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ABSTRACT Simultaneously removing atmospheric turbulence-induced geometric distortion and blurry
degradation is a challenging task. In this paper, we propose an effective method to remove or at least
reduce turbulence effects in unified complex steerable pyramid (CSP) framework. The proposed method first
decomposes the degraded image sequence by CSP. Then, the local motion and the energy information of the
image sequence can be represented by multiscale and multidirectional phases and amplitudes. To mitigate
turbulence-induced random oscillation, we use temporal average phase as the initial reference phase. Then,
the reference phase is iteratively corrected, using the proposed phase correction method which is capable
of correcting the large displacement. To reduce blurry degradation, optimal amplitude selection and fusion
methods are proposed to reduce blur variation and CSP reconstruction errors. Finally, the corrected phase
and fused amplitude can be synthesized to generate a reconstructed image. To further enhance the image
quality, a blind deconvolution approach is adopted to deblur the reconstructed image. Through a variety
of experiments on the simulated and real data, experimental results show that the proposed method can
effectively alleviate the turbulence effects, recover image details, and significantenhance visual quality.

INDEX TERMS Atmospheric turbulence, image restoration, complex steerable pyramid.

I. INTRODUCTION
The image captured by the long-distance imaging systems,
such as those for visual surveillance or astronomical obser-
vations, can be severely degraded by atmospheric turbulence.
The spatiotemporal distortion and varied blur are the main
atmospheric turbulence effects on imaging.

In general, there are two categories of methods to
restore the degraded image, one is hardware-based adaptive
optics (AO) techniques [1], [2], and the other is software-
based image processing methods. The AO system is expen-
sive and difficult to implement without special devices.
Therefore, several image processing methods have been
proposed [3]–[21]. Supposing the camera and the scene
are static, the main purpose of these methods is to recon-
struct a single high-quality image from the degraded image
sequence.

These methods [3]–[21] consist of three major steps.
Step 1, stabilizing the degraded video through non-rigid
image registration. Step 2, fusing the registered image
sequence into one image. Step 3, using deconvolution to the
fused image and generate a sharp image.

To stabilize the degraded video through non-rigid image
registration, a reference image should be prepared in advance.
The easiest method is to select the first frame of the video
as the reference image [3]. However, the first frame may
be of low signal-to-noise ratio (SNR) resulting in inaccurate
registration. The temporal mean [4], [5] and the temporal
median [6] of the image sequence are also widely used as
the reference image. However, the temporal mean and the
temporal median may also be blurry. This will yield poor
registration results. To avoid using a potential blurry refer-
ence image, work [7] uses a blind image quality metric to
select the sharpest frame from the degraded image sequence
as the reference image. A similar work was done in [8]
by using ‘‘lucky frame selection’’. The suitable reference
image should be sharp and less distorted simultaneously [9].
Image sharpness can be measured by the first or second
derivative of the image [11]. However, turbulence-degraded
images inevitably contain high-frequency noise. Derivative-
based measurements are sensitive to noise. The direct method
for measuring the geometric distortion between two images
is to measure the deformation field. However, the intensity

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

75855

https://orcid.org/0000-0002-1563-8993


C. Zhang et al.: Removing Atmospheric Turbulence Effects in Unified CSP Framework

similarity between a frame and the average frame is often
used to measure the geometric distortion. In the turbulence-
degraded video, the average frame is blurred. The selected
reference frame is likely to be similar to the average frame.
In work [12], the low-rank image, obtained by low-rank
matrix decomposition method, is considered as the initial
reference image, which is then iteratively refined by using
a variational optimization method. However, both low-rank
matrix decomposition and variational optimization are time-
consuming methods for high-resolution images.

Image registration and fusion are critical in high-quality
image recovery from degraded videos. In these regards, the
B-spline based non-rigid image registration method [4],
[5], [13] has been widely used to suppress geometric
distortion. In [4] and [13], it is used to align each frame to
the chosen reference image, followed by a patch-wise ker-
nel regression based near-diffraction-limited (NDL) image
fusion. However, such a registration method may not
accurately achieve pixel-level correspondence between two
images due to themissed detail features in the degraded image
sequence. Inevitably, this will lead to registration errors.
To improve the quality of the registration, the deformation-
guided fusion method [12] is proposed to further reduce the
registration errors. In this work, image feature orientations
are computed in advance; they are then used to compute a
pixel-wise deformation-guided kernel to remove the residual
geometric distortion. In [14], Sobolev sharpening flow based
method was proposed to reduce the inter-frame geometric
distortion. However, the image intensity is degraded due to
the turbulence effects, the distribution of the image intensity
is not preserved under Sobolev sharpening, and the results
will generate cross-color artifacts.Work [15] proposes to esti-
mate the geometric distortion and use the inverse operation
to recover the original image. Optical flow based registration
techniques [9], [16]–[19] are also widely used to suppress the
geometric distortion. However, the optical flow techniques
used in these methods are under the assumption of brightness
consistency. This assumption does not hold here because
of fluctuations in the wavefront angles of arrivals (AOA),
when the light wave propagates through atmospheric tur-
bulence. Therefore, it cannot generate accurate registration
results. In [10], the dual-tree complex wavelet-based fusion
method has been proposed. This method requires manual
interaction to select the informative region of interest (ROI)
and use a segmentation technique to implement region-level
fusion. To improve the quality of image fusion, method [20]
extends Fourier burst accumulation (FBA) and uses wavelet
burst accumulation (WBA) to accumulate high-frequency
information to restore the turbulent blur. Recently, a phase-
based method has been proposed to stabilize the turbulence-
distorted video [21]. It uses the temporal lowpass filtering to
alleviate the temporal variation of local phases and ampli-
tudes. However, the temporal lowpass filtering technology
does not have the ability to identify the optimal phase and
the optimal amplitude and cannot reconstruct satisfactory
results.

The fused image is a blurry image. Thus, deblurring is
required. Because the blur varies spatially and temporally,
restoring high-quality image is a nontrivial problem. An effi-
cient filter flow method [22] was proposed for spatially var-
ied point spread functions (PSF). This method divides each
frame into small overlapped patches which are considered
containing space-invariant blurs. According to this method,
near-diffraction-limited (NDL) image reconstruction [4] and
near-stationary patch based fusion [12] transform the space-
variant blur to space-invariant blur. Thus, the sharp image can
be generated by global deconvolution.

All the above-mentioned methods consider the turbulence-
induced geometric distortion and blurry degradation as two
unrelated problems and solve them separately by using two
independent algorithms. However, from the point of view of
atmospheric optics, the turbulence effects caused by wave-
front AOA fluctuations, which results in the optical wave
propagating oscillation and energy degradation. They cor-
respond to the turbulence-induced geometric distortion and
blurry degradation respectively in the captured long-distance
video.

Complex steerable pyramid (CSP) [23], [24] can decom-
pose an image into multiscale and multidirectional phases
and amplitudes information and has the characteristics of
compact structure and perfect reconstruction. Just as stated
in [21] and [25], the local phase variation corresponds to
the local motion information. Local amplitude can be used
to represent local energy information, which corresponds to
the degree of blurry degradation. Inspired by the AO system
(adjusting the deformable mirror to compensate for the wave-
front fluctuations to suppress optical wave oscillation and
reduce energy degradation) [1], [2], we can adjust the local
phase and the amplitude to suppress geometric distortion and
reduce blurry degradation. Therefore, we propose an effective
method to remove or at least reduce turbulence effects in
unified complex steerable pyramid (CSP) framework.

The proposed method is implemented in the CSP domain.
Therefore, we first use CSP to decompose each frame
into multiscale and multidirectional phases and amplitudes.
To remove the random oscillation induced by turbulence,
we use the temporal average phase as the initial reference
phase. Then, the local phase difference between the phase
of each frame and the reference phase can be computed. The
local phase difference over time corresponds to the turbulence
induced local motion displacement. Because the mean of
the geometry deformation field corresponds to the ground
truth [18], we can derive the mean of the phase difference
of all the frames closes to the phase of the ground truth.
In other words, if the corrected phase is close to the phase of
the ground truth, the mean of the phase difference of all the
frames is a small value closing to zero. Under this constraint,
the reference phase is iteratively corrected to make the cor-
rected phase close to the phase of ground truth. To reduce
blurry degradation, optimal amplitude selection and fusion
methods are proposed by considering local movement, local
energy, and CSP reconstruction error. Finally, the corrected

75856 VOLUME 6, 2018



C. Zhang et al.: Removing Atmospheric Turbulence Effects in Unified CSP Framework

FIGURE 1. Block diagram for the proposed method.

FIGURE 2. Decomposition and reconstruction block diagram for CSP.

phase and the fused amplitude can be used to generate a
reconstructed image with reduced turbulence effects signif-
icantly. To further enhance the image quality, a blind decon-
volution algorithm is applied on the reconstructed image to
generate a high-quality result.

The main contributions of this work are as follows:
(1) An effective method is proposed to remove the turbu-

lence effects, which combines removing turbulence-induced
random oscillation and reducing blurry degradation in a uni-
fied CSP framework.

(2) The proposed phase correction method has the ability
to rectify the phases even with large displacement induced by
the strong turbulence.

(3) The importance of amplitude has been analyzed in
details. The proposed optimal amplitude selection and fusion
method can reduce the blur variation and CSP reconstruction
errors.

The rest of the paper is organized as follows: Section II
describes the proposed restoration framework. Experimental
results are given in Section III to show the performance
comparisons with other methods. Finally, we conclude the
proposed method in Section IV.

II. PROPOSED METHOD
The proposed method includes three stages (see the dia-
gram in Fig. 1): (1) removing turbulence-induced ran-
dom oscillation by phase correction; (2) reducing blurry
degradation by optimal amplitude selection and fusion;

(3) CSP reconstruction and deblurring to further enhance the
quality of the reconstructed image. Details of each stage are
described in the following sections.

A. CSP DECOMPOSITION AND PHASE AND AMPLITUDE
REPRESENTATION
Steerable pyramid [23], [24] uses steerable even filters to
decompose the frequency of an image into several oriented
frequency bands. CSP is the extension of the steerable pyra-
mid [24]. It adopts steerable even filters and steerable odd
filters (the Hilbert transform of the steerable even filters) to
form the complex steerable filter (steerable analytic filters)
and uses it to decompose an image into a real part steerable
pyramid and an imaginary part steerable pyramid. The com-
bination of the real part steerable pyramid and the imaginary
part steerable pyramid forms the CSP.

The CSP decomposes an image into multiscale and multi-
directional analytic signals. The complex-valued coefficients
in the CSP can be used to obtain multiscale and multidi-
rectional phases and amplitudes information, which will be
exploited in the following to remove the turbulence effects.
The decomposition and reconstruction block diagram for
the CSP is shown in Fig. 2. For an input image F(z), it is
first decomposed into highpass and lowpass bands. Then,
the lowpass band is further decomposed into oriented sub-
bands and a lower frequency band. Next, the lower frequency
is downsampled by a scale factor of λ. Such a decomposition
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(indicated by the red region) can be recursively continued at
the location of the solid circle to form the CSP pyramid.

After the CSP decomposition, we can compute the multi-
scale and multidirectional phases and amplitudes. Suppose
Vψ,θ (z) is the complex steerable response of image F(z),
indexed by scale ψ and orientation θ . It can be computed by
convolution with the complex steerable filter Bψ,θ + iCψ,θ ,
i.e.,

Vψ,θ (z) = F(z) ∗ (Bψ,θ + iCψ,θ ) = Pψ,θ (z)+ iQψ,θ (z) (1)

where Pψ,θ is the even filter response, Qψ,θ is the odd filter
response. Based on Eq. (1), we can compute multiscale and
multidirectional amplitudes and phases.

Aψ,θ (z) =
√
Pψ,θ (z)2 + Qψ,θ (z)2 (2)

ϕψ,θ (z) = atan2[Qψ,θ (z),Pψ,θ (z)] (3)

where Aψ,θ (z) is the amplitude component describing the
local energy information at z, ϕψ,θ (z) is the phase com-
ponent corresponding to the local motion information and
atan2 returns the arc tangent of the two variables in [−π, π].
Based on Eq. (2) and (3), the even filter response Pψ,θ can
also be expressed with Aψ,θ (z) and ϕψ,θ (z) as

Pψ,θ (z) = Aψ,θ (z) cos[ϕψ,θ (z)] (4)

After the amplitude Aψ,θ (z) and phase ϕψ,θ (z) have been
processed, based on Eq. (4), the restored amplitude and the
restored phase can be synthesized to generate the restored
real component, which will be convoluted with the conjugate
steerable even filter to generate the reconstructed image.
The reconstruction process is opposite to the decomposition
process. It is shown in Fig. 2.

B. PHASE CORRECTION
1) PHASE DIFFERENCE COMPUTATION
According to the phase-based signal processing tech-
niques [25], the local phase difference corresponds to the
local motion. Therefore, the turbulence induced random
oscillation can be transformed to analyze the local phase dif-
ference. After the degraded image sequence has been decom-
posed with CSP, the phase difference between the phase of
each frame and the reference phase can be computed as

1ϕψ,θ,t (z) = atan2[sin(ϕψ,θ (z)− ϕψ,θ,t (z)),

cos(ϕψ,θ (z)− ϕψ,θ,t (z))] (5)

where ϕψ,θ (z) and ϕψ,θ,t (z) are respectively the reference
phase and the phase of t-th frame on the scale ψ and ori-
entation θ .1ϕψ,θ,t (z) is their phase difference. A large phase
difference corresponds to a large displacement. But due to
the periodicity of the phase difference, 1ϕψ,θ,t (z) is limited
in the range of [−π, π]. The motion displacement dψ,θ,t and
the motion range can be computed as

dψ,θ,t =

∣∣1ϕψ,θ,t (z)∣∣
ω

≤
π

ω
(6)

where ω is the spatial frequency and each scale in the
CSP represents a band of spatial frequencies. From Eq. (6),
we can find both the phase difference and spatial frequency
determine the motion range. The lower-frequency layers
(coarse layers) can support the larger displacement, while
the high-frequency layers limit the large motion. In addition,
the motion of two adjacent layers should be close, which
means the phase difference between two adjacent layers
should be similar. Therefore, we intend to correct the phase
difference on the high frequency layer when the phase differ-
ence between two adjacent layers is larger than a threshold.
The difference between two adjacent layers can be expressed
as

υψ,θ,t = atan2[sin(1ϕψ,θ,t (z)− λ1ϕψ−1,θ,t (z)),

cos(1ϕψ,θ,t (z)− λ1ϕψ−1,θ,t (z))] (7)

where λ is the scale factor of CSP. The scales of two adjacent
layers are respectivelyψ andψ−1. If

∣∣υψ,θ,t ∣∣ is larger than a
threshold, the phase difference on the high frequency layer is
unreliable, we should correct1ϕψ,θ,t (z) and set1ϕψ,θ,t (z) =
λ1ϕψ−1,θ,t (z). In this paper, we set the threshold to be 0.5π .
If the threshold is too low, the high frequency layer will ignore
their own motion and lose the detail of the motion at the high
frequency. On the contrary, the high value does not benefit to
correct the large displacement.

2) REMOVING TURBULENCE INDUCED RANDOM
OSCILLATION BY PHASE CORRECTION
We first use the temporal mean phase as the initial reference
phase ϕψ,θ (z). Then, we use the above-proposed method to
compute the phase difference1ϕψ,θ,t (z) between the phase of
each frame and the reference phase. However, in some cases,
a few of phase difference 1ϕψ,θ,t (z) may differ significantly
from the majority. These outliers may be originated from
abrupt image motion due to large tilts in the wave-front
angle-of-arrival. These outliers may result in the inaccurate
geometric correction. To solve this problem, the outlier iden-
tification method [26] is applied. Because turbulence induced
temporal random oscillation follows Gaussian distribution
approximately, the outlier can be identified and eliminated
if ∣∣1ϕψ,θ,t (z)− µ∣∣ > ρ1−α/2σ (8)

where ρc is the c quantile of the standard normal distribu-
tion, α is the confidence level, σand µ are respectively the
standard deviation and the mean of 1ϕψ,θ,t (z). Here, we set
ρ1−α/2 = 5 to suppress the outlier. Then, the mean of the
remaining phase differences can be computed as

1ϕψ,θ (z) =

∑
tr
1ϕψ,θ,tr (z)

Nr
(9)

where 1ϕψ,θ,tr (z) is the remained phase difference between
the t-th frame and the reference phase, Nr is the number
of the remaining frames, 1ϕψ,θ (z) is the mean of the phase
difference. Finally, reference phase ϕψ,θ (z) can be corrected
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FIGURE 3. Amplitude degradation and reconstruction error. (a) a sharp image, (b) a Gaussian blur image of (a),
(c) the amplitude intensity of the centerline profile in the high frequency layer, (d) reconstructed image by shifting
three pixels to the right, (e) reconstructed image by shifting five pixels to the right (f) reconstruction error of
different movement and different frequency layer.

with 1ϕψ,θ (z) to remove the geometric distortion. This can
be expressed as

ϕ′ψ,θ (z) = ϕψ,θ (z)+1ϕψ,θ (z) (10)

where ϕ′ψ,θ (z) denotes the corrected reference phase. If the
corrected phase ϕ′ψ,θ (z) is close to the phase of ground truth of
undistorted image, the mean of the phase difference1ϕψ,θ (z)
should be a small value close to zero. In order to generate the
accurate results, we set ϕ′ψ,θ (z) as the new reference phase
ϕψ,θ (z) and repeat the above method to correct iteratively the
reference phase until

∣∣1ϕψ,θ (z)∣∣ < ε, where ε is a threshold
for controlling the accuracy.

C. OPTIMAL AMPLITUDE SELECTION AND FUSION
After we get the corrected phase, the local amplitude is
needed to reconstruct an image. The average amplitude of
the image sequence and temporal lowpass filtering of ampli-
tude [21] are two common amplitude processing methods.
However, these methods can not generate satisfactory results
because the reconstructed amplitude is not the optimal ampli-
tude, which ignores the amplitude degradation induced by
turbulence blur and movement. Fig. 3 reveals this problem.
To solve this problem, we propose a novel strategy to select
the optimal amplitude.

Fig. 3(a) is a sharp image with an impulse signal at the
image center. In the local patch, the turbulence blur approx-
imate to the Gaussian blur [27]. Therefore, we use Gaus-
sian blur to degrade the local impulse signal. Fig. 3(b) is a
Gaussian blurred image of the Fig. 3(a). We then use CSP
to decompose these two images into three frequency layers
(high frequency layer, middle frequency layer and low fre-
quency layer). Fig. 3(c) shows the amplitude intensity of the

centerline profile in the high frequency layer. Also, we can
find the amplitude intensity of the sharp image is larger than
that of the blurred image in all the frequency layers. The
reason of this phenomenon is because the blurring degrades
the local energy. Therefore, we should select the large
amplitude.

Based on this, we further analyze the effect of turbulence
motion on the result of CSP reconstruction. For the better
explanation, we use the local impulse signal to simulate
turbulence motion. We use phase correction method to shift
the degraded impulse signal in Fig. 3(b) to the right. Then,
the shifted impulse signal can be reconstructed with the cor-
rected phase (phase of the ground truth, there is no error
in the corrected phase) and the amplitude of the original
Fig. 3(b). Fig. 3(d) and (e) are respectively the reconstructed
images by shifting three pixels and five pixels to the right.
From Fig. 3(e), we can visually find the reconstructed image
is degraded. To reveal reconstruction error more intuitively,
the reconstruction error has been analyzed. With the increase
of the movement, we compute the mean of the reconstruction
error on each frequency layer and show the result in Fig. 3(f).
From Fig. 3(f), we can see that, for all the frequency layers,
the reconstruction error increases as the movement increases.
Therefore, we should select the amplitude which has less
movement.

Based on the above analysis, we should select the local
amplitude which is large with less movement. To reduce
blur variation, we select the optimal amplitude in the local
patch. The proposed method is illustrated in Fig. 4. This
strategy corresponds to detect near-stationary patches. Near-
stationary patch based fusion can be deblurred and enhanced
using a space-invariant blind deconvolution method [12].
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FIGURE 4. Illustrate of optimal amplitude selection and fusion.

In a multiscale and multidirectional amplitude sequence
{Aψ,θ,t }, each amplitude image is divided into K × K over-
lapped patches centered at each pixel and the mean of the
amplitudes is considered as the amplitude of local patch �.
It can be defined as

aψ,θ,t (z) =
1

K × K

∑
z∈�

Aψ,θ,t (z) (11)

where aψ,θ,t (z) is the local amplitude of patch � centered
at location z, indexed by scale ψ , orientation θ and frame
number t .
In the same way, the local movement of patch � centered

at location z can be derived from Eq. (5) and Eq. (9), which
is

mψ,θ,t (z) =
1

K × K

∑
z∈�

∣∣1ϕψ,θ (z)−1ϕψ,θ,t (z)∣∣ (12)

To select the optimal amplitude, we normalize aψ,θ,t (z) and
mψ,θ,t (z) to the range of [0, 1]. Then, the energy functional
Eψ,θ,t (z) for finding the optimal amplitude can be defined as

Eψ,θ,t (z) = ηψaψ,θ,t (z)+ (1− ηψ )(1− mψ,θ,t (z))

ηψ ∈ [0, 1] t ∈ [1,N ] (13)

where t is the frame number, ηψ is a weight coefficient
for controlling the importance of the local amplitude and
the local movement. We propose to maximize the energy
functional Eψ,θ,t (z) over t . Assuming Aψ,θ,t∧ (z) is the largest
value of Eψ,θ,t (z) at the frame t∧, the amplitude Aψ,θ,t∧ (z)
is chosen as the optimal amplitude at z for the fusion. From
Fig. 3(f), we can see that when the movement is constant,
the reconstruction error of the low frequency layer is larger
than that of the high frequency layer. To reduce reconstruc-
tion error, we set a low weight value on the low frequency
layer and a large weight value on the high frequency layer.

According to the total number of the CSP layers, the weight
coefficient of each scale is proportional to the scale number.
It can be defined as

ηψ =
ψ

L − 1
ψ = 0, 1, 2, ......L − 1 (14)

where L is the total number of layers, ψ is the scale, the
larger ψ , the higher the frequency.

In Fig. 3, we have analyzed the effect of the image motion
on the reconstruction error. The reconstruction needs the cor-
rected phase and the amplitude. In Fig. 3(d) and (e), the cor-
rected phase is replaced by the phase of the ground truth.
Therefore, the reconstruction error comes from the ampli-
tude. In this experiment, the original amplitude (the amplitude
of the original image Fig. 3(b)) is used to reconstruct the
shifted image. Because there is no movement in the original
amplitude, the reconstruction error will appear.

The suitable amplitude should be close to the amplitude
of an image which is without geometric distortion. In the
turbulence-degraded videos, the temporal average is an easy
method to remove the geometric distortion. Therefore, we use
Eq. (13) to select T most optimal amplitudes and fuse them
by setting their average amplitude as the reconstructed ampli-
tude. This operation also can avoid local outlier induced
by interframe noise and brightness changing. T is selected
according to the turbulence strength. Compared with the
turbulence effects, if T is too small, the reconstructed image
may contain noise. On the contrary, a high value may contain
the degraded amplitude and generate blurry results.

D. RECONSTRUCTION THE STABLE IMAGE AND
DEBLURING
1) RECONSTRUCTING THE STABLE IMAGE
Based on Eq. (4), the corrected phase and the fused amplitude
can be synthesized to generate the restored real component.
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Then, the restored real component and temporal average
highpass and lowpass residues can be used to generate the
reconstructed image with reduced turbulence effects signifi-
cantly. The reconstruction process is opposite to the decom-
position process. It is shown in Fig. 2.

2) DEBLURRING
Although the optimal amplitude can be used to reconstruct a
relatively clear result, the turbulence induced blur still exists
in the reconstructed image. To further enhance the image
quality, a blind deconvolution algorithm is adopted.

The degradation is generally modeled as

Y = F ∗ h+ n (15)

where Y denotes the reconstructed stable image, F and
h are respectively the sharp image and the blur kernel, n is
the noise. The deconvolution model is described as follows

(F̂, ĥ)=argmin
F,h

‖Y − F ⊗ h+ n‖2+β1UF (F)+ β2Uh(h)

(16)

Based on the prior knowledge of F and h, where UF (F)
and Uh(h) are respectively their regularization terms used to
restrain them. As suggested in [28], the sparse regularization
term for F is defined as

UF (F) =

∥∥∥∥ς (∂F∂x )+ ς (∂F∂y )
∥∥∥∥
1

(17)

where ∂F
∂x and ∂F

∂y are respectively denote the derivatives of F
in horizontal and vertical directions, and ς (·) is defined as

ς (s) =

{
−γ1 |s| s ≤ lt
−(γ2s2 + γ3) s >lt

(18)

where lt , γ1, γ2 and γ3 are fixed parameters. We use the
suggested parameter settings described in [28]. The sparse
regularization term for h is defined as

Uh(h) = ‖h‖1 (19)

The details to optimize Eq. (16) can be found in [28].

III. EXPERIMENTAL RESULTS AND ANALYSIS
We elaborate on the processes of our experiments in this
section. We first describe the parameter settings for the pro-
posed method. Then, we illustrate the importance of ampli-
tude and compare the results generated using the proposed
amplitude processing method with those using the traditional
methods. Next, we illustrate the detail process and demon-
strate the validity of the proposed method in the case of
strong turbulence. Finally, we compare and evaluate the pro-
posed method respectively on real and simulated turbulence-
degraded videos.

To quantitatively evaluate the proposed method, we input
a sharp image (as shown in Fig. 5) and strong turbulence
parameters into the turbulence simulation method [27] to
generate 100 frames degraded image sequences.

FIGURE 5. Original sharp image.

FIGURE 6. Reconstruction results with different amplitude processing
methods. (a) proposed method, (b) average amplitude of the image
sequence, (c) amplitude lowpass filtering [21].

The proposed method is compared with seven different
methods: the two-stage method for image restoration [29]
(Twostage), the centroid method [18] (Centroid), Sobolev
gradient-Laplacian method [14] (SGL), non-local total
variance for turbulence stabilization [15] (NLTV), Laplacian-
Riesz pyramid for turbulence stabilization [21] (LRP), near-
diffraction-limited based image reconstruction [4] (NDL) and
complex wavelet-based fusion method [10] (CW). The out-
puts of all comparedmethods are generated using the authors’
codes, with the related parameters unchanged.

A. PARAMETER SETTINGS
For CSP decomposition, the original CSP uses octave band-
width filters and decomposes the frequency band into four
orientations, but the impulse response of this filter is narrow
in space, which cannot support large motions [25]. In addi-
tion, the more orientations are, the more accurate motion esti-
mation can be computed [25]. Therefore, we should choose
wide filters and decompose the frequency band into more
(than four) orientations. But it will increase data compu-
tational cost. To balance between the performance and the
computational cost, we decompose the frequency band into
eight orientations with octave bandwidth filters (scale fac-
tor λ = 2) and half-octave bandwidth filters (scale factor
λ = 1.5) respectively for weak turbulence and strong tur-
bulence. For more about CSP, we refer interested readers
to [23] and [24] for details. We set a small threshold ε = 0.1
as the phase correction iteration stop threshold. The size
of the patch � is set as K = 5. We empirically set the
blur kernel range and noise level range as [5] and [11] and
[0.01, 0.06] to match with the actual turbulence condition.
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FIGURE 7. Image restoration results and quantitatively evaluate after each iteration. (a) a distorted
frame, (b)-(f) are respectively the restored results after one to five iterations of phase correction,
(g)-(i) are respectively the PSNR, SSIM and the mean of phase difference for each iteration.

The deblurring weight is chosen within the interval
[0.2, 0.5]. Other parameters use the default settings described
in [28].

B. IMPORTANCE OF OPTIMAL AMPLITUDE SELECTION
This section illustrates the importance of amplitude selection
in reconstruction. We first use the proposed method to cor-
rect phase. Then, we use the proposed amplitude processing
method, the average amplitude of the image sequence and
amplitude lowpass filteringmethod [21] to produce the recon-
struction results, respectively. As can be seen by comparing
the reconstructed results with different amplitude processing
methods in Fig. 6, the reconstructed result obtained from the
proposed amplitude processing method can generate sharper
result than the other two methods. There are two factors
can explain this phenomenon. (1) Because the amplitudes
of most frames in the image sequence are degraded by the
turbulence blur, the average amplitude of the image sequence
will also generate degraded amplitude. (2) The purpose of
amplitude lowpass filtering is to alleviate the temporal vari-
ation of amplitudes caused by turbulent oscillation and to
generate the stable amplitude. However, due to lowpass fil-
tering technology only considers the temporal variation of
amplitudes and cannot identify the degree of amplitude degra-
dation, the generated amplitude cannot be guaranteed to be
the optimal amplitude. The proposedmethod solves the above

two problems. Our method not only selects and fuses optimal
amplitudes but also considers the effects of the turbulent
oscillation on the reconstruction error. In summary, the ampli-
tude plays an important role in the complex analysis based
turbulence removal method. Compared to the phase-based
method [21], the proposed method improves noticeably the
quality of the reconstruction result.

C. EFFECTIVENESS OF THE PROPOSED METHOD
In this section, we illustrate the detail process of the proposed
method and demonstrate the validity of the proposed method.
We first use the average phase as the initial phase. Then the
restored images can be generated after each iteration of phase
correction. We employ Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index (SSIM) [30] to quantify the
quality of the restored images. Fig. 7 shows the experimental
results. As shown, Fig. 7 (b), (c), (d), (e) and (f) are respec-
tively the restored results after one to five iterations of phase
correction, in which the red regions are enlarged and shown in
the bottom right corner. Fig. 7(g), (h) and (i) are respectively
the PSNR, SSIM and the mean phase difference for each
iteration.

Fig. 7(i) shows the mean of phase difference decreases
gradually as the iteration number increases. It means the
phase of the result is gradually close to the phase of ground
truth. Therefore, the quality of restoration (PSNR and SSIM)
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FIGURE 8. Comparison of results on simulated sequence. (a) ground truth, (b)-(c) two distorted frames, (d) Centroid, (e) NLTV,
(f) Twostage, (g) LRP, (h) SGL, (i) NDL, (j) CW, (k) proposed method without deblurring, (l) proposed method with deblurring.

increases with the increase of the iteration numbers.
Although the more iteration numbers, the better the results,
after four iterations, we can find the PSNR and SSIM increase
slowly. Therefore, we set a small stop threshold ε = 0.1 in
this paper, namely, the iteration is stopped when the mean of
the phase difference is below 0.1. The experimental results
demonstrate the validity of the proposed method.

D. SIMULATED EXPERIMENTS
In this section, simulated experiments are implemented on
the simulated strong turbulence sequence to test the proposed
method. The restoration results are shown in Fig. 8. The red
regions are enlarged and shown in the bottom right. Because
blind deconvolution in the proposed method and method [4]
is post-processing step, other compared methods [10], [18],
[14], [15], [21], [29] do not include the deblurring step. To be
objective and fair, we only compare the CSP reconstruction
image. The deblurring result is only used to show the final
result visually.

The SGL method (Fig. 8(h)) produces cross-color and
shadowy artifacts during restoration. The LRP method
(Fig. 8(g)) produces more blurry results than other methods
since the low pass filtering in this method cannot gener-
ate optimal amplitude and phase. In the Centroid method,
the deformation field computed by intensity-based optical

flow is not accurate for the degraded turbulence sequence.
All the frames are warped with the mean deformation field to
generate the inaccurate centroid images. The temporal mean
of the centroid images is taken as the final result, which
operation will further blur the result. Therefore, the Centroid
method (Fig. 8(d)) also produces the blurred result. NLTV,
Twostage, and NDL produce similar results but artifacts and
blur still exist. The result generated by CW contains cross-
color and noise. In comparison, the proposed method out-
performs other methods. The reason includes three factors:
(1) Multiscale and multidirectional phase information is
insensitive to the image contrast and can be effectively lever-
aged to represent motion information of the degraded image.
(2) The phase is iteratively corrected to suppress the geomet-
ric distortion and to make the phase of the restored results
gradually close to the optimal phase. (3) Optimal amplitude
selection not only selects the optimal amplitude but also
considers the CSP reconstruction error, which provides the
guarantee for generating a clear result.

To quantitatively evaluate and compare the performance,
Table 1 shows the Peak Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity Index (SSIM), Multiscale Similarity Index
(MS-SSIM) [31], Spectral Residual-based Similarity Index
(SR-SIM) [32] and Feature Similarity Index (FSIM) [33]
values for the outputs of the eight different methods.
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FIGURE 9. Comparison of results on Chimney sequence. (a) ground truth, (b)-(c) two distorted frames, (d) Centroid,
(e) NLTV, (f) Twostage, (g) LRP, (h) SGL, (i) NDL, (j) CW, (k) proposed method without deblurring, (l) proposed method
with deblurring.

FIGURE 10. Comparison of results on Building sequence. (a) ground truth, (b)-(c) two distorted frames, (d) Centroid,
(e) NLTV, (f) Twostage, (g) LRP, (h) SGL, (i) NDL, (j) CW, (k) proposed method without deblurring, (l) proposed method
with deblurring.

To objectively and fairly compare the proposed method
against othermethods, here blind deconvolution is not applied
to all the outputs. As shown, our method outperforms the
other methods.

E. REAL EXPERIMENTS
We have tested the proposed method on three real turbulence-
distorted videos, namely the Chimney, Building [22] and
Door sequences [34]. The size of Chimney and Building
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FIGURE 11. Comparison of results on Door sequence. (a)-(c) three distorted frames, (d) Centroid, (e) NLTV,
(f) Twostage, (g) LRP, (h) SGL, (i) NDL, (j) CW, (k) proposed method without deblurring, (l) proposed method with
deblurring.

sequences is 237 × 237 × 100. They were captured through
the hot air exhausted by a building’s vent, while the approxi-
mate ground truths were captured without through the hot air.
The size of Door sequence is 520 × 520 × 300 frames, here
we resize it to 260 × 260, and use the first 100 frames. Real
Door sequence does not have the corresponding ground truth;
therefore, we only compare its visual quality.

Fig. 9, Fig. 10 and Fig. 11 respectively show the outputs of
different methods. The marked regions are enlarged in each
figure. As shown, the geometric distortion and blurring are
more severe in real sequences, which increase the difficulty
of preserving geometric structure and texture details. Because
the temporal averaging of inaccurate centroid images in the
Centroid method, the weighted averaging of non-local self-
similar patterns in the NLTV method, the low-rank matrix
decomposition in the Twostage method, and the lowpass

filtering in the LRP method restrict the preservation of geo-
metric structure and texture details. Therefore, Centroid,
NLTV, Twostage, and LRP methods all generate blurry
results. NDL method performs slightly better, but some arti-
facts and blur still exist due to the registration error gener-
ated from symmetry constraint B-spline based registration.
CW method can preserve the structure and details, but the
results contain a lot of noise. SGL method degrades the
overall intensity distribution and produces cross-color results.
Compared with other methods, it is obvious to observe from
Fig. 9(k), 10(k), and 11(k) that the proposedmethod preserves
the geometric structure and texture details and producesmuch
clearer results, which indicates the superiority of the proposed
method. The PSNR, SSIM, MS-SSIM, SR-SIM, and FSIM
values in Table 1 also indicate the proposed method outper-
forms other methods for Chimney and Building sequences.
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TABLE 1. Performance of Different Methods Evaluated by PSNR, SSIM, MS-SSIM, SR-SIM and FSIM.

After the deblurring step, the texture details will be further
enhanced with significant improvements in visual quality.

IV. CONCLUSION
In this work, we have proposed a novel framework to recon-
struct a high-quality image from turbulence-distorted video.
Performance increase comes from the proposed method is
implemented in the CSP domain. CSP consists of multiscale
and multidirectional phases and amplitudes, which can be
effectively leveraged to represent degraded image’s geomet-
ric distortion and blurry degradation in a unified framework.
We first decompose the degraded image sequence by CSP
and use the average phase as the initial reference phase.
Then the reference phase is iteratively corrected to remove
the turbulence induced geometric distortion. To reduce blurry
degradation and preserve image detail, optimal amplitude
selection and fusion methods are proposed by considering
the local energy, local movement, and CSP reconstruction
errors. Finally, the reconstruction result can be deblurred
using the blind deconvolution method for further enhanc-
ing image quality. Compared with seven different methods,
the proposed method obtains excellent visual quality.
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