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ABSTRACT Traditional methods of stripe noise removal based on space domain or transformation domain
generally cannot handle the case where the noise is extremely sparse. To solve this problem, we propose a
novel approach to accurately detect and remove the stripe noise by analyzing the directional and structural
information of the stripe noise. First, we build a preselected stripe noise lines set by using local progressive
probabilistic Hough transform. Subsequently, the real stripe noise lines are screened out from this set
according to the feature of grayscale discontinuities. Finally, our approach uses the strategy of neighborhood
grayscale weighted replacement and a local Gaussian filter to perform image destriping. Extensive experi-
ments demonstrate that our approach proposed in this paper outperforms other recent promising methods in
terms of quantitative assessments, qualitative assessments, and computing time.

INDEX TERMS Grayscale weighted replacement, straight line detection, stripe noise removal.

I. INTRODUCTION
Owing to the interference of the data transmission link and
difference between sensors, there is a special noise with a def-
inite direction in image, which is generally called stripe noise.
Most of existing stripe noise removal (destriping) methods
are based on spatial domain or transform domain or combi-
nation of them, such as, histogram matching [1], [2], moment
matching [3], optimization-based methods [4]–[8], Fourier
transform [10], wavelet transform [11], and deep-learning-
based method [9]. These methods, however, generally have
limitations. For example, the histogram matching method
needs to extract the standard noise template and then applies
different degrees of filtering to different regions of the image
according to the similarity to the extracted template. How-
ever, when the image background is complex and the stripe
noise is extremely sparse and not obvious, extracting the tem-
plate is challenging.Momentmatching assumes that themean
and variance of the data recorded by any sensor will not differ
significantly. However, this assumption is generally difficult
to satisfy for relatively complex ground objects, especially
for nonremote-sensing images. Optimization-based spatial
methods, which are generally employed to construct a reg-

ularization model according to the feature of stripe noise in
spatial domain, have achieved excellent results for the remote
sensing image. However, for the nonremote-sensing image
where the stripe noise is extremely sparse, these methods
cannot obtain an ideal solution of the optimization model.
Other methods based on transform domain generally require
the stripe noise to be clearly identifiable in the frequency
spectrum. But when the image contains useful information
with a frequency comparable to the noise frequency, these
methods cause serious distortions. In addition, if the stripe
noise is extremely sparse, it will be barely observable in the
frequency spectrum. Therefore, in this case, transform-based
methods will completely fail.

To solve the above problems, we propose a novel algorithm
that can effectively remove the extremely sparse stripe noise
in the nonremote-sensing image. Fig. 1(a) shows a remote
sensing image with periodic horizontal stripe noise. Note that
in this image, the stripe noise is row-by-row, which means a
whole row of pixels has noise. While in a nonremote-sensing
image, the stripe noise does not have such a feature, i.e., it is
extremely sparse, as shown in Fig. 2. Through the analysis
of a large number of noise images, we have summed up
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FIGURE 1. A remote sensing image with periodic horizontal stripe noise
and its Fourier spectrum. (a) Raw image (provided by NOAA). (b) Fourier
spectrum.

two basic features of extremely sparse stripe noise: straight
line distribution and grayscale discontinuities—both in hor-
izontal direction (x-axis) and vertical direction (y-axis)—
which we call the ‘‘horizontal grayscale jump’’ and ‘‘vertical
grayscale jump’’ respectively. According to these features,
our approach first performs straight line detection by pro-
gressive probabilistic Hough transform (PPHT) and obtains a
preselected noise line set. Subsequently, we can screen out the
real stripe noise lines from this set, which should meet every

grayscale discontinuity threshold. Finally, we use neighbor-
hood grayscale weighted replacement and a local Gaussian
filter to realize destriping. The advantage of our approach
is that it does not require the stripe noise to exhibit spatial
periodicity or obvious spectrum components. In addition, our
approach can accurately remove extremely sparse stripe noise
from complex image backgrounds with almost no loss of
image quality.

The rest of this paper is organized as follows: Section II
discusses related work; Section III describes our destriping
approach to precisely locate and remove the extremely sparse
stripe noise from a raw image; Section IV demonstrates
results of our approach compared with other recent promising
methods, followed by a summary of our work in Section V.

II. RELATED WORK
There are four classical well-established methods developed
for removing stripe noise from an image. The first method
is histogram matching [1], [2], which matches the histogram
of a local image area to a standard noise area. This method
is easy to implement and provides fast processing speed.
It is obvious that this method requires the construction of
the standard noise region histogram as the reference template,
which is difficult in many situations.

The second approach is moment matching [3], which
assumes that the means and standard deviations of the data

FIGURE 2. (a) – (h) Typical nonremote-sensing images with extremely sparse stripe noise.
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recorded by any sensor will not differ significantly. This
method is used mainly for processing images acquired by
remote sensing photography and solving the problem of
nonuniform response of different pixels in remote sensing
images. However, since the source of the stripe noise in
the nonremote-sensing image is not nonuniform response
of different pixels, the fundamental hypothesis of moment
matching is no longer valid. Therefore, this method cannot
be used for nonremote-sensing images with complex back-
grounds and extremely sparse stripe noise.

The third destriping method is the traditional Fourier trans-
form [10]. This method removes the stripe noise component
by constructing a suitable filter according to the distribution
of the stripe noise in the frequency spectrum, which means
that the stripe noise should be clearly identifiable in the
frequency spectrum. At the same time, the overlap between
the noise components and useful signal components of the
image should be as small as possible in order to reduce image
distortion. Therefore, for the extremely sparse stripe noise
that does not exhibit spatial periodicity or significant fre-
quency domain characteristics, this method will not perform
well.

The fourth method is wavelet transform [11]. Wavelet
transform uses the scaling and direction attributes to detect
and eliminate stripe noise in the wavelet domain. The key
to this method is the choice of the wavelet functions and
the accurate acquisition of the frequency components of
the stripe noise. Therefore, this method has limitations
that similar to the Fourier transform. In other words, for
images where the stripe noise cannot be clearly identified,
the wavelet transform method exhibits insufficient perfor-
mance. In Zhao et al. [12] proposed an improved wavelet
transform method to eliminate the stripe noise, whose key
point is the thresholds in various scales of each vertical
direction are determined by themselves after wavelet decom-
position.

Based on the above four classical methods, some new
destriping methods have been proposed recently. Carfan-
tan et al. [13] introduced a statistical self-calibration destrip-
ing method to perform linear response correction, which
had been demonstrated that it performed better than simpler
techniques based on column averages. The combination of
wavelet transform and local interpolation [14] can protect
more geometric and detailed information when removing the
stripe noise; however, it still requires the stripe noise to have
obvious frequency components. Another method [15] aims
at processing continuous image sequences using an adap-
tive grayscale adjustment, and obtains the spectrum of the
stripe noise accurately by accumulating the same frequency
spectrum of the image sequences. Obviously, this method
depends on the high correlation between sequential adjacent
images. Pande-Chheetri et al. [16] developed a destriping
method based on wavelet analysis and adaptive Fourier zero-
frequency amplitude normalization, and this method showed
promising effect for both stripe noise and random noise in a
hyperspectral image. A new two-dimensional Fourier domain

slope filter [17] is applied to remove the stripe noise at certain
angles from the remote sensing image by setting a certain
filtering width. However, if the stripe noise is not obvious in
the image frequency spectrum, this method fails to provide
good results.

Recently, the optimization-based methods have shown
great superiorities for remote sensing image destriping prob-
lems. These approaches generally create an optimization
model to obtain the optimal estimation of the underlying
image. Rudin et al. [5] proposed the classical total varia-
tion (TV) model, which used the inherent regularity of a natu-
ral image (the underlying image) and removed the stripe noise
via solving a partial differential equation. Although it can pre-
serve the edges while destriping, it is also well known for pro-
ducing staircase-like artifacts. Liu et al. [18] presented to use
a usual l2 data-fidelity term and an overlapping group sparsity
TV regularizer to avoid the staircase effect. Bouali et al. [6]
proposed a unidirectional total variation (UTV) model for the
MODIS image (a kind of remote sensing image) stripe noise
removal. Chang et al. [7] proposed to treat the multispectral
images as a spectral-spatial volume and posed an anisotropic
spectral-spatial total variation regularization to remove a
more comprehensive stripe noise. This method tentatively
categorizes the stripe noise in a more comprehensive manner,
which can utilize both the spectral consistent information
in spectral domain and the directional information of stripe
noise in spatial domain. By taking the intrinsic properties
of the stripe noise and image characteristics into considera-
tion, Chen [4] integrated the unidirectional TV regularization,
group sparsity regularization, and TV regularization together
in an image decomposition framework and removed the stripe
noise through its statistical analysis. This method, however,
requires the stripe noise to exhibit obvious statistical features
in the remote sensing image. Dou et al. [8] created a `0 sparse
model to estimate the stripe noise in the remote sensing
image, and then they obtained the final destriped image
from the difference of the known stripe noise image and
the estimated stripe noise. Chen et al. [19] presented to use
group sparsity to depict the column sparse structure of stripe
component, and then constructed a novel convex optimization
model, including a unidirectional TV term, a group sparsity
term and a gradient domain fidelity term. This approach
showed promising destriping performance for the remote
sensing image. Chang et al. [20] proposed a low-rank-based
single-image decomposition model (LRSID) to separate the
original image from the stripe component, which convert cre-
atively the image destriping task as an image decomposition
even though it is effective mainly for the remote sensing
image where there is some obvious stripe noise. In summary,
although these optimization-based methods perform well for
the remote sensing image, for the extremely sparse stripe
noise in the nonremote-sensing image, the effect of destriping
is not satisfactory.

For hyperspectral images (HSIs) stripe noise removal,
Chang et al. [9] further proposed to use the deep convolution
neural network (CNN) to achieve this target. The biggest
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advantage of their CNN-based HSIs denoising method (HSI-
DeNet) is that the filters used in denoising can be learned
without damaging the spectral-spatial structures. In addition,
their HSI-DeNet is flexible for both single image andmultiple
images with slightly modifying the channels of the filters.
However, it is still a great challenge for this method to remove
the extremely sparse stripe noise in nonremote-sensing image
such as Fig. 2.

Therefore, the above-mentioned methods can handle some
remote sensing images with stripe noise, which has obvious
spectrum components. However, for the nonremote-sensing
image with relatively complex backgrounds, where the stripe
noise is extremely sparse and its spectrum feature is insuffi-
cient, these methods are challenging to apply.

III. PROPOSED METHOD
In this section we describe our approach to remove
the extremely sparse stripe noise from nonremote-sensing
images. Fig. 4 is our destriping algorithm pipeline. The algo-
rithm input is the raw noise image n and its output is the noise-
removed image u. In addition, the image l shows the position
of the stripe noise in the raw image.

In Section III-A, we first show several typical nonremote-
sensing images with extremely sparse stripe noise, and give
a general description of the features of stripe noise. Con-
sequently, we introduce the first step of our approach in
Section III-B, which is the acquisition of the preselected
stripe noise lines set. Section III-C explains how we screen
out the real stripe noise line from the acquired stripe noise
lines set. Finally, we present the last step of our method
in Section III-D, where we use neighborhood grayscale
weighted replacement and the local Gaussian filter to realize
the destriping.

A. EXAMPLES OF EXTREMELY SPARSE STRIPE NOISE
Fig. 1(a) shows a common remote sensing image with
stripe noise. The stripe noise in this image exhibits spa-
tial periodicity with a distinct noise component in the fre-
quency domain (the vertical center line of the spectrum has
a higher brightness than the horizontal line) as shown in
Fig. 1(b).

However, for most nonremote-sensing images that will
be processed in this paper, the stripe noise is not spatially
periodic. Fig. 2 shows several typical images with extremely
sparse stripe noise. Note that we use the green box to mark
the position of the stripe noise for all eight images, and at the
bottom of each image is the zoom result of one stripe noise
line. In these images, the stripe noise has different lengths,
different positions, and there is a low degree of discrimi-
nation between the noise and image background, especially
in Fig. 2(d). Moreover, there is a lot of randomly distributed
stripe noise in the raw images, as shown in Fig. 2(c) and
Fig. 2(d).

We denote x-axis is along stripe noise direction and y-axis
is across stripe noise direction. After the statistical analysis of

a large number of noise images, the general features of such
stripe noise can be summarized as follows:

1) the stripe noise occupies StripNh lines of pixels in the
vertical direction (y-axis), i.e., the noise area has a
certain height of StripNh;

2) the stripe noise consists of a series of horizontal discrete
points;

3) the stripe noise exhibits horizontal grayscale jumps
along the horizontal direction (x-axis) and the vertical
grayscale jumps along the vertical direction (y-axis),
which means that there are grayscale discontinuities
both in this two directions.

B. OBTAINING THE SET OF PRESELECTED STRIPE
NOISE LINES
The first step of our approach is to obtain the set of prese-
lected stripe noise lines. For the raw image displayed in Fig. 2,
we first perform the necessary image preprocessing, includ-
ing converting the raw image n into a grayscale image g,
calculating the horizontal direction gradient by Sobel edge
detection operator, and applying the adaptive threshold seg-
mentation to the gradient image by the OTSU [21] algorithm
in order to obtain the binary image b, of which the pixels’
grayscale values are 0 or 255. Note that the stripe noise is gen-
erally distributed horizontally in the image. Hence, intuitively
we should calculate the gradient in vertical direction (y-axis)
by using the Sobel operator. However, as mentioned above,
the stripe noise consists of a series of discrete horizontal
points, which means that there are grayscale discontinuities
in both horizontal and vertical directions. In order to reduce
the interference of the other horizontal lines in the grayscale
image as much as possible when screening out the real stripe
noise lines in Section III-C, we calculate the gradient along
the x-axis by Sobel operator. Fig. 3. shows the horizontal
gradient map and the binary image for facilitating readers to
observe the intermediate results.

FIGURE 3. Intermediate results of the preprocessing of our algorithm.
(a) Raw image. (b) Horizontal gradient map. (c) Binary image.

Subsequently, local progressive probabilistic Hough trans-
form (LPPHT) is applied to the binary image b to obtain the
set of preselected stripe noise lines. Progressive probabilistic
Hough transform (PPHT) [22] is an improvement of the
Hough transform (HT), which can detect a line that satisfies
certain requirements (such as line length, point spacing, et al.)
and return the image coordinates of the endpoints of this line.
In this way, a preselected stripe noise line can be represented
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FIGURE 4. Pipeline of the proposed destriping algorithm.

as a four-dimension vector:

L = (xl, yl, xr , yr ), (1)

where (xl, yl) are the image coordinates of the left endpoint
of the stripe noise line, and (xr , yr ) are the image coordinates
of its right endpoint.

The PPHT algorithm follows the principle of probability
priority, which means a point only belongs to the most likely
straight line. However, for a noisy image with a very sparse
stripe noise, if PPHT is carried out directly, the points that
are a part of the stripe noise lines are likely to be assigned
to background lines. In other words, it will not detect the
real stripe noise lines. Hence, we propose the novel local
progressive probabilistic Hough transform (LPPHT), which
uses a sliding window to traverse the binary image b along the
y-axis, and then carries out PPHT on a series of sub-images
bisub(i = 1, 2, . . .), which are defined as follows:

b =
∑
i

bisub. (2)

Assuming that the width of b is bw, we set the width (SWw)
of the sliding window as bw and the height (SWh) of the
sliding window as StripNh, i.e., SWw = bw, SWh = StripNh.
In this way, we can obtain the preselected set:

Q = {L} . (3)

C. SCREENING OUT REAL STRIPE NOISE LINES
In this section, we screen out the real stripe noise lines from
Q according to the noise features mentioned in Section III.

1) HORIZONTAL STRAIGHT LINE DETECTION
The first step is to screen out the horizontal lines from Q.
However, preceding this step, we need to expand the dimen-
sion of L. Defining θhori as the levelness of a line:

θhori = arctan (|(yr − yl)/(xr − xl)|), (4)

where xl , xr , yl , yr has the same meaning as in (1). L can be
then expressed as:

L = (xl, yl, xr , yr , θhori). (5)

Deleting the lines whose θhori is greater than the threshold
Th (θhori), and updating Q:

Q = {L |θhori ≤ Th (θhori) }. (6)

2) HORIZONTAL GRAYSCALE JUMP DETECTION
As described in Section III-A, there is a mutation of the
grayscale values between the stripe noise pixel and the
neighborhood background pixel in the horizontal direc-
tion. According to this feature, we can perform horizontal
grayscale jump detection on the remaining lines in Q to
delete pseudo-stripe-noise lines. The normalized horizontal
grayscale jump counting factor Chj_norm is defined as:

Chj_norm =

∑
xl≤u≤xr ,v=b(yl+yr )/2c

|b (u+ 1, v)− b (u, v)|

255 · |xr − xl |
,

(7)

where bxc represents the largest integer that is not greater than
x (the same below). While using (7), boundary detection is
necessary to avoid the image coordinate indices from over-
stepping the boundary. It can be seen from (7) that Chj_norm
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represents the number of grayscale jumps on a unit pixel.
Expanding L:

L =
(
xl, yl, xr , yr , θhori,Chj_norm

)
. (8)

Through statistical analysis, we obtain that the Chj_norm
value of the real stripe noise is larger, which implies ‘‘hor-
izontal grayscale jump’’ in Section III-A. Therefore, if we
delete each linewhoseChj_norm value is less than the threshold
Th(Chj_norm), every element in the updated Q will satisfy this
feature:

Q =
{
L |θhori ≤ Th (θhori) ,Chj_norm ≥ Th

(
Chj_norm

)}
. (9)

3) STRIPE NOISE LINE CLUSTERING
In Section III-A, it is mentioned that the features of vertical
grayscale jumps of the stripe noise are aimed at the stripe
noise band whose height is StripNh instead of the single stripe
line whose height is only one pixel, as shown in Fig. 5.

FIGURE 5. Stripe noise band and stripe noise line.

Therefore, to use this feature for further screening ofQ, we
need to cluster the noise lines inQ into the noise bands. First,
the lines in Q are sorted by b(yl + yr )/2c from the smallest
to largest, defining the equivalent row coordinate of the line
as follows:

ȳ =
⌊
yl + yr

2

⌋
. (10)

When the sorting is complete, clustering is executed in the
vertical direction, traversing every line. The band S can be
described as follows:

S =

L0
...

Lp

, (11)

where p is the total number of lines contained in a band. In
addition, the lines are ordered from the smallest to the largest
according to the value of the row coordinates:

L iȳi > L jȳj , 0 ≤ j < i ≤ p, (12)

where L iȳi represents the equivalent row coordinate of the ith

line in S, and L jȳi represents the equivalent row coordinate of
the jth line in S. Finally, updating the elements of Q, we can
obtain the set of stripe noise bands:

Q = {S} . (13)

4) VERTICAL GRAYSCALE JUMP DETECTION
Similarly to the horizontal direction, there is a mutation of
grayscale value between the stripe noise pixels and the neigh-
borhood background pixels in the vertical direction. Assum-
ing that Lm is the mth line with the maximum brightness in S,
where 0 ≤ m ≤ p. Thus, for each S, the normalized vertical
grayscale jump counting factor Chj_norm is defined as:

Cvj_norm =

∑
Lmxl≤u≤L

m
xr ,v=L

m
ȳ

|b (u, v)− b (u, v− m)|

2 · 255 ·
∣∣Lmxr − Lmxl ∣∣

+

∑
Lmxl≤u≤L

m
xr , v=Lmȳ

|b (u, v)− b (u, v+ m)|

2 · 255 ·
∣∣Lmxr − Lmxl ∣∣ ,

(14)

where Lmxl represents the xl coordinate of Lm, L
m
xr represents

the xr coordinate of Lm, Lmȳ represents the equivalent y coor-
dinate ofLm, andCvj_norm represents the number of grayscale
jump on the unit pixel of S in the vertical direction.
The boundary detection is necessary in actual calculation,

as in (7). For the real stripe noise, the value of Cvj_norm
is generally greater than the threshold Th(Cvj_norm), which
means that after vertical grayscale jump detection, Q will be
updated as:

Q =
{
S
∣∣Cvj_norm ≥ Th (Cvj_norm)}. (15)

Now, all the elements inQ represent the real stripe noise in
the image, detected by our approach.

D. REMOVING THE STRIPE NOISE
In fact, Q stores the complete position information of the
stripe noise in image, including the endpoint coordinates of
the noise lines, which means that our approach has realized
strict localization of the stripe noise. Based on this informa-
tion, the neighborhood grayscale weighted replacement and
the local Gaussian filtering can be used for destriping.

1) NEIGHBORHOOD GRAYSCALE WEIGHTED REPLACEMENT
This step consists of traversing all bands inQ and performing
the neighborhood grayscale weighted replacement one by
one. As is described in (11), there are p lines in every band,
and L0ȳ ,L

1
ȳ , . . . ,L

p
ȳ (L0ȳ ≤ L1ȳ ≤ . . . ≤ Lpȳ ) represents the

equivalent row coordinates of these p lines. We take the two
adjacent lines at the upper and lower boundaries of the noise
area as reference lines:

yup = L0ȳ − 1, ydown = Lpȳ + 1. (16)

and perform pixel grayscale weighted replacement for the
stripe noise line by line according to (17):

g (u, v) = ωi
up
· g
(
yup, v

)
+ ωi

down
· g (ydown, v), (17)

where g represents the raw grayscale image and (u, v) repre-
sents the pixel coordinates of the ith line, where L ixl ≤ u ≤
L ixr , v = L iȳ, i = 0, 1, . . . , p.ωi

up
is the weight of the reference
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line yup relative to the ith line L i and ωi
down

is the weight of
the reference line ydown relative to the ith line L i. The weight
calculation is as follows:

ωi
up
= 1−

∣∣∣∣∣ L
i
ȳ − L

0
ȳ

Lpȳ − L
0
ȳ

∣∣∣∣∣
ωi
down
=

∣∣∣∣∣ L
i
ȳ − L

0
ȳ

Lpȳ − L
0
ȳ

∣∣∣∣∣. (18)

During the traversal of the p stripe noise lines, ωi
up
gradu-

ally changes from 1 to 0, while ωi
down

behaves in the opposite
manner, which means that for the stripe noise line closer to
the upper boundary, the reference line above will occupy a
higher proportion during the grayscale replacement.

2) LOCAL GAUSSIAN FILTER
In order tomake the stripe noise area smoother after grayscale
weighted replacement, the local Gaussian filtering is required
for each band. We consider the area of the noise band as the
region of interest (ROI), then we set its width equal to the
width of the longest stripe noise line in this band and set its
height equal to the height of the noise area:

Rw = max
(∣∣∣L ixr − L ixl ∣∣∣), i = 0, 1, . . . , p

Rh = Lpȳ − L
0
ȳ , (19)

where Rw and Rh represent the width and height of the ROI,
respectively. Then each ROI is processed with a local Gaus-
sian filter. Fig. 6 shows the effect of stripe noise localization
and removal by our approach.

FIGURE 6. Results of stripe noise detection, localization and removal.
(a) Raw image with extremely sparse horizontal stripe noise. (b) Noise
localization image. (c) Destriped image.

IV. EXPERIMENTAL EVALUATION
In this section, we compare our method proposed in the paper
with five recent promising destriping approaches, includ-
ing the directional `0 sparse model (DSM) [8], the wavelet
Fourier adaptive filter (WFAF) [16], the statistical linear
destriping (SLD) [13], the unidirectional total variation
(UTV) model [6] and the Low-Rank Single-Image Decom-
position (LRSID) [20].

In order to evaluate the destriping effect of these
approaches in a more comprehensive way, we will com-
pare both qualitative and quantitative assessments. On the
qualitative aspect, we use subjective human eye evaluation
(the visual results). On the quantitative aspect, we employ

two acknowledged objective image quality metrics [23], i.e.,
peak-signal-to-noise ratio (PSNR), structural similarity index
measure (SSIM), to evaluate the results of these methods.

Note that in our experiments, the stripe noise in the raw
image is extremely sparse, which means the proportion of
the noise in the raw image is very small. Therefore, in the
ideal case, i.e., if the stripe noise is removed while all the
useful image information is retained, the destriped image
will be very similar to the raw image. In other words,
we can calculate the evaluation index (PSNR, SSIM) between
these two images. And this is why we don’t use the no-
reference image quality evaluation algorithm to evaluate the
destriped image quality although there are some promis-
ing no-reference image quality assessments, such as blind
pseudo-reference image (BPRI) [24], multiple pseudo refer-
ence images (MPRIs) [25], and unified content-type adap-
tive (UCA) blind image quality assessment [26].

A. EVALUATION INDEX
1) PSNR
PSNR is an objective evaluation metric. Assuming that both
the raw image n and the noise-removed image u are grayscale
(8 bits) images with a size of M × N , we can calculate the
PSNR between them as follows:

PSNR (n,u) = 10 log10

(
2552

MSE (n,u)

)
, (20)

where MSE (n,u) is the mean squared error of n and u:

MSE (n,u) =
1
MN

M∑
u=1

N∑
v=1

(n (u, v)− u (u, v))2. (21)

A larger PSNRvalue corresponds to a higher image quality.

2) SSIM
SSIM is defined as an image quality metric, which is inde-
pendent both on image brightness and contrast. For n and u,
SSIM is calculated as follows:

SSIM (n,u) =
(2µnµu + c1) (2σnu + c2)(

µ2
n + µ

2
u + c1

) (
σ 2
n + σ

2
u + c2

) , (22)

whereµn andµu are the mean values of n and u, respectively.
σn and σu are the standard deviations of n and u, respectively.
σnu is the covariance of n and u, and the positive constants c1,
c2 are used to avoid a null
denominator. The value of SSIM ranges from 0 to 1. When it
is equal to 1, n and u are equal.

B. EXPERIMENT RESULTS
We selected 35 nonremote-sensing images with extremely
sparse stripe noise to compare the destriping effects of our
approach and the other methods mentioned above. Note that
all these images were captured by the Basler avA1000-100gm
GigE camera with the KAI-1050 CCD sensor, and the reso-
lution is 1024×1024. Throughout every experiment, we set
Th (θhori) = 5, Th

(
Chj_norm

)
= 1/6, and Th

(
Cvj_norm

)
=

76930 VOLUME 6, 2018



Y. Qu et al.: Extremely Sparse Stripe Noise Removal From Nonremote-Sensing Images

FIGURE 7. Qualitative results of destriping on test images. From left to right: raw images, the destriped images of Ours, DSM, LRSID, SLD, UTV and WFAF.
Zoom in for detail or see the larger images in Fig. 8. Note that the size of these images is all 1024×1024.

1/11, which were found empirically to perform well accord-
ing to our analysis on the features of these stripe noise images
and massive practical tests.

1) QUALITATIVE EVALUATION
Fig. 7 shows the qualitative comparisons of each method, and
these destriping images are zoomed in as shown in Fig. 8.
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FIGURE 8. The zoom results of the destriped images in Fig. 7. From left to right: raw images, destriped images of Ours, DSM, LRSID, SLD, UTV and WFAF.

Owing to space constraints, we have only displayed eight
images in this two figures. From left to right, these images

represent the raw images, the destriping results of Ours,
DSM, LRSID, SLD, UTV and WFAF respectively.
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As we can see, the stripe noise is extremely sparse and its
distribution varies both in position and length among different
images, which causes the noise feature to be absent in the
frequency domain. Therefore, the WFAF method (column 7)
performs poorly on almost all samples and has obvious black
lines along the stripe noise lines. Similarly, SLD (column
5) also fails to remove most of the stripe noise. Note that
the optimization-based methods, such as DSM (column 3),
LRSID (column 4) and UTV (column 6), usually show rel-
atively good results in destriping, which can be attributed to
the reason that these approaches take the intrinsic properties
of stripe noise and the inherent regularity of underlying image
into account. Although these approaches can remove the
stripe noise to a certain extent, the destriped image become
more blurred obviously and some regions belonging to the
useful information of image change the intensity, which is
shown clearly in the fourth row.

In the second column in Fig. 7 and Fig. 8, the proposed
approach shows a much better performance than the other
methods on all the test images. No matter how sparse the
stripe noise is or how complex the backgrounds is, as can
be seen in the third row images, our method can nearly
remove the stripe noise completely and preserve image details
well. These experiments exhibit excellent performance of our
destriping method.

2) QUANTITATIVE EVALUATION
In order to compare the effects of these selected destrip-
ing methods more comprehensively and objectively, we use
PSNR and SSIM to evaluate the quality of destriped images
quantificationally.

TABLE 1. Results of objective image quality metrics.

Table 1 reports the objective image quality metrics of these
methods, which contains the mean value and the standard
deviation calculated on 35 test images. Note that the two best
results have been highlighted in bold. As shown in Table 1, all
methods have high PSNR and SSIM. This is mainly because
the stripe noise in the raw image is extremely sparse, which
means that even if we remove it completely, there would still
be significant similarities between the raw image and the
destriped image. Note that the SLD has the highest value in
terms of both PSNR and SSIM. As shown in Fig. 7 and Fig. 8,
however, this approach does not exhibit good performance
visually.

On the contrary, it maybe the worst method considering
its inability of destriping. Therefore, in the following anal-
ysis, we will no longer consider this approach. Although
the standard deviation of the PSNR is not the smallest,
the PSNR and SSIM of our method exhibit excellent per-
formance. The LRSID obtains comparatively high values
and shows good stability on this two metrics, while the
UTV and DSM are a little worse because they cause more
severely distortion of the original image. Therefore, from
Table 1, our approach outperforms the other promising
methods.

3) TIME COMPLEXITY
We run our and other methods on an Inter i7 3.4GHZ
computer with 8GB RAM. Our unoptimized C++ imple-
mentation takes 148ms on average to process an image
and the total number of test images is 35. We record
the running time of all the approaches in Table 2. Note
that the shortest running time have been highlighted in
bold. As shown in this table, the computed cost of our
method is minimum because we can fix the position of the
stripe noise accurately and reduce unnecessary calculations.
Optimization-based methods including DSM, LRSID and
UTV need much more time to preform destriping than SLD
and WFAF. Table1 combined with Table 2 can demonstrate
that our method can achieve high-speed and high-precision
simultaneously.

TABLE 2. Processing times (sec.).

V. CONCLUSION
In this paper, we proposed a novel approach for remov-
ing extremely sparse stripe noise from nonremote-sensing
images.

First, we detected the position of the stripe noise lines
accurately in the raw image by LPPHT. Second, we deleted
the pseudo noise lines from the preselected set according to
the features of horizontal grayscale jump. Then, the stripe
noise lines belonging to the same noise band were clustered.
Next, we screened out the real stripe noise bands based on
the feature of vertical grayscale jump, which were simi-
lar to the horizontal grayscale jump. Finally, our approach
used neighborhood grayscale weighted replacement and a
local Gaussian filter to remove the stripe noise. The exper-
imental results showed that our approach can be used to
remove extremely sparse stripe noise from nonremote- sens-
ing images and it outperforms some recent promising meth-
ods both in speed and precision. Most importantly, the pro-
posed approach hardly causes any distortion of the original
image.
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