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ABSTRACT Feature selection is the preliminary step in machine learning and data mining. It identifies the
most important and relevant features within a dataset by eliminating the redundant or irrelevant features. The
substantial benefits may include an improved performance in terms of high prediction accuracy, reduced
computational complexity, and simply interpretable underlying models. In this paper, we present a novel
framework to investigate and understand the importance of Monte Carlo tree search (MCTS) in feature
selection for very high-dimensional datasets. We construct a binary feature selection tree where each node
represents one of the two feature states: a feature is selected or not. The search starts with an empty root node
reflecting that no feature is selected. Then, the search tree is expanded by adding nodes in an incremental
fashion through MCTS-based simulations. Following tree and default policy, every iteration generates an
initial feature subset, where a filter is used to select the top k features forming the candidate feature subset.
The classification accuracy is used as the goodness or reward of the candidate feature subset and propagated
backward up to the root node following the active path. Finally, the candidate subset with highest reward is
selected as the best feature subset. Experiments are performed on 30 real-world datasets, including 14 very
high-dimensional microarray datasets, and results are also compared with state-of-the-art methods in the
literature, which proves the efficacy, validity, and significance of the proposed method.

INDEX TERMS Dimensionality reduction, feature selection, filter-wrapper, hybrid, Monte Carlo tree
search (MCTS), H-MOTiFS.

I. INTRODUCTION
In the present era of big data, most of the datasets are high
dimensional ranging from few hundreds to thousands of
features. A substantial amount of features are either redun-
dant or irrelevant which makes the underlying model very
complex and degrade the performance of the prediction
task [1]–[3]. For predictive modeling, achieving high accu-
racywithin acceptable amount of time is of prime importance.
Feature selection then becomes handy as a preliminary step
before any predictive task. The objective of a feature selec-
tion algorithm is to find the most significant features while
maintaining the underlying structure of the dataset. This helps
in making better predictive models in terms of performance
by achieving high accuracy and reduced time complexity.
Also the underlying structure becomes trivial to interpret and
analyze. Feature selection is widely being applied in various
application domains relating to machine learning [4]–[6],
pattern recognition [7]–[9] and data mining [10], [11].

Various approaches for feature selection have been devel-
oped in the past decades [12]. Generally feature selection
consists of two main components: a search component and
an evaluator component, as depicted in Fig.1. A search
component is responsible for generating candidate features
subsets whereas evaluator component checks the goodness
of the candidate subsets. Based on evaluator component,
feature selection methods are generally categorized as filter,
wrapper or hybrid methods. Considering search component,
feature selection approaches are categorized as exhaustive,
heuristic or meta-heuristic approaches. The details are pro-
vided in Section 2.

Recently, meta-heuristic approaches have gained much
attention in feature selection domain. They are also referred
as Evolutionary Algorithms. Meta-heuristic algorithms
combine the exploitation of good solutions with the explo-
ration of new ones, thus, trying to reach the optimum solu-
tions. Genetic algorithms (GA) [13], [14], Particle Swarm
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FIGURE 1. Key components of feature selection.

Optimization (PSO) [15]–[18], Bat Algorithms (BA)
[19], [20], Ant Colony Optimization (ACO) [21], [22] and
Multi-Objective Evolutionary Algorithms [23], [24] belong
to this category. The use of these meta-heuristic approaches
have opened up new horizons in feature selection, however,
they are in infancy phases and need more thorough investi-
gations and research. The one shortcoming which is common
among all such algorithms is that they exhibit complex nature:
how they deal with the meta-heuristics, the high enough time
requirement for convergence and induction of many hyper-
parameters [25]. Thus, a vast room for research exists and new
feature selection approaches are immensely needed which
can be as efficient as accurate along with least complex to
model.

In this study, we come up with a novel framework where
Monte Carlo Tree Search (MCTS) is deployed in conjunc-
tion with the hybrid of filter-wrapper methods to find the
best feature subset for the efficient classification of the
dataset. We referred the proposed algorithm as H-MOTiFS
(Hybrid-Monte Carlo Tree search based Feature Selec-
tion). The term MCTS is referred to a heuristic search
technique which is recently evolved in gaming AI and
showed remarkable performance in huge search spaces [26].
It uses lightweight random simulations to find the best solu-
tions [27]. The success of MCTS in gaming domain provoked
us to investigate its effectiveness in feature selection and acted
as a catalyst for this study.

The search starts with an empty root node reflecting that
no feature is selected. As the search proceeds, nodes are
added one by one reflecting one of the two feature states:
either a feature is selected or not. Every iteration leads to
a feature subset consisting of arbitrary number of features,

referred as initial feature subset, based on tree search and
random sampling. A filter is then applied on initial feature
subset to select the top k features forming the candidate
feature subset. The goodness of the candidate feature subset
is measured in terms of the classification accuracy. It also
serves as the reward of the current active path. This reward is
propagated backwards up to the root node following the active
path and the tree is updated. Lastly, the candidate feature sub-
set holding the maximum classification accuracy is selected
as the best feature subset. Experiments are performed on
30 different datasets, where 14 datasets are very high dimen-
sional microarray datasets. The results are compared with the
established and state-of-the-art approaches in literature. The
promising results show the effectiveness and superiority of
the proposed method. The key highlights of this study are as
follows:
• The significance of MCTS is investigated and a novel
hybrid framework is proposed for feature selection in
very high dimensional datasets, referred as H-MOTiFS.

• H-MOTiFS performs the efficient exploration of the
feature space and finds the top k best features in a limited
number of iterations, relatively.

• H-MOTiFS is simple and flexible as compared to other
complex evolutionary approaches. Only three hyper-
parameters are involved namely: Scaling factor, top-k
selector and Termination criteria.

• H-MOTiFS is experimented on 30 publically available
benchmark datasets including 14 very high dimensional
microarray datasets. The comparison with the state-of-
the-art approaches established the significance of the
proposed method.

The rest of the paper is organized as follows. In Section 2,
a preliminary background is provided. Section 3 provides the
details and explanation of the proposed method. The experi-
mental details and results are discussed in Section 4. Finally,
the summarized conclusions are provided in Section 5.

II. BACKGROUND
A. OVERVIEW OF EXISTING FEATURE SELECTION
APPROACHES
The key components and basic feature selection process is
illustrated in Fig. 1 above. The brief overview of literature is
provided in the following text.

Considering the evaluation criterion, the literature divides
the feature selection methods as filter, wrapper or hybrid
methods. Filter based methods are classifier independent and
use some proxy measure to evaluate the features. Using cor-
relation of features with class variable based on various statis-
tical tests, features are evaluated and ranked [28]–[30]. Filter
methods are fast enough and can be generalized with any
classifier, however, they lack in performance in the presence
of redundant features and show low classification accuracy.
Various information theoretic based approaches have been
developed to overcome the issues with traditional filter
based methods [31]–[33]. Wrapper methods are classi-
fier dependent and use the classifier directly to score the
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feature subsets. The classification accuracy serves as a
scoring metric to measure the goodness of feature sub-
sets [34]–[36]. They deliver high classification accuracy as
the specific classifier is directly involved in the process. How-
ever, the major drawbacks associated are high computational
complexity and prone to over fitting. Hybrid approaches
combing filter and wrapper methods gain much attention in
recent literature [37], [38]. They take advantage of both meth-
ods by using an independent metric to rank the features and
using a learning algorithm to quantify the strength of feature
subsets. Our focus is on the hybrid of filter-wrapper method
in this study because of their superiority over filter or wrapper
methods.

Irrespective of the evaluator used, an efficient
search strategy is mandatory as it is practically impossible
to exhaustively check the goodness of each and every pos-
sible subset (2n subsets for n number of features). Consid-
ering this fact, researchers developed and adopted several
heuristic approaches. Among the heuristic methods best
first search and greedy hill climbing are commonly used in
literature [28], [39]. Sequential Forward Selection (SFS),
Sequential Backward Selection (SBF) and bi-directional
approaches are categorized as greedy hill climbing
approaches. They assess the local changes in the search space
in order to find the dominant features. The major shortcom-
ing associated is referred as the nesting effect. Whenever
a potential change occurs in the candidate feature subset;
a feature is included in the candidate subset (i.e. in SFS)
or eliminated from the candidate subset (i.e. in SBF) once,
then this particular feature is never re-evaluated and the
search becomes highly prone towards local optimum.

To tackle the issues in traditional heuristic approaches,
researchers attempted to use meta-heuristic approaches in
feature selection. Meta-heuristic algorithms combine the
exploitation of good solutions with the exploration of new
ones, thus, trying to reach the optimum solutions. Most dom-
inant approaches include Genetic algorithms (GA) [13], [14],
Particle Swarm Optimization (PSO) [15]–[18], Bat Algo-
rithms (BA) [19], [20], Ant ColonyOptimization (ACO) [21],
[22] andMulti-Objective Evolutionary Algorithms [23], [24].
These approaches have shown decent performance in fea-
ture selection, however, they suffer from the problem of
parameters overload. That is, excessive hyper-parameters
are involved and it becomes complex to tune the model
for optimized performance [25]. For instance, in Genetic
Algorithm based approaches, high enough generations
with large population size is essential to achieve the
required results. Thus, GA based approaches tend to be
computationally expensive. Moreover, the induction of many
hyper-parameters like no. of generations, population size,
permutation and crossover probabilities, etc. makes it highly
complex and challenging to fine tune the model for desired
results.

There are some recent researches which used MCTS for
feature selection. FUSE algorithm formalized the fea-
ture selection as a reinforcement learning problem and

employed MCTS for approximating the optimal policy [40].
The algorithm used the exhaustive search tree where the
state space is exponential in the number of features. Vari-
ous heuristics were tried to tackle the challenging issue of
the huge branching factor. Another algorithm, FSTD, used
the temporal difference to traverse the huge state space and
selected the best features subset [41]. Ashtiani et al. [42]
have proposed a strategy for local feature subset selec-
tion. The algorithm simultaneously partitions the sample
space into localities and selects features for them, and
uses MCTS to learn near-optimal feature trees. Recently,
Chaudhry and Lee [43] have proposed a novel binary feature
selection tree with less branching factor and developed a
wrapper based approach, MOTiFS, which used MCTS to
select the optimal features subset. The algorithm showed
promising classification performance for relatively small
dimensional datasets. However, it tends to select high pro-
portion of features, relatively. One possible reason might be
the selection of some noisy features because of the impact of
randomness. This problem may become worse when dealing
with very high dimensional datasets within the allowed num-
ber of simulations.

The main contribution of this work is to propose a novel
framework based on MCTS, to deal with very high dimen-
sional datasets with an objective to achieve high accuracy
with reduced dimensions. In our proposed framework,
MCTS is deployed in conjunction with the hybrid of filter-
wrapper methods.We construct a binary feature selection tree
where the exploitation and exploration are properly balanced,
and the induction of the filter aids in removing the noisy
features from the features subset during each simulation.
The classifier is then used to evaluate the candidate features
subset. Experiments are performed extensively on many high
dimensional benchmark datasets. The comparison with vari-
ous methods proves the significance of the proposed method.

B. MONTE CARLO TREE SEARCH (MCTS)
The term MCTS is referred to a search technique which
is recently evolved in gaming AI and showed remarkable
performance in huge search spaces [26]. It performs
random lightweight simulations in order to find optimal
solutions [27]. Each MCTS simulation constitutes four
ordered steps, namely, Selection, Expansion, Simulation and
Backpropagation. During Selection, a search tree is traversed
from root node to a node which is non-terminal and has
unexpanded children. The nodes are selected with highest
approximated value based on UCT algorithm. A new child
node is then added to expand the tree (according to the
actions available) during Expansion step. During Simulation,
a random simulation is run from the new child node until
the terminal node is reached. The simulation reward is also
approximated at this stage. Finally, the simulation reward is
backpropagated through the selected nodes to update the tree.
The tree policy is used to perform the selection and expansion
steps, whereas default policy is responsible for the simulation
step.
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FIGURE 2. Graphical illustration of the proposed method.

C. UPPER CONFIDENCE BOUNDS FOR TREES (UCT)
ALGORITHM
The nodes selection is performed by the tree policy during
each simulation. The tree policy uses the UCT algorithm
to rank the competing nodes at each level. The importance
of each node is approximated using Equation (1). The node
with the highest approximated value is selected at each level.
It keeps balancing between exploring new solutions and
exploiting good ones.

UCT v =
Wv

Nv
+ C ×

√
2× ln

(
Np
)

Nv
(1)

Where, Nv and Np denotes the number of visits performed
on nodes v and its parent p, respectively. C is the constant to
balance between exploration and exploitation. Wv holds the
count of wining simulations (in gaming context) at node v.

III. H-MOTiFS (HYBRID-MONTE CARLO TREE SEARCH
BASED FEATURE SELECTION)
We propose a novel framework based on MCTS, to deal
with very high dimensional datasets with an objective to
achieve high accuracy with reduced dimensions. In our pro-
posed framework, MCTS is deployed in conjunction with
the hybrid of filter-wrapper methods. We construct a binary
feature selection tree where the exploitation and exploration
are properly balanced, and the induction of the filter aids in
removing the noisy features from the features subset during
each simulation. The classifier is then used to evaluate the
candidate features subset. The details are provided below.

In our proposed framework, we search the feature space
using MCTS and evaluate the feature subsets in a hybrid
setting. We traverse the feature selection tree using MCTS to
look for the best path (constitutes best performing features)
in order to select the best feature subset. Following tree and

default policies, eachMCTS iteration generates an initial fea-
ture subset, Finitial . The filter is then applied to select the top k
features forming the candidate feature subset, Fcandidate. The
goodness of Fcandidate is measured in terms of classification
accuracy according to the classifier applied. Then, the search
tree is updated through the active path. This procedure repeats
until the stopping criterion is met. Fig. 2 shows the graphical
illustration of the proposed method.

A. FEATURE SELECTION TREE
We assume the feature selection as a single player game tree
where one has to pick the best performing nodes (features)
having maximum accumulative reward. Each node represents
one of the two corresponding feature states: a feature is
selected or not selected.
Definition 1: For a feature set, F = {f1, f2, . . . , fi, . . . , fn},

the feature selection tree is a tree satisfying the following
conditions:

1) The root is ∅0, which represents no feature is selected.
2) Any node at level i−1 has two children, fi and ∅i, where

0 < i < n.
In the feature selection tree, node fi represents feature fi is

selected and ∅i represents feature fi is not selected. Any path
from the root node to one of the leaves constitutes a feature
subset. So, the objective is to find a path that offers the best
reward (i.e. accuracy). The algorithm traverses the feature
selection tree using MCTS and selects one of the paths.

The search starts with an empty root node reflecting that
no feature is selected. The nodes are then added in an
incremental fashion during each simulation. Following tree
and default policy, every iteration generates an initial fea-
ture subset, Finitial , where a filter is applied to select the
top k features forming the candidate feature subset, Fcandidate.
The classifier is then applied on Fcandidate for evaluation.

VOLUME 6, 2018 76039



M. U. Chaudhry, J.-H. Lee: Feature Selection for High-Dimensional Data Using MCTS

FIGURE 3. Feature selection tree and the search procedure.

The classification accuracy is used as the goodness of the
candidate subset. It also serves as a reward of the current
simulation and propagated backwards up to the root node
following the active path. Finally, Fcandidate with maximum
accuracy is selected as the best feature subset, Fbest . The
proposed feature selection tree and the four step MCTS pro-
cedure are shown in Fig. 3.

B. SELECTION
During selection, the algorithm traverses the already
expanded tree and selects one of the possible paths. The
selected path constitutes on nodes whose inclusion used to
give the high reward in previous iterations. The features
in the selected path are added in the initial feature subset,
Finitial , of the current iteration.
Following tree policy, the UCT algorithm traverses the

already expanded tree, from the root node to the urgent node
(a non-terminal node with a child to expand). At each tree
level, it selects the node which gives high score obtained by
using (2). If the selected node is fi at level i, it provides the
intuition that feature fi contributed well towards high rewards
in previous iterations, hence, feature fi is added in the feature
subset, Finitial . On the other hand, if UCT algorithm selects
the node ∅i, feature fi is not added in the Finitial . The intuition
is, feature fi did not contribute towards high reward and needs
not to be added in the current feature subset.

The vanilla UCT algorithm is best suitable for gaming
scenarios where the reward is binary; either a player wins the
game or loses it. One has to find the best wining moves in the
least number of visits. Therefore, the reward at each node is
estimated by penalizing with the number of visits as shown
in (1). The nature of feature selection problem is, however,
different where the core objective is to find the path that holds
the highest reward (i.e. accuracy in our case). This intuition
leads us to use the maximum reward achieved at each node,
as shown in (2).

UCT vj = max(Qvj )+ C ×

√
2× ln

(
Nvi
)

Nvj
(2)

Where, max(Qvj ) represents the maximum reward at the
node vj. C > 0 is an exploration constant. Nvj and Nvi counts
the number visits performed on nodes vj and its parent vi,
respectively. During tree traversal, the nodes with the highest
scores are selected at each tree level.

C. EXPANSION
A search tree is expanded by adding a new child node. The
child is added to the urgent node (the last node selected during
selection). Again, the decision is based on the UCT score.
The child with the highest score is added in the search tree.
Let’s assume the urgent node is vi at some moment in time.
If the algorithm decides to add the child fi+1 in the search
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tree, then the feature fi+1 is also included in the initial feature
subset, Finitial . Conversely, the tree is expanded by adding
child node ∅i+1 and feature fi+1 is not included in Finitial .

D. SIMULATION
Simulation step prompts randomness in the process and is
controlled by the default policy. It randomly selects a path
from expanded child, say vi, to the leaf node vn. Hence,
the remaining unexpanded features are included or excluded
in the current feature subset, Finitial , with uniform probability.

Let’s assume, the expanded child node is vi in the current
iteration. Features from f1 to fi are included in initial feature
subset, Finitial , during the selection and expansion steps (tree
policy). However, the remaining features from fi+1 to fn are
randomly included based on simulation step (default policy).
A tree search is supported by the random sampling in the
generation of a feature subset. It provides the fair chance to
find the best feature subset in a fewer simulations, rather full
expansion of the tree.

E. CANDIDATE FEATURE SUBSET GENERATION
Each iteration generates a feature subset which we referred
above as initial feature subset, Finitial . Due to fully random
nature of default policy, it is highly probable that high pro-
portion of features can be selected in Finitial . Along with
arbitrary feature dimensions, it may induce the inclusion of
noisy features in Finitial . To overcome the issue, we deploy
the filter on Finitial which returns the top k features forming
the candidate feature subset, Fcandidate, as shown in (3).

Fcandidate = topK_Filter (Finitial) (3)

The induction of filter at this stage has two advantages.
First, it helps in removing the noisy features from random
selection. Secondly, it aids the objective function to control
the selected feature dimensions along with achieving high
accuracy.

F. REWARD CALCULATION AND BACKPROPAGATION
At this step, classifier is applied on candidate feature subset,
Fcandidate. The classification accuracy on Fcandidate is used
as the simulation reward, Qsimulation, of the current expanded
node. The search tree is updated by propagating the reward
backwards, following the active path.

Qsimulation = ACCclassifier (Fcandidate)

Where, ACCclassifier (Fcandidate) is the classification accuracy
on Fcandidate. If Fcandidate gives the improved accuracy then
the best feature subset is updated. The process continues until
stopping criteria is met.

For experimental purposes, we employed K-NN classi-
fier for reward (accuracy) calculation and ReliefF as a fil-
ter measure to rank the features according to class labels.
K-NN is characterized as a non-parametric, simplest, and effi-
cient learning algorithm and proved its significance in many
similar studies [44]–[46]. ReliefF evaluates the importance of

TABLE 1. Summary of the small dimensional datasets

a feature by continuously sampling the instances to separate
from the nearest neighbors (neighbors from the same and
different classes) and assigning a weight according to the
ability of separation [47]–[49]. However, any other classi-
fiers and filter measures can be used within the proposed
framework. The algorithm of H-MOTiFS is provided below
as Algorithm 1.

IV. EXPERIMENT AND RESULTS
This section provides the details of extensive experimentation
and comparative analysis on various benchmark datasets.

A. DATASETS
We use 30 benchmark datasets from various domains.
Purposefully, we divide the datasets into two broad cate-
gories; the small dimensional datasets and the microarray
datasets (also referred as a very high dimensional datasets
because of thousands of feature dimensions). We considered
it inappropriate to experiment on very small dimensional
datasets (where the number of features are less than 20) and
discarded from the scope.

In our experiments, 16 datasets are small dimensional
datasets and downloaded from UCI [50] and Lib-SVM [51].
The details are provided in Table 1.

For very high dimensional datasets, we experimented on
14 microarray (gene selection) datasets. The datasets are
downloaded from [52] and [53]. The details of datasets are
summarized in Table 2.

B. EXPERIMENTAL SETUP AND PARAMETERS SETTING
We perform 10 fold cross validation where 1 fold is used as
a test set and remaining 9 folds are used for the training and
validation purpose. Thus, each fold is used exactly once as a
test set.

The hyper-parameters values used in the experiments are
given in Table 3. We fix the Scaling factor, C, at 0.1 for all
the datasets. The other two parameters, Termination criteria
(# simulations) and the top-k filter are used in two different
settings. We empirically set the # simulations at 1000 and
10,000 for the small dimensional datasets and microarray
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Algorithm 1 The Proposed feature Selection Algorithm
Load dataset and preprocess
Initialize SCALAR, BUDGET, k
function FEATURE_SELECTION (featuresList)

create rootNode
maxReward, bestFeatureSubset← UCTSEARCH (rootNode)
return(maxReward, bestFeatureSubset)

function REWARD (featureSubset)
candidateFeatureSubset← FILTER(featureSubset, k)
simulation_reward← CLASSIFIER(candidateFeatureSubset)
return(simulation_reward)

function UCTSEARCH (rootNode)
Initialize maxReward, bestFeatureSubset
while within computational budget do

frontNode← TREEPOLICY (rootNode)
reward, candidateFeatureSubset← DEFAULTPOLICY (frontNode.state)
BACKUP (frontNode, reward)
if reward is greater than maxReward then

maxReward←reward
bestFeatureSubset←candidateFeatureSubset

return(maxReward, bestFeatureSubset)
function TREEPOLICY (node)

while node is non-terminal do
if node not fully expanded then

return EXPAND (node)
else

node← BESTCHILD (node, SCALAR)
return node

function EXPAND (node)
choose a ∈ untried actions from A(node.state)
add a newChild with f (node.state, a)
return newChild

function BESTCHILD (v,C)

return max (Qv′)+ C
√

2×ln(v.visits)
v′.visits

function DEFAULTPOLICY (state)
while state is non-terminal do

choose a ∈ A(state) uniformly at random
state← f (state, a)

traverse state.path
if ai is equal to fi+1 then

featureSubset← INCLUDE (fi+1)
reward← REWARD (featureSubset)
return(reward, featureSubset)

function BACKUP (node, reward)
while node is not null do

node.visits←node.visits + 1
if reward > node.reward then

node.reward←reward
node←node.parent

return

datasets, respectively. For small dimensional datasets, we are
intended to select and analyze the top 10%, 20% and 30%
of the total number of features (# F). However, microarray

datasets are different in nature and a very small proportion
of genes are relevant but not redundant. Therefore, we limit
top-k to select top (10, 20, 30) genes only.
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TABLE 2. Summary of very high dimensional (microarray) datasets.

TABLE 3. Parameters values used in the experiments.

TABLE 4. Methods used for comparison

C. METHODS USED FOR COMPARISON
We compare our results with significant and state-of-the-
art methods in literature. While choosing the comparison
methods, we try to maintain the diversity and quality of the
works reported. The comparison methods include the tradi-
tional wrapper and filter based approaches, multi-objective
and hybrid methods, evolutionary approaches and random
forests based approach. The details and references are pro-
vided in Table 4.

D. RESULTS AND COMPARISONS
For every dataset, we evaluate our model five times
and report the mean results. We report the mean accu-
racy with standard deviation and the number of features
selected.

TABLE 5. Mean accuracy and standard deviation on small dimensional
datasets at different values of top-k features. Bold face values in each
row indicate the best result.

1) SMALL DIMENSIONAL DATASETS
Small dimensional datasets are evaluated using the
5-NN classifier as used by the baseline methods; SFSW [23]
and PSO(4-2) [18] for the fair comparison.

Table 5 shows the results obtained at different values
of top-k filter. Experiments are performed independently to
select the top 10%, 20% and 30% features in thewhole feature
space. Ten datasets ‘‘Spambase’’, ‘‘Multiple ft.’’, ‘‘Wave-
form’’, ‘‘German no’’, ‘‘Sonar’’, ‘‘Musk 1’’, ‘‘Coil20’’,
‘‘Orl’’, ‘‘Lung_Discrete’’, and ‘‘Spect’’ show their best when
top 30% features are selected. Four datasets ‘‘Ionosphere’’,
‘‘Arrhythmia’’, ‘‘WBDC’’, and ‘‘Kr-vs-kp’’ are best classi-
fied when top 20% features are selected. However, ‘‘DNA’’
and ‘‘Hillvalley’’ are well classified at top 10% features.
This diversity indicates the significance and impact of the
top-k selector component. The standard deviation shows the
stability of the proposed method.

The comparison of the proposed method with other
approaches on 16 small dimensional datasets is provided
in Table 6. For the summarized comparisons we pick the best
results (in terms of mean accuracy) from Table 5 against each
dataset. Comparing with MOTiFS in terms of classification
accuracy, our proposed method outperforms on 9 out of
14 datasets and stands equal on 1 dataset. The superiority of
the proposed method is clearly evident in terms of the num-
ber of selected features. Our proposed method selects very
less number of features with improved or nearly equivalent
classification performance on all the datasets. The results of
relatively large dimensional datasets, ‘‘Multiple ft.’’, ‘‘DNA’’,
‘‘Hillvalley’’, ‘‘Musk 1’’, ‘‘Coil20’’ and ‘‘Orl’’ are worth
mentioning where our proposed method selects very small
number of features as compared to MOTiFS with improved
accuracy.

Comparing with SFSW, our proposed method outperforms
on 8 out of 11 datasets in terms of both the classification
accuracy and the dimensional reduction. Comparing with
E-FSGA, our proposed method overtakes on 6 out

VOLUME 6, 2018 76043



M. U. Chaudhry, J.-H. Lee: Feature Selection for High-Dimensional Data Using MCTS

TABLE 6. Comparison (w.r.t Avg. Accuracy & no. of Sel. Feat) of H-MOTiFS with other methods, for small dimensional datasets. Best results in each row
are bold and underlined. The second best results in each row are in bold face. ‘‘-’’ are placed wherever information is not available.

of 8 datasets in terms of accuracy. It shows the dominance
of H-MOTiFS over GA based approaches where the tuning
of plenty of parameters is a huge challenge for the optimized
performance, as the number of features grows. H-MOTiFS
shows the best accuracy on 5 out of 6 datasets in comparison
with both WOA and WOA-T. Moreover, H-MOTiFS selects
a very less number of features than WOA and WOA-T
for all the datasets. Comparing with all other approaches,
SFS, SBS, FS-FS, FR-FS, PSO(4-2) and DEMOFS, our
proposedmethod outperforms on all datasets, except 1 dataset
‘‘Hillvalley’’ where PSO(4-2) and DEMOFS show better
classification performance.

Overall summarizing Table 6, our proposed method,
H-MOTiFS, shows the best performance on 9 datasets,
‘‘Ionosphere’’, ‘‘Multiple ft.’’, ‘‘German no.’’, ‘‘DNA’’,
‘‘Coil20’’, ‘‘Orl’’, ‘‘Lung_Discrete’’, ‘‘Kr-vs-kp’’, and
‘‘Spect’’. On 3 datasets, ‘‘Spambase’’, ‘‘Waveform’’, and
‘‘Musk 1’’, our proposed method stands the 2nd best among
the list. On 4 datasets ‘‘Arrhythmia’’, ‘‘WBDC’’, ‘‘Sonar’’,
and ‘‘Hillvalley’’, our proposed method takes the 3rd posi-
tion or less. Collectively, H-MOTiFS shows the outstanding
performance in terms of accuracy and dimension reduction.

Specially, for ‘‘Multiple feat.’’, ‘‘DNA’’, ‘‘Coil20’’, and
‘‘Orl’’ datasets (relatively large dimensional datasets),
the results are worth mentioning where H-MOTiFS selects
very small number of features with highly improved classi-
fication accuracy as compared to all other methods. The last
column in Table 6 shows the accuracy results without feature
selection.

2) HIGH DIMENSIONAL DATASETS
For microarray datasets, we use 1-NN classifier for evalu-
ation as reported in the random forests based method [55]
and SRKNN [44]. We select the top 10, 20, and 30 genes
and report the average results in Table 7, along with the
standard deviation of 5 independent runs. Two datasets,
‘‘Prostate’’ and ‘‘DLBCL’’, show their best when top
10 features are selected. Six datasets, ‘‘Colon’’, ‘‘Lym-
phoma’’, ‘‘Breast 2’’, ‘‘Leukemia 2’’, ‘‘Adenocarcinoma’’,
and ‘‘CNS’’, are the best at top k=20. Whereas, six
datasets, namely ‘‘Leukemia 1’’, ‘‘SRBCT’’, ‘‘Brain’’,
‘‘Breast 3’’, ‘‘NCI’’, and ‘‘9 Tumors’’ perform the best at
top k=30. This indicates the significance of top-k selector
component.
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TABLE 7. Mean accuracy and standard deviation on microarray datasets
at different values of top-k features. Bold face values in each row
indicate the best result.

Comparingwith ensemble based approaches, SRKNN [44],
our method shows the best performance on 8 out of
11 datasets namely, ‘‘Lymphoma’’, ‘‘SRBCT’’, ‘‘Breast 2’’,
‘‘Prostate’’, ‘‘Leukemia 2’’, ‘‘Brain’’, ‘‘NCI’’ and ‘‘9 Tumors’’.

Comparing with MCTS based wrapper approach,
MOTiFS, our method outperforms on 12 out of 14 datasets
in term of both accuracy and number of selected features.
The comparison of the number of selected features shows
the dominance and significance of our proposed method.
H-MOTiFS selects a very small number of features with
highly improved accuracy as compared to MOTiFS.

While comparing H-MOTiFS with traditional wrapper
based (SFS and IWSSr), multi-objective (ENORA) and evo-
lutionary (HPSO-LS, PSO (4-2), ACO, PSO) approaches,
our method outperforms on all datasets, except one dataset
‘‘Leukemia 2’’ where PSO shows the best result as compared
to our method. However, it tends to select a large number of
features.

Summarizing overall results on 14 microarray datasets,
H-MOTiFS stands the best on 8(‘‘Leukemia 1’’,
‘‘Lymphoma’’, ‘‘SRBCT’’, ‘‘Breast 2’’, ‘‘Brain’’,
‘‘9 Tumors’’, ‘‘DLBCL’’ and ‘‘CNS’’) datasets. On 3 datasets
‘‘Prostate’’, ‘‘Adenocarcinoma’’ and ‘‘NCI’’, our method
shows the 2nd best performance in a row. Only on 3 datasets,
‘‘Colon’’, ‘‘Leukemia 2’’ and ‘‘Breast 3’’, H-MOTiFS stands
3rd or less. The last column in Table 8 shows the accuracy
results without performing any feature selection. The highly
improved performance ofH-MOTiFSwith very small number
of selected features, as compared to no feature selection,
shows its significance in feature selection for very high
dimensional datasets.

3) NON-PARAMETRIC STATISTICAL TESTS
Comparing mean accuracy scores, our proposed method
shows superior performance inmost of the cases (as presented
above). However, we perform the statistical tests to validate
whether the results achieved by the proposed method are
statistically significant. We perform the Wilcoxon Signed-
Ranks and Friedman tests [62] with p value of 0.05 to verify

whether H-MOTiFS outperforms the comparison methods in
the experiments.

For pair-wise comparison between the H-MOTiFS and the
other methods, we conduct the Wilcoxon Signed-Ranks test
for small and high dimensional datasets and report the results
in Tables 9 and 10, respectively. We perform the test where
the number of datasets is at least 8. The high values of R+

and low values of R− indicate that H-MOTiFS outperforms
all the other methods for both the small and high dimen-
sional datasets. Further we test the significance of results by
observing the p value. Observing Table 9 reveals that the
p values against the MOTiFS, SFS, SBS, and E-FSGA are
lower than the significant level of 0.05, thus, indicating the
rejection of null hypotheses. However, the p value against the
SFSW is greater than 0.05, indicating that H-MOTiFS is not
significantly better than SFSW. Table 10 for high dimensional
datasets shows the p values against MOTiFS, SFS, IWSSr,
ENORA, and PSO are less than 0.05, thus, revealing the
significance of H-MOTiFS. The p values against RF and
SRKNN reveal that the null hypothesis is not rejected. These
results suggest that H-MOTiFS is significantly dominated
over most of the other methods. Specially, on high dimen-
sional datasets the dominance of H-MOTiFS is amplified and
a very small values of p are observed in most of the cases.

The overall impact of H-MOTiFS among the multiple
methods is drawn using the Friedman test. We report the
results of Friedman test in Table 11 and Table 12, for small
dimensional and high dimensional datasets, respectively.
In both the tables, H-MOTiFS stands 1st with the lowest rank
value among the other methods. Moreover, p < 0.05 in both
the tables shows the significant difference in results. It also
indicates the dominance and significance of H-MOTiFS over
all the other methods.

E. DISCUSSION
We proposed a novel hybrid framework to investigate and
understand the importance of MCTS in feature selection for
very high dimensional datasets. Because of the less branch-
ing factor, our algorithm traverses the feature selection tree
efficiently and finds the best feature subset by incorporating
tree search with random sampling. The induction of the filter
reduces the impact of randomness and aids in removing the
noisy features during each simulation.

We test the effectiveness of our proposed method by exper-
imenting on 30 datasets including very high dimensional
(microarray) datasets. The promising results show that our
proposed method is able to select the top k best features.
The diversity in the results among different datasets indicates
the significance of the top-k filter. The nominal standard
deviation shows the stability of the search procedure at a fix
value of k in a top-kfilter. The remarkable performance, espe-
cially on very high dimensional datasets, makes our approach
a perfect candidate to be considered as a standard feature
selection approach and for future researches.

In our proposed method, we use the deterministic number
of simulations, s. For n number of features, the complexity
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TABLE 8. Comparison (w.r.t Avg. Accuracy & no. of Sel. Feat) of H-MOTiFS with other methods, for microarray datasets. Best results in each row are bold
and underlined. The second best results in each row are in bold face. ‘‘-’’ are placed wherever information is not available.

TABLE 9. Results of Wilcoxon test for the small dimensional datasets.

of one simulation is given as, O(nl + f + c), where l is the
complexity of node selection, f and c are the complexities of
the filter and the classifier, respectively. As node selection l
is a constant, the complexity can be stated as, O(n + f + c).
Including the complexities of the filter (ReliefF), O(nm), and
the nearest neighbor classifier, O(nm), the complexity of one
simulation becomes O(n + nm + nm), where m represents
the number of instances. Hence, the overall complexity of

TABLE 10. Results of Wilcoxon test for high dimensional (microarray)
datasets.

the proposed algorithm O (snm) is linear to the number of
features.

For comparison, the complexity of MOTiFS is stated
as O(snm). The complexities of SRKNN and random forests
are stated as O(n

3
2 bm) and O(n

1
2 bmlogm), where b repre-

sents the number of base classifiers [44]. The complexity
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TABLE 11. Results of Friedman test for the small dimensional datasets.

TABLE 12. Results of Friedman test for high dimensional (microarray)
datasets.

of SFSW is given as O(n + m2), where m represents the
data points for inter-class and intra-class distance computa-
tions [23]. The complexity of FSFS is O(n2m). The com-
plexity comparisons show that our proposed method is bet-
ter or equally efficient as compared to various comparison
methods.

Future research directions may include the detailed sen-
sitivity analysis and/or experimenting with different reward
functions for the improved performance.

V. CONCLUSIONS
In this study, we proposed a novel framework based
onMCTS, to deal with very high dimensional datasets with an
objective to achieve high accuracy with reduced dimensions.
In our proposed framework, MCTS is deployed in conjunc-
tion with the hybrid of filter-wrapper methods. Our proposed
method efficiently searched the feature space by exploiting
the good solutions along with exploring the new ones. Our
proposed method was able to find the top k best features
in fewer simulations, relatively. The simplicity and the less
model complexity are the key characteristics of our method,
as only three hyper-parameters are associated. Experiments
were performed on 30 publically available datasets including
the very high dimensional (microarray) datasets. Comparison
with the state-of-the-art methods showed the significance of
our proposed method.
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