMT Set

Representation Single-Change

Impact Analysis

'

Multiple-Change
Impact Analysis

i

I

I

‘ i
Novel Intermediate |

I

I

I

Impact Set |«

Analyzing Based
on Variable-
Method Correlation

FIGURE 3. The architecture of proposed VM-CIA technique.

A. DIRECT IMPACT SET COMPUTATION
First, we compute the direct impact set (DIS) defined as
follows.

Definition 7 (Direct Impact Set, DIS): DIS =
{<<Method, 0>, VMTSet > |vmt € CS NMethod \/ {vmt €
CSANvmt ¢ Method \Ivmt’ € Method \3Jvar €
vmt’ Avar € vmt Avmt € (CS N FieldSet)} for Yvmt €
VMTSet, vmmt € Method}.

In the above definition, vmt represents an element of VMT,
and VMTSet is the set of VMT. The VMTSet is a subset of VMT
of the Method in terms of DIS. The Method belonging to DIS
needs to satisfy one of the two conditions. /) there exists the
VMT belonging to Method, and the VMT belongs to CS. 2)
there exists the VMT belonging to Method, and it contains
the same variable with VMT which belongs to both FieldSet
and CS. In short, for the Method, either its parameters or local
variables are changed or it uses the changed class fields.

VOLUME 6, 2018

C. Hu et al.: Mining Variable-Method Correlation for CIA

IEEE Access

VMT,
! FicldSet
VMT,, Class
I\
VMT
o Method,
VMT:’P 12
M MethodSet

FIGURE 4. The VMT set of parsed class.

For the VMTSet of DIS, the vmt belonging to it needs to
satisfy one of the two conditions: /) vmt belongs to both
Method and CS. 2) vint’ belongs to Method. At the same time,
there exists the vz belonging to CS, and the vint’ contains the
same variable with vmt.

Figure 4 is an example of VMT set which consists of all
VMTs from a parsed class. VMTy; and VMTy; are the parsed
statements which relate to class fields. VMT,,11 and VMT,,1»
are the parsed statements which relate to the variable and
method correlation in Method. VMT¢, and VMT,,1> contain
the same variable. The CS is proposed to be { VMTy1, VMTy»,
VMT11}. Since VMT,,11 belongs to Method;, and VMTy,
and VMT,,;» contain a same variable, Method; is included
in the DIS and the VMTSet related to Method; in DIS is
{ VMT 11, VMTin12 } .

After the source code is parsed into the set of VMTs,
we can start the impact propagation based on the correlation
between different VMTs containing the same variable. The
explanations of the relationship among the VMTs, variables
and VMTs, methods and VMTs, VMT and VMTSet are given
below.

1) If VMT and VMT contain the same variable, VMT is
correlated with VMT' .

2) If variable var belongs to VMT, var is correlated with
VMT.

3) If there exists VMT belonging to VMTSet, and VMT
contains the same variable with VMT', VMT is corre-
lated with VMT'.

4) If Method and VMT contain the same method,
the Method is correlated with VMT.

B. SINGLE-CHANGE IMPACT ANALYSIS
After computing the direct impact set, we can perform single
change impact analysis which computes the impacts of single
changed element in the program. First, we see how change
impact is propagated on the call graph, and we define the
impact propagation process as follows.

Definition 8 (Impact Propagation Process): On the call
graph, impact propagation process is proceeded in two steps.

1) If method a calls method b and b is impacted by the
change, the impact will propagate from b to a.

2) If method a calls both methods b and c, at the same
time, b is impacted by the change and method c is
correlated with b, the impact will propagate from b to
a and continue to propagate to c.

The process of impact set computation needs seven rou-
tines to get the information of impact propagation, and the
information takes into account the correlations between vari-
ables and methods. For each impacted method, seven subrou-
tines are defined as follows.

1) subroutine 1. getCaller(method) returns a set of meth-
ods which call the method on the call graph.

2) subroutine 2. getCallee(method) returns a set of meth-
ods which are called by the method on the call graph.

3) subroutine 3. getMethod(method) returns a set of meth-
ods with the name of method on the call graph.

4) subroutine 4. getRelVMTSet(Method, VMTSet) returns
the union of VMTSet and a set of VMT which are
correlated with the elements of VMTSet in the Method.
Details of this subroutine is shown in Figure 5(a).

5) subroutine 5. getMethodSet(Method, VMTSet) returns
a set of methods which are correlated with VMT-
Set in Method. Detail of this subroutine is shown in
Figure 5(b).

6) subroutine 6. getMethodVMTSet(Methodl,Method2)
returns a set of VMT which has correlation with
Method2 in Methodl. Detail of this sub-routine is
shown in Figure 5(c).

subroutine 4 getRelVMTSet(Method, VMTSer)

input Method input Method

subroutine 5 getMethodSet

subroutine 6 getMethodVMTSet
input methodl

.

varevmi’ then
5 VMTSet'«<—VMTSet"Uf{vmt}
6 end if
7 end for

(a)

output VMTSet VMTSet method?
1 VMTSet"«—VMTSet cG cG

2 for each vmreMethod do output MethodSet output VMTSet
3 if vimtg VMTSet” A 3 varevmt A 3 vimt’eVMTSet” a| 1 MethodSet«—qg 1 VMTSete—dg

2 for each vimre VMTSet do

3 if vmrMS#g A then

4 Jfthe type of mt isMT

5 for each mrevmt MS A mt.methodeP do

6 MethodSet«—MethodSetUgetMethod(mt. method)
7 endfor
8 endif
9 end for (b)

2 for each vmie Methodl do
3 if 4 methodevmt A methodeMethodZ then
4 VMTSet—VMTSetU{vmt}

5 else if Ivare vmt A vare VMT3et

6 VMTSete—VMTSetU{vmt}
7

8

end if
(c)

end for

FIGURE 5. Three subroutines of the impact propagation process.

VOLUME 6, 2018

77585

IEEE Access

C. Hu et al.: Mining Variable-Method Correlation for CIA

Algorithm 1 Single-CIA

Algorithm 2 addCallerIS (IS, m1, m2, Distance)

Input:
eDIS: an element of Direct Impact Set
CG: call graph

Declare:
calleeSet: a set of methods that are called by a method and
extracted from the impacted VMTs
callerSet: a set of methods that call a method

Use:
addCallerIS(IS, m, eDIS.Method,2): it is used to traverse
the unvisited caller methods on the call graph, and details
are shown in Algorithm 2.
addCalleelS(IS, m,2): it is used to traverse the unvisited
callee methods on the call graph, and details are shown
in Algorithm 3.

Output:
IS: impact set

: VMTSet < getRelVMT Set(eDIS.Method, eDIS.VMTSet)

: calleeSet<getMethodSet(eDIS.Method, VMTSet)

: callerSet<—getCaller(eDIS.Method)

: for each m € callerSet do

IS<—ISU {<m, 1>}

: end for

: for each m € calleeSet do

IS<ISU {<m, 1>}

: end for

10: for each m € callerSet do

11: addCallerIS(IS, m, eDIS.Method, 2)

12: end for

13: for each m € calleeSet do

14: addCalleelS(IS, m, 2)

15: end for

16: return IS

Nel

7) subroutine 7. getVMTSet(Method) returns all the VMTs
of the Method.

For a single changed method, we can compute its impact
set through single-change impact analysis. The algorithm 1 is
used to compute the impact set of the method.

The computation of the impact set is based on the impact
propagate process. It uses the method in the DIS as a starting
point on the call graph and propagates the impacts layer by
layer from two directions, i.e. method calling and method
being called on the call graph. Algorithm 1 is divided into
two parts.

1) Line 3 computes the method set callerSet in which
method calls eDIS. Lines 4-6 merge the methods in the
callerSet into the impact set IS. In lines 10-12, each method
of callerSet is used as the starting point and calls the
addCallerIS procedure (Algorithm 2) to compute the impact
set recursively from two directions.

2) Lines 1-2 compute the method set calleeSet in which
method is called by eDIS and is correlated with eDIS. Lines
7-9 merge the methods in the calleeSet into IS. In lines 13-15,

77586

Input:
IS: impact set
ml: a method
m2: a method
distance: distance between m1 and the changed method
on call graph
Declare:
calleeSet: a set of methods that are called by a method and
extracted from the impacted VMTs
callerSet: a set of methods that call a method
pMethodSet: a set of methods
cMethodSet: a set of methods
1: VMTSet<«—getMethodVMTSet(m1, m2)
2: VMTSet' <—getRelVMTSet(ml, VMTSer)
3: calleeSet<—getMethodSet(m1, VMTSet")
4: callerSet<getCaller(ml)
5: pMethodSet < ¢
6: cMethodSet<— ¢
7: for each m € callerSet do
8: if m ¢ IS then
9: pMethodSet<—pMethodSet U{m}
10: IS<IS U<m, distance>
11: endif
12: end for
13: for each m € calleeSet do
14: if m ¢ IS then
15: cMethodSet <—cMethodSet U{m}
16: IS<IS U< m, distance >
17: endif
18: end for
19: for each m’ € pMethodSet do
20: addCallerIS (IS,m’, m1, distance +1)
21: end for
22: for each m’' € cMethodSet do
23: addCalleelS(IS, nt', distance +1)
24: end for

each method of calleeSet is used as the starting point and
calls the addCalleelS procedure (Algorithm 3) to compute the
impact set recursively from two directions.

In addition, for addCallerIS procedure, methods m and my
are used as parameters, where m is used as the starting point
to compute the impact set. The relation of m; and m; is that
my calls my. This procedure is also divided into two parts:

Lines 1-3 compute the method set calleeSet in which
method has correlation with my in mj. In lines 13-18,
the methods not belonging to IS are included in IS. In lines
22-24, each method which belongs to calleeSet and included
in IS is used as the starting point. Then, it calls the
addCalleelS procedure to compute the impact set recursively
from two directions.

Line 4 computes the method set callerSet in which method
calls my. In lines 7-12, the methods not belonging to IS are

VOLUME 6, 2018

C. Hu et al.: Mining Variable-Method Correlation for CIA

IEEE Access

Algorithm 3 addCalleelS (IS, m, Distance)

Algorithm 4 Multi-CIA

Input:
IS: impact set
m : a method
distance: distance between m and the changed method on
call graph
Declare:
calleeSet: a set of methods that are called by a method and
extracted from the impacted VMTs
callerSet: a set of methods that call a method
pMethodSet: a set of methods
cMethodSet: a set of methods
1: VMTSet<—getVMTSet(m)
2: calleeSet<—getMethodSet(m, VMTSet)
3: callerSet<—getCaller(m)
4: pMethodSet<— ¢
5: cMethodSet<— ¢
6: for each m’ € callerSet do
7. ifm' ¢ IS then
8: pMethodSet<pMethodSet U {m'}

9: IS<IS U<w?, distance >
10: end if
11: end for

12: for each m’ € calleeSet do

13: if m' ¢ IS then

14: cMethodSet <—cMethodSet U {m'}
15: IS<IS U<w!/, distance>

16: endif

17: end for

18: for each m’ € pMethodSet do

19: addCallerlS (IS,m’, m, distance +1)
20: end for

21: for each m’ € cMethodSet do

22: addCalleelS(IS, m', distance +1)
23: end for

included in IS. In lines 19-21, each method which belongs
to callerSet and IS is used as the starting point and calls the
addCallerlS procedure to compute the impact set recursively
from two directions.

Finally, for the addCalleelS procedure, it uses the method
m as its parameter and the starting point of the impact set
computation. This procedure is similar to the addCallerlS
procedure. The only difference is that the calleeSet of m is
composed of all methods which are called by m (Lines 1-2).

C. MULTI-CHANGE IMPACT ANALYSIS
The impact set of multi-change impact analysis can be
obtained by computing the union of impact sets from single-
change impact analysis. Algorithm 4 shows the detailed pro-
cess of multi-CIA, which merges the direct impact sets (DIS)
into the final impact set.

Algorithm 4 uses the method of direct impact set as
the starting point of impact set computation and uses

VOLUME 6, 2018

Input:
DIS: direct impact set
CG: call graph

QOutput:
IS: impact set

1: IS< ¢

2: for each eDIS € DISdo

3: IS<ISU {<eDIS.Method,0 >}

4: 1S <—singleCIA(eDIS, CG)

5: for each m € IS'do

6: if m ¢ ISthen

7: IS<IS U{m)

8. elseif Im’ € IS A\ m/== m \ m.distance<m’ .distance
then

9: m'. distance= m. distance

10: end if

11: end for

12: end for

13: return IS

Algorithm 1 to get the single impact set. Finally, all the
impacted methods are included in the final impact set. For
a method M;, we assume that P; and C; are the number
of Caller and Callee of this method, respectively. The time
complexities of Subroutine 1 and Subroutine 2 are O(P;)
and O(C;), respectively. Assuming the number of statements
within this method is S;, and the number of VMT of the
method is not more than the number of statements, therefore,
the time complexity of Subroutine 3 and Subroutine 4 is
O(S;). Since the number of method callers which relate to
the statements of the method is not more than the number of
Callee of this method, the time complexity of Subroutine 5 is
O(C;). Obviously, the time complexity of Subroutines 6 and
7 is O(S;). Algorithm 1 calls Subroutines 4, 5, 1, the size of
callerSet is not more than P;, and the size of calleeSet is not
more than Cj;, so the time complexity of Algorithm 1 is O(S;+
2 C;+2 P;), similarly, the time complexity of the addCallerIS
procedure is O(2 S; 42 P; 42 C;) and the time complexity of
the addCalleelS procedure is O(S; + 2 P; + 2 C;). Assuming
the number of methods on the call graph is V, the number of
call edges on the call graph is E and the number of statements
of the program is S, the time complexity of Algorithm 1 is

O(ZLl 2(8i+Pi+ Ci))+ORE) =0 +V +E)

The time complexity O(E) in the above formula is based on
this fact that impact propagating from a method to its caller
and callee needs to traverse its call edges on the call graph.
Assuming the size of the change set is NV, the ultimate time
complexity of the VMCIA is O (N (S + V + E)).

The proposed technique VM-CIA takes into account
variable-method correlation within method and parses source
code into VMT set as a novel intermediate representation,
and then proposes single impact analysis algorithm 1 and

77587

IEEE Access

C. Hu et al.: Mining Variable-Method Correlation for CIA

multiple impact analysis algorithm 4 to improve the accuracy
of impact analysis through mining the correlation between
variable-method. An illustrative example and empirical study
in the following Section IV-V will further show the proposed
technique VM-CIA can greatly improve the precision over
traditional CIA techniques through mining variable-method
correlation.

IV. AN ILLUSTRATIVE EXAMPLE
To illustrate the VM-CIA process, an example is presented in
this section.

In the program of the Appendix, the parameter i of method
M3 in class Cy (Figure 6(b)) is assumed to be changed.
Then, we can get the direct impact set DIS= { <<C;.M3, 0>,
VMTSet >}, where VMTSet = {VMT 1}, VMT| = <C.M3.i,
null, null >. Thus, DIS is first added to the impact set IS, i.e.
IS= {<M3, >}. Using M3 as the starting point, we perform
the impact propagation analysis from two directions on the
call graph.

A. METHOD CALLING
Method M3 calls methods Mg, Mg, M1, and M1,, as shown
in Figure 6(c). The statement in Line 5 within M3 is correlated

with i, and the statements in Line 9 and Line 5 are correlated
with v;. We denote the VMTs of Line 5 and Line 9 as follows

VMT, = <Cy.v2, C1.00, MS1>, MS| = {MT,},
MT | = <Ci.Myg, C1.02{C1.M3.i}, null>.
VMT 3 = <null, Ci.00, MS>>,
MS, = {MT»}, MT, = <C{.Mi3, Cy.02,{C1.v2}, null>

VMTs3 is correlated with VMT, based on C;.v;, and VMT,
is correlated with VMT; based on variable C;.M3.i. Then,
we get the calleeSet of M3 from VMT;, VMT,, and VMT3,
i.e. calleeSet = {Myp, M12}. At this time, we get the IS by
merging the caleeSet into IS, IS = {<M3,0>, <Mp, 1>,
<Mj;, 1>}. In the IS, M3 belongs to the direct impact set
and the distance between M3 and Mo, M1; is 1. Next, every

method of calleeSet is used as the starting point of impact
set computation and calls the addCalleelS procedure to com-
pute the impact set on two directions on the call graph. For
example, using M1, as the starting point, we need to judge
whether M3 and M4 are impacted by M1, from the direction
of method calling. We also need to judge whether M7 and Mg
are impacted on the direction of method being called.

B. METHOD BEING CALLED

Methods M| and M, calls M3, as shown in Figure 6(c)
and Appendix. Based on the impact propagation process,
the callerSet of M3 is {M, M>} and the distance between
M3 and M1, M, is 1. After merging callerSet into the IS,
we have IS = {<M3,0>, <Mg, 1>, <M1y, 1>, <My, 1>,
<M>, 1>}. Then, we use the callerSet as the starting point
of impact set computation, and the addCallerlS procedure
is called to compute the impact set from two directions.
As shown in Figure 6(c), we compute the impact set of M»
on the direction of method calling. In class Cy, M> calls the
methods M3, M4, Ms and Mg. Based on the impact propaga-
tion process, M» is impacted because M, calls M3. Therefore,
judging whether methods M4, Ms and Mg are impacted needs
to consider whether they are correlated with M3. The VMTs
of the statements (Line 4 and Line 8 in Figure 6(a)) which are
correlated with M3 are as follows.

VMT 4= <C{.M>.t, null, MS3>, MS3 = {MT3},

MT3 = <C.M3, this, C1.vy, null >
VMTS = <null, Ci.01, MS4>,

MSy={MT4}, MT4=<Ci.Mg, C1.01{C|.M3.t}, null>

VMT4 has correlation with VMTs due to Ci.Mj.t.
Then, the calleeSet of M, is Mg, and distance between
Mz and Mg is 2. After merging calleeSet into IS,
we have IS = {<M3,0>, <Mig, 1>, <M, 1>, <My, 1>,
<My, 1>, <Mg, 2>}.

In a similar way, using M, as the starting point, a set
of methods {M7, Mg, M3, M4} is added to the impact

1 Public int M2() 1 Public int M3[int i)
2 2
3 this.ol=new C2(); 3 this.v1=10;
4 |int t=M3 (v1);]| 4 02.M9(02);
5 02=01.M4 () ; 5 v2=02.M10 (1) ;
6 6
7 0l.M5(02); 7 ((C4)02) .M11 () ;
8 ol . Me(t): 8
9 / 9
10} 1
11}
(a) ®)

FIGURE 6. Process of change propagation.

77588

=)
O.
o

>

N
=
=
(N}
NS

VOLUME 6, 2018

C. Hu et al.: Mining Variable-Method Correlation for CIA

IEEE Access

set. Finally, IS = {<M3,>, <My, 1>, <M, 1>,
<M, 1>, <M, 1>, <Mg,2>, <M7,2>, <Mg, 2>, <M3,
2>, <M14, 2>}, as shown in Figure 7.

W
(M]S) (M;Z)

~— ~—

{_+ the method directly impacted
(O the method of impact set with distance=1
() the method of impact set with distance=2

FIGURE 7. The impact set of example program.

The VM-CIA technique proposed in this paper can
improve the accuracy of the impact results by analyzing
the relation between variables and methods in the state-
ments of a program. The Influence-CIA algorithm uses the
parameters and return values of the method to construct
the influence graph to compute the impact set in [12].
In this example, impact set computed by Influence-CIA
is {My, My, M3, My, M5, Mg, M7, Mg, My, M19, M11, M2,
M3, My4}.

From this example, we see that the size of the impact
set computed by our approach is smaller than the size of
the Influence-CIA. The difference between these two CIA
techniques is that Influence-CIA takes into account all the
cases of parameter passing and control flow of the program.
In the method M3, object o; calls the methods M4, M5 and
Mg, that is, the o is the reference parameter of M4, M5 and
Me. According to the Influence-CIA process, the methods
are mutually impacted because they have reference parameter
passing. Thus, all methods in M are included in the impact
set. We will further show the effectivity of the VM-CIA
technique in the next section on some real open projects.

V. EMPIRICAL STUDY
A. RESEARCH QUESTIONS
The CIA proposed in this paper is closely related to the
Influence-CIA. We compare our VM-CIA with Influence-
CIA. In addition, we would like to see the effect of the
distance on the impact set. The research questions we seek
to answer are:

RQ1: Compared to Influence-CIA, can VM-CIA compute
a smaller impact set?

VOLUME 6, 2018

RQ2: Compared to Influence-CIA, can VM-CIA compute
an impact set with fewer false-positives without severely
missing the false-negatives?

RQ3: How does the distance affect the accuracy of impact
set?

B. RESEARCH SUBIJECTS

To evaluate the effectivity of the VM-CIA technique
presented in this paper, we select five open source Java
projects from some software application domains. These Java
projects are NanoXML,' log4j> JUnit® HttpCore* and Her-
itrix>. NanoXML is a small XML parser. log4 j is an open
source project of Apache and used to control the output of log
information. JUnit is a simple framework to write repeatable
tests. It is an instance of the xUnit architecture for unit testing
frameworks. HttpCore is a set of low level HTTP transport
components that can be used to build custom client and
server side HTTP services with a minimal footprint. Heritrix
is the Internet Archive’s open-source, extensible, web-scale,
archival-quality web crawler project.

We select some successive releases of these Java projects
to perform empirical studies. Some basic statistics of these
projects, including the number of versions (&,), the number
of classes (N,), the number of methods (N,,) and the lines of
code (LOC) are presented in Table 1.

TABLE 1. Research subjects.

Name Statistics Vo 14 Vs Vs Vs
N, 2.0 2.1 2.1.1 22 22.1
N, 24 26 26 29 29
NanoXML N 308 392 397 431 432
LOC 8255 9643 9730 11583 11412
N, 1.0 2.0 3.0
Logtj N, 124 134 198
N, 805 711 1653
LOC 17950 16262 32806
N, 34 35 36 37 38
TUnit N, 33 52 53 52 56
N, 356 461 469 472 514
LOC 3776 4682 4860 4833 5217
N, 0.9 1.0 1.1 12 13
HipCore N, 351 365 414 424 430
Ny 2193 2459 2781 2886 3065
LOC 70925 78715 87078 91345 92532
N, 020 040 060 080 1.100
o N, 140 208 238 271 569
Heritrix

N, 1261 1901 1954 2228 5021

LOC 25585 39957 43781 49433 110831

C. MEASURES

We try to evaluate the effectivity of VM-CIA technique from
multiple aspects. First, we focus on the size and accuracy
of its impact set. If the size of the impact set is too large,
the precision of the impact set will be influenced. That is,

1 https://sourceforge.net/projects/nanoxml/
2http://logging.apache.org:,r/log4j/

3 http://sourceforge.net/projects/junit/
4http://hc.apache.org/httpcomponents—core-ga/index.html
5 http://sourceforge.net/projects/archive-crawler/

77589

IEEE Access

C. Hu et al.: Mining Variable-Method Correlation for CIA

many false-positives are probably included in the impact set,
which limits its practical application.

In addition, to evaluate the accuracy of the VM-CIA tech-
nique, two widely used metrics are precision and recall [14].
The combination of these two measures is used to assess the
accuracy of an impact analysis technique. Precision is an
inverse measure of false-positives while recall is an inverse
measure of false-negatives. These two evaluative metrics are
defined as follows.

|Actual Set N Estimated Set |
- | Estimated Set |

|Actual Set N Estimated Set |
- ’Actual Set |

Here, Actual Set is the set of methods which are actually
changed during bug fixing. Estimated Set is the impact set
predicted by the CIA techniques.

x 100%

x 100%

D. PROCESS

First, we use the JDT (Java Development Tools)® to parse
the Java source code into AST (abstract syntax tree). Then,
we parse the AST related to the variable method correlation
into VMT set. And we can get the actual change set by com-
paring the releases in CVS or SVN and map the changed ele-
ments into the corresponding VMTs[15]. In empirical study,
we select the change set and impact set according to the sorted
change set queue based on the distance between the impact
element and the change element. The process of the empirical
study is as follows.

1) CHANGE SET AND ACTUAL IMPACT SET SELECTION

For the input of CIA, there are three kinds of elements in
the change set, i.e. class fields, method parameters, and local
variable of a method. Due to the difficulty of identifying the
relations among the change actions, we mainly select the sim-
ple changes in the program, such as declaration of class fields,
method parameter list. In addition, we cannot get the accurate
actual impact set. A widely used approach is that the actual
impact set consists of actual changed methods in the program.
However, we can know which methods are changed or deleted
through version comparison during their evolution. Simply,
the change of methods is due to the variable changes [7].

2) IMPACT SET COLLECTION

The main task of CIA is to predict the potential impacts of the
changes made to the software. In our experiments, we use our
VM-CIA technique and InfluenceCIA to compute the impact
set from the change set obtained in the above step. In addition,
we also collect the accuracy of the impact sets with different
distance values.

E. RESULTS AND ANALYSIS
The empirical studies analyze each two consecutive versions
(Vi — Viyp) of these five Java projects and identify the

6http://WWW.eclipse.org/j dt/

77590

change set from V;. Then, we compute the impact set of the
change set on V;, and compare the impact set with the actual
impact set of V; to evaluate the accuracy of the CIA. In this
section, we report the results collected from the empirical
studies to answer these three research questions.

1) RQI1

In this paper, we analyze the variable and method correla-
tion to perform proposed VM-CIA. We first focus on the
comparison of the size of the impact set of VM-CIA and
the Influence-CIA. Table 2 reports the size of the impact
sets of these two CIA techniques, i.e., VM-IS and Influence-
IS. During the evolution of all versions for these five Java
projects, the size of VM-IS is smaller than that of Influence-
IS. The third column in Table 2 is the size of direct impact
set which consists of the directly impacted methods due to
class field change and parameter change. In addition, those
methods which call the deleted methods must be impacted,
so the deleted methods are also included in the DIS. From the
results of Table 1 and Table 2, we can see that the larger the
size of the program is, the larger the sizes of direct impact
set and the impact set are On average, the size of VM-IS is
two to three times bigger than the size of DIS, but the size
of Influence-1S is three to six times bigger than the size of
DIS. Therefore, from the perspective of the size of impact
set, we see that our VM-CIA can generate a smaller impact
set than the Influence-CIA, which will be more practical.

2) RQ2
In the previous section, we see that our VM-CIA can compute
the impact set with smaller size. Moreover, if the size of

TABLE 2. Size of the impact sets of VM-CIA and influence-CIA
respectively.

Name Transaction DIS VM-IS Influence-1S
VoV, 41 128 167
Vi—V, 21 21 205

NanoXML V=V 61 128 225

Vi—V, 23 117 222
AVG 36.5 98.5 204.8
VoV, 245 375 583

Log4j Vi—V, 355 485 550
AVG 300.0 430.0 566.5
VoV, 69 217 270
Vi—V, 59 249 352

JUnit V=V 53 241 320
Vi—V, 76 263 363
AVG 64.3 242.5 326.3
VoV, 201 831 1410
Vi—V, 133 332 1448

HttpCore V=V 335 752 1694
Vi—V, 362 934 1883
AVG 257.8 7123 1608.8
Vo—V, 293 630 907
Vi—V, 483 886 1307
Heritrix Va—V; 100 744 1208

Vi—Vs 841 1362 1701
AVG 429.3 905.5 1280.8

VOLUME 6, 2018

C. Hu et al.: Mining Variable-Method Correlation for CIA

IEEE Access

the impact set is smaller and accuracy is higher, the CIA
technique is better. In this section, we evaluate the two CIA
techniques in a more quantitative way. We use the precision
and recall to assess the quality of the impact set. The number
of false-positive and number of false-negative are closely
related to the precision and recall measure respectively. The
fewer false-positives the CIA produces, the higher its preci-
sion is. Similarly, the fewer false-negatives the CIA produces,
the higher its recall is.

TABLE 3. The precision and recall of VM-CIA and influence-CIA
respectively.

Transa VM-IS Influence-1S Gain
Name .
ction P R P R AP AR
VoV 041 096 031 096 0.1 0
Nanox V2 .00 095 012 1.00 0.88 -0.05
ML Vo—V; 061 085 038 093 023 -0.08

Vi—Vy 024 093 0.13 097 011 -0.04
AVG 056 092 024 097 032 -0.05
Vo—Vi 0.78 094 0.53 1.00 025 -0.06
Log4j Vi—V, 0.82 096 0.73 098 0.09 -0.02
AVG 0.80 0.95 0.63 099 017 -0.04
o—V: 047 089 039 091 0.08 -0.02
Vi—V, 035 0.88 026 091 0.09 -0.03
JUnit Vo—Vs 034 085 026 087 0.08 -0.02
Vs—=Vy 042 0.81 0.33 0.88 0.09 -0.07
AVG 039 086 0.3l 0.89 0.08 -0.03
Vo—Vi 033 086 020 090 0.13 -0.04
Vi—V, 042 080 012 097 030 -0.17

H”r’fo VosVs 048 092 022 096 026 -0.04
ViVe 043 083 024 092 0.9 -0.09

AVG 041 085 019 094 022 -0.09

VoV, 053 093 039 099 0.4 -0.06

s VimV2 066 096 046 098 020 -0.02
" VomsVs 026 087 018 099 008 -0.12
ViV, 068 093 057 098 0.1 -0.05

AVG 053 092 040 098 013 -0.06

AVG 054 090 035 095 019 -0.05

The precision and recall results of VM-IS and Influence-
IS are compared in Table 3. For all these five Java projects,
the precision of VM-IS is higher than that of Influence-1S
but with a little lower recall value Specifically, on average,
the recall of VM-IS is about 5% lower than that of Influence-
IS. However, the precision of VM-IS is about 19% higher
than that of Influence-1S, which is a great improvement. Form
these results, we see that the gap of the precision between
these two CIA techniques is bigger than the gap of their recall
values.

Therefore, from the accuracy perspective, we can also
conclude that our VM-CIA can be more precise to identify
these actually impacted elements, which is more suitable for
practical use.

3) RQ3

The above section shows that our VM-CIA technique is
more practical than the Influence-CIA technique. For our
VM-CIA technique, we used a distance measure. Intuitively,
the further the distance between the impacted element and the
changed element is, the less likely the element is impacted

VOLUME 6, 2018

by the change. Generally, most changes are performed in the
local part of a program. Therefore, we have one question,
i.e., whether the impacts result from changes are local? In
this section, we aim to answer this question.

We first define a Limited Impact Set (LIS) as
follows

LIS(dist) = {m|m € IS \ m.distance < dist}

The dist represents the predefined shortest distance
between the method and the changed elements on the call
graph, LIS(dist) is a set of methods reachable to the changes
and the distance to the changes is less than dist. The max-
imal dist denoted as maxDist is the maximal distance of
all elements of <Method, distance> in the impact set (IS).
In practical, Dist could be defined as maxDist when precision
and recall of the LIS(dist) are converged, otherwise, we could
predefined an appropriate threshold for Dist according to
source code and change set.

As shown in Figure 8, by increasing the dist value, the pre-
cision and recall values of LIS(dist) are also changing. More
specifically, with the increase of the dist values, the precision
of the LIS(dist) is reduced but its recall is increased. Thus,
it shows that the nearer distance between the method to the
change point on the call graph is, the more likely the method
is impacted. On the contrary, the further distance between
the method to the change point is, the less likely the method
is changed. This shows that ranking the possibility of the
potential impacts according to the distance is reasonable.

In addition, Figure 8 also shows some interesting phenom-
ena. First, the maxDist value of VM-IS is small, while the
maxDist value of Influence-IS is twice bigger, which shows
that the Influence-IS has larger size and needs more time to
check the impacts in practical application. In addition, with
the increase of dist values, the precision and recall of VM-
IS converge quickly, while precision and recall of Influence-
IS converge slowly. It shows that VM-CIA is focused on the
change point and computes a highly accurate impact set in the
local range of the program. Actually, Influence-CIA uses the
change point as its center, and propagates the impacts to all
parts of the program continuously. Therefore, the recall value
of Influence-CIA is approximating to 1, but the precision
value is very low.

From above, we can conclude that the impacts are usually
local for most changes to the program. CIA over traditional
intermediate representation usually does not take into account
the fine-grained dependence relationship within the method.
Hence, its precision is limited. The proposed technique
VM-CIA combines uses VMT set as intermediate represen-
tation to analyze deep into statement level and mine the cor-
relation between variable-method to improve the accuracy of
VM-CIA.

F. THREATS TO VALIDITY

Like most empirical studies, our study also has its limitations.
Three threats to the validity of our study are discussed as
follows.

77591

IEEE Access

C. Hu et al.: Mining Variable-Method Correlation for CIA

NanoXML log4j JUnit
Vo-V1 Vo>V1 VO-V1
10 1.0 10
08 08 %\m - m
06 06 06
04 \'\'—-——-._._‘ 0.4 04 -
0.2 0.2 0.2
dist dist i dist
1 3 5 7 9 11 13 15 17 19 1 6 11 16 21 26 31 36 41 46 1 - 7 10 13 16 19 22 25 28
HttpCore Heritrix
Vo-V1 Vo-V1
10 10 3 —— Precision of VM-LIS
08 E :‘ 08 M —— Recall of VM-LIS
06 0.6
\” 3 .
04 \\‘\ 04 M —+— Precision of Influence-LIS
02 02
—+— Recall of Influence-LIS
dist dist
1 11 21 31 41 51 61 71 81 91 1 8 15 22 29 36 43 50 57 64
NanoXML log4j JUnit
Vi-Vv2 vi-v2 vi-v2
! X._'__ P S ! W 1 ‘\
.‘f
038 N __(08 e 08 ¥
0.6 \"_‘ 06 06
04 04 04 1—.::\“"““
0.2 0.2 02
0 - 0 0
dist dist dist
1 3 5 7 9 11 13 15 17 1 6 11 16 21 26 31 36 41 46 1 6 11 16 21 26 31 36 41 46
HttpCore Heritrix
vi-v2 vi-v2
1 = 1 S— ' Prec1s1lf)In of VM-
08 I\ f\\ 08 Recall ots W=
—
06 - 06
— Precision of Influence—
04 04 —_—
LIS
02 02 Recall of Influence—
—
0 - 0 - LIS
dist dist
1 11 21 31 41 51 61 71 81 91 101111 1 10 19 28 37 46 55 64 73 82 91

FIGURE 8. The accuracy of impact set with different dist values.

Firstly, we apply our technique to five subject programs
in this study. We cannot guarantee that the results from
our case studies can be generalized to other more com-
plex or arbitrary programs. However, our subject programs
are selected from open source projects and have been widely
adopted for experimental studies [3]. Secondly, the change
sets are obtained by randomly selecting the changes of the
program, such as the declaration of class fields, method
parameter list. But in practice, the change set is provided
by feature location techniques [16], [17] or users. So the
change set used in our study may not be the actual proposed

77592

changes in these programs versions. This may affect the
evaluation results. Finally, for precision and recall measures,
the real impact set is obtained by selecting the differences
(method changes) between consecutive versions. These dif-
ferences may not be the actual impacts in real programs
version, this may affect the evaluating measures of the impact
results.

VI. RELATED WORK
During software maintenance, CIA can be performed on
software design or source code level. In terms of source

VOLUME 6, 2018

C. Hu et al.: Mining Variable-Method Correlation for CIA

IEEE Access

code, commonly used CIA techniques include dynamic tech-
niques [9], [10] and static techniques [7], [18]-[22] Some
also utilized both static and dynamic information in combi-
nation [23]-[26]

The dynamic CIA techniques are performed mainly based
on analyzing the execution sequence of methods or dynamic
method call graph through collecting information at run-
time environment of the program. The classical dynamic
techniques include Pathlmpact Coveragelmpact, and Col-
lectEA [27]. These techniques need to collect the information
when executing the program at high cost. Furthermore, the
execution traces cannot cover all the paths of the program,
which will reduce the recall of the impact set. On the other
hand, dynamic execution needs input of the test cases. A tech-
nique which uses different test cases to assist impact analysis
is presented in [23]. It depends on the dependence graph (e.g.
call graph) and takes into account different atomic changes,
such as addition, deletion or change of variable and method.

Static CIA techniques can be divided into structure static
analysis, textual analysis, and historical analysis. The struc-
ture based techniques [7], [18]-[20], [28] need to construct
the dependence relation of different entities (classes or meth-
ods). Petrenko and Rajlich develop a tool named JRipples,
which can be used in the software incremental develop-
ment. It allows software engineer to interactively perform
CIA when developing software (the circulation processes
of change, impact analysis, manual check and change
again) [18] Hattori presents a depth based impact analysis
algorithm on the call graph [29] As a classical intermediate
representation of the program, call graph is widely used in
CIA techniques [3], [9], [10], [12], [29]-[32]. The VM-CIA
technique proposed in this paper also belongs to this cate-
gory. Our technique can obtain a more precise impact set
over traditional call graph based techniques through parsing
the source core into VMT set The textual based techniques
perform impact analysis mainly through coupling measure of
modules or textual match [26], [33]-[35]. It is an approach
which extracts the conceptual dependence (conceptual cou-
pling) based on analysis of the nonsource code (comments).
Poshyvanyket.al. use the information retrieval techniques,
such as Latent Semantic Indexing, to analyze the similarity
of two different texts, and then compute the degree of sim-
ilarity of texts with coupling measure [26], [33]-[35]. The
technique computes the impact set only through computing
the similarity of two classes or methods, so the accuracy
of impact set is not high. Since software development is
managed with the version control system, with the prevalence
of the technique of Mining Software Repository (MSR), min-
ing the historical information of software to perform change
impact analysis has been widely concerned by the research
community [8], [26], [34], [36]-[39]. This kind of technique
uses data mining and statistic analysis to mine the sequence
relation, correlation of files, classes and methods. With this
technique, some evolutionary dependencies between pro-
gram entities that cannot be distilled by traditional program

VOLUME 6, 2018

analysis technique can be mined from these repositories.
Evolutionary dependencies suggest that for these entities
that are (historically) changed together in software repos-
itories, i.e., co-changes, they may need to change when
one (some) of the entities are changed during future soft-
ware evolution. CIA is then supported by these co-change
dependencies.

VII. CONCLUSION AND FUTUREWORK

Static CIA has been widely used to estimate the impact set
due to the changes of source code. However, the impact set
is larger than the actual impact set in most cases. How to
improve precision is a big threat to the effectivity of static
CIA technique. This paper attempts to narrow this gap. We
present VM-CIA technique which parses the source code into
variable and method triples (an intermediate representation)
and perform CIA on this intermediate representation. This
VM-CIA technique can obtain the impact set which consists
of the methods with small distance to the changed elements
and has high accuracy. The empirical results show that our
VM-CIA technique can get a smaller impact set with high
accuracy. Furthermore, we also get another conclusion that
the impact results of the changes have the local feature which
is expressed by the distance between the impacted element
and the changed element in source code in this paper. In
addition, the empirical studies also show the reasonability of
the distance measure to rank the impact results, which can
greatly facilitate practical use.

Although empirical studies are selected form the real
world, the size of projects still cannot stand for the general
project. And we will conduct experiments on other arbitrary
and larger programs to evaluate the generality of our tech-
nique. In addition, we would like to compare our VM-CIA
technique to other static CIA techniques, for example, textual
based, historical based, and etc.

APPENDIX

public class Cl { public class C2 { public class C3 {

private int vl;
private char vZ
private C2 o
private C3 o2;
public void M1 () {

private int v3;
private int v4;
private C3 o3;
public C3(int t){

private int v5;

public void M8 () {
C4 od=new C4();
04.M12() ;

this.v3=t }
this.v4=0 public int M9(C3 c3){
M3();) char ch='d';
} public C3 M4 () { /
public int M2(){ return new C4();)
} public char M10(int i){
public int M5(C3 c3){ 780
[.. this.v5=1;
/ } }
0l1.M5(02) ; public String M6 (int i) {
01.M6(t); [.. public class C4 extends C3{
/ this.v3=1; private int vé;

}
public int M{(Ent D)
this.v1=10;

((C4)02) .M12(v2);

}

}
public void M7(String s)
{

((c4)o03) .M12();

FIGURE 9. A simple Java example program.

public int MI11(){
}
public void M12(char c) {
char ch=c;
M13 (ch) ;
v6=10;
M14();
}
public void M13(char c) {
}
public void M14() {

}

77593

IEEE Access

C. Hu et al.: Mining Variable-Method Correlation for CIA

REFERENCES

(1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

B. Li, X. Sun, and J. Keung, “FCA-CIA: An approach of using FCA
to support cross-level change impact analysis for object oriented Java
programs,” Inf. Softw. Technol., vol. 55, no. 8, pp. 1437-1449, Aug. 2013.
K. A. Alam, R. Ahmad, A. Akhunzada, M. H. N. M. Nasir, and S. U. Khan,
“Impact analysis and change propagation in service-oriented enterprises:
A systematic review,” Inf. Syst., vol. 54, pp. 43-73, Dec. 2015.

B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of code-based change
impact analysis techniques,” Softw. Test., Verification Rel., vol. 23, no. 8,
pp. 613-646, 2013.

M. Abi-Antoun, Y. Wang, E. Khalaj, A. Giang, and V. Rajlich, “Impact
analysis based on a global hierarchical object graph,” in Proc. IEEE 22nd
Int. Conf. Softw. Anal., Evol. Reeng. (SANER), Mar. 2015, pp. 221-230.
Q. Wang, C. Parnin, and A. Orso, “Evaluating the usefulness of IR-based
fault localization techniques,” presented at the Int. Symp. Softw. Test.
Anal., Baltimore, MD, USA, 2015.

C.-H. Liu, S.-L. Chen, and W.-L. Jhu, “‘Change impact analysis for object-
oriented programs evolved to aspect-oriented programs,” presented at the
ACM Symp. Appl. Comput., Taichung, Taiwan, 2011.

X. Sun, B. Li, S. Zhang, C. Tao, X. Chen, and W. Wen, “Using lattice
of class and method dependence for change impact analysis of object ori-
ented programs,” presented at the ACM Symp. Appl. Comput., Taichung,
Taiwan, 2011.

T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining version
histories to guide software changes,” IEEE Trans. Softw. Eng., vol. 31,
no. 6, pp. 429-445, Jun. 2005.

H. P. Cai and R. Santelices, “Diver: Precise dynamic impact analysis using
dependence-based trace pruning,” presented at the 29th ACM/IEEE Int.
Conf. Automated Softw. Eng., Vasteras, Sweden, 2014.

P. Meananeatra, S. Rongviriyapanish, and T. Apiwattanapong, “Identify-
ing refactoring through formal model based on data flow graph,” in Proc.
Malaysian Conf. Softw. Eng., 2011, pp. 113-118.

H. P. Cai and D. Thain, “DistIA: A cost-effective dynamic impact analysis
for distributed programs,” in Proc. 31st IEEE/ACM Int. Conf. Automated
Softw. Eng., (ASE), Singapore, Sep. 2016, pp. 344-355.

B. Breech, M. Tegtmeyer, and L. Pollock, “Integrating influence mecha-
nisms into impact analysis for increased precision,” in Proc. 22nd IEEE
Int. Conf. Softw. Maintenance, (ICSM), Philadelphia, PA, USA, Sep. 2006,
pp. 55-64.

E. Fauzi, B. Hendradjaya, and W. D. Sunindyo, “‘Reverse engineering of
source code to sequence diagram using abstract syntax tree,” in Proc. Int.
Conf. Data Softw. Eng. (ICoDSE), 2016, pp. 1-6.

W. M. Bramer, D. Giustini, and B. M. R. Kramer, ‘“Comparing the cover-
age, recall, and precision of searches for 120 systematic reviews in Embase,
MEDLINE, and Google scholar: A prospective study,” Syst. Rev., vol. 5,
no. 1, p. 39, Mar. 2016.

'W. Haifeng, Z. Kun, and L. Xia, ‘“Teaching study of programming courses
based on the SVN version control,” in Recent Developments in Intelligent
Computing, Communication and Devices. Springer, 2019, pp. 487-493.
B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension
through dynamic analysis,” IEEE Trans. Softw. Eng., vol. 35, no. 5,
pp. 684-702, Sep./Oct. 2009.

B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location in
source code: A taxonomy and survey,” J. Softw., Evol. Process, vol. 25,
no. 1, pp. 53-95, 2013.

M. Petrenko and V. Rajlich, ““Variable granularity for improving precision
of impact analysis,” in Proc. IEEE 17th Int. Conf. Program Comprehension
(ICPC), May 2009, pp. 10-19.

J. A. Dallal and A. Abdin, “Empirical evaluation of the impact of object-
oriented code refactoring on quality attributes: A systematic literature
review,” IEEE Trans. Softw. Eng., vol. 44, no. 1, pp. 44-69, Jan. 2018.

X. Sun, B. Li, C. Tao, W. Wen, and S. Zhang, “Change impact analysis
based on a taxonomy of change types,” in Proc. IEEE 34th Annu. Comput.
Softw. Appl. Conf. (COMPSAC), Jul. 2010, pp. 373-382.

X. Sun, B. Li, S. Zhang, and C. Tao, “HSM-based change impact analysis
of object-oriented Java programs,” Chin. J. Electron., vol. 20, no. 2,
pp. 247-251, 2011.

S. Hassaine, F. Boughanmi, Y. Guéhéneuc, S. Hamel, and G. Antoniol,
“A seismology-inspired approach to study change propagation,” in Proc.
27th IEEE Int. Conf. Softw. Maintenance (ICSM), Sep. 2011, pp. 53-62.
L. Zhang, M. Kim, and S. Khurshid, *“‘Localizing failure-inducing program
edits based on spectrum information,” in Proc. 27th IEEE Int. Conf. Softw.
Maintenance (ICSM), Sep. 2011, pp. 23-32.

77594

(24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

S. Zhang, D. Saff, Y. Bu, and M. D. Ernst, “Combined static and dynamic
automated test generation,” in Proc. Int. Symp. Softw. Test. Anal., 2011,
pp. 353-363.

M. C. O. Maia, R. A. Bittencourt, J. C. A. de Figueiredo, and
D. D. S. Guerrero, “The hybrid technique for object-oriented software
change impact analysis,” in Proc. 14th Eur. Conf. Softw. Maintenance
Reeng. (CSMR), 2010, pp. 252-255.

M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, “Integrated impact
analysis for managing software changes,” in Proc. 34th Int. Conf. Softw.
Eng. (ICSE), 2012, pp. 430-440.

C. S. Pdsiareanu, W. Visser, D. Bushnell, J. Geldenhuys, P. Mehlitz, and
N. Rungta, “Symbolic PathFinder: Integrating symbolic execution with
model checking for Java bytecode analysis,” Automated Softw. Eng.,
vol. 20, no. 3, pp. 391-425, 2013.

M. Acharya and B. Robinson, “Practical change impact analysis
based on static program slicing for industrial software systems,” pre-
sented at the 33rd Int. Conf. Softw. Eng., Honolulu, HI, USA, 2011,
pp. 746-755.

L. Hattori, M. D’ Ambros, M. Lanza, and M. Lungu, “Answering software
evolution questions: An empirical evaluation,” Inf. Softw. Technol., vol. 55,
no. 4, pp. 755-775, 2013.

N. Rungta, S. Person, and J. Branchaud, “A change impact analysis to
characterize evolving program behaviors,” in Proc. 28th IEEE Int. Conf.
Softw. Maintenance (ICSM), Sep. 2012, pp. 109-118.

B. Li, X. Sun, and H. Leung, “Combining concept lattice with call graph
for impact analysis,” Adv. Eng. Softw., vol. 53, pp. 1-13, Nov. 2012.

B. Li, Q. Zhang, X. Sun, and H. Leung, “Using water wave propagation
phenomenon to study software change impact analysis,” Adv. Eng. Softw.,
vol. 58, pp. 45-53, Apr. 2013.

R. Oliveto, M. Gethers, D. Poshyvanyk, and A. D. Lucia, “On the
equivalence of information retrieval methods for automated traceability
link recovery,” in Proc. IEEE 18th Int. Conf. Program Comprehension,
Jun. 2010, pp. 68-71.

H. Kagdi, M. Gethers, and D. Poshyvanyk, “Integrating conceptual and
logical couplings for change impact analysis in software,” Empirical Softw.
Eng., vol. 18, no. 5, pp. 933-969, 2013.

M. Gethers and D. Poshyvanyk, ““Using relational topic models to capture
coupling among classes in object-oriented software systems,” in Proc.
IEEE Int. Conf. Softw. Maintenance, Sep. 2010, pp. 1-10.

S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and
H. C. Gall, “How can i improve my app? Classifying user reviews for
software maintenance and evolution,” in Proc. IEEE Int. Conf. Softw.
Maintenance Evol. (ICSME), Sep./Oct. 2015, pp. 281-290.

C. Gregg and M. Sherriff, “Teaching track faculty in computer science,”
presented at the 49th ACM Tech. Symp. Comput. Sci. Educ., Baltimore,
MD, USA, 2018.

K. Shu, S. Wang, J. Tang, R. Zafarani, and H. Liu, “User identity linkage
across online social networks: A review,” ACM SIGKDD Explor. Newslett.,
vol. 18, no. 2, pp. 5-17, 2017.

A.T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun, “Duplicate
bug report detection with a combination of information retrieval and topic
modeling,” presented at the 27th IEEE/ACM Int. Conf. Automated Softw.
Eng., Essen, Germany, 2012.

CHUNLING HU received the Ph.D. degree in
computer science from the Hefei University of
Technology in 2011. She is currently an Associate
Professor with the Department of Computer Sci-
ence and Technology, Hefei University, China. Her
research interests include software analysis and
testing, complex system, and evolving systems etc.
She is a CCF and ACM member.

VOLUME 6, 2018

C. Hu et al.: Mining Variable-Method Correlation for CIA

IEEE Access

VOLUME 6, 2018

BIXIN LI received the Ph.D. degree in software
engineering from Nanjing University in 2001. He
is currently a Full Professor with the School of
Computer Science and Engineering. He is also
the Director of the Software Engineering Institute,
Southeast University, China. His main research
interests include software analysis, testing, and
verification of complex system, and evolving sys-
tems. He is a senior CCF member.

XIAOBING SUN received the bachelor’s degree in
computer science and technology from the Jiangsu
University of Science and Technology in 2007, and
the Ph.D. degree from the School of Computer Sci-
ence & Engineering, Southeast University in 2012.
Then, he joined the School of Computer Science &
Engineering, Southeast University. He is currently
an Associate Professor with the School of Informa-
tion Engineering, Yangzhou University, China. His
research interests include software maintenance
and evolution, software repository mining, and intelligence analysis. He has
been authorized over 20 patents, and published over 80 papers in referred
international journals such as STVR, IST, JSS, SCIS, and FCS, and confer-
ences, including ICSE, ASE, ICSME, SANER, and ICPC. He is a senior CCF
and ACM/IEEE member.

77595

	INTRODUCTION
	INTERMEDIATE REPRESENTATION
	CHANGE IMPACT ANALYSIS
	DIRECT IMPACT SET COMPUTATION
	SINGLE-CHANGE IMPACT ANALYSIS
	MULTI-CHANGE IMPACT ANALYSIS

	AN ILLUSTRATIVE EXAMPLE
	METHOD CALLING
	METHOD BEING CALLED

	EMPIRICAL STUDY
	RESEARCH QUESTIONS
	RESEARCH SUBJECTS
	MEASURES
	PROCESS
	CHANGE SET AND ACTUAL IMPACT SET SELECTION
	IMPACT SET COLLECTION

	RESULTS AND ANALYSIS
	RQ1
	RQ2
	RQ3

	THREATS TO VALIDITY

	RELATED WORK
	CONCLUSION AND FUTUREWORK
	REFERENCES
	Biographies
	CHUNLING HU
	BIXIN LI
	XIAOBING SUN

