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ABSTRACT Internet of Things technology has been widely used in water traffic research. Many critical
waterways in the world are becoming more crowded due to many factors in waterway environments, such as
invisibility, variability, and uncertainty. Accurate water depth information is necessary to improve navigation
safety. Water depth information of electronic charts cannot be updated in a timely way, while the actual water
depth is unpredictable, and this factor threatens the safety of vessels in waterway environments. Based on
the shore-based network, ship navigation data and other big data can be integrated to vessels navigation
environments in real time. In this paper, we present a new scheme to quickly and accurately construct a
vessel safety navigation depth reference map, which contains appropriate channel water depth information.
This effective scheme is based on automated identification system (AIS) data and increases the travel safety
through crowded waterways. AIS data include rich maritime traffic information. Both the static and the
dynamic information about vessels through waterways can be extracted and processed from big real-time
AIS data. Based on extensive actual experiments, we apply data mining techniques to extract the waterway
depth information both draft-depth and vessel trajectories based on AIS data. The data are collected from
vessels in both locations: 1) the Nantong port, in Jiangsu Province, China and 2) Meizhou Bay waterway,
in Fujian Province, China. The Hermite interpolation scheme is used to patch the trajectories of vessels, and
the BP neural network model is introduced to predict the maximum vessel draft. Clustering and data fusion
methods are employed to construct a vessel safety navigation depth reference map according to the cluster
area of vessel trajectories and draft information. The experimental results demonstrate that the vessel safety
navigation depth reference map accurately reflects the current water depth profile of channels. This paper
can provide accurate and timely channel water-depth information for the vessel navigation and the maritime
supervision. The proposed scheme in this paper can also provide reference for trajectory data processing and
mining.

INDEX TERMS Big AIS Data, IoT, BP neural network, clustering and data fusion, navigation safety, vessel
trajectory.

I. INTRODUCTION
Waterway traffic is a critical part of the Internet of Things.
A large number of shipboard sensors can provide real-time
navigation information for ships to ensure safe navigation.
Currently, ships can transmit vessel navigation information
to shore-based networks in real time through Very High
Frequency (VHF) radio stations and Automatic Identification

System (AIS). If we make full use of the large amount of
ship-based integrated navigation data, we can analyze the
waterway traffic status online and provide real-time naviga-
tion safety guidance for safe navigation [1].

The shipping industry is the backbone of the global
economy. In global trade, most goods are transported over
water, and more than 90% of the goods are waterborne in
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the Chinese import and export trade. Waterway traffic is
developing rapidly, making water traffic accidents more com-
monplace, with massive loss of life and property. In China,
grounding accidents accounted for about 10% of all types
of accidents on the Yangtze River. A large number of these
accidents are related to insufficient water depth information.

Accurate water depth measurement and mapping is a
requirement for safe waterway navigation. Siltation, sunken
vessels, and changes in the underwater terrain, however make
waterway depths variable and unpredictable. Channel and
underwater topographic surveys are complex and expensive
tasks, making it difficult to correct and update depth informa-
tion in a timely way. Inaccurate charts and maps contribute
to accidents such as grounding and collision, and threaten
navigation safety.

Depth information for shipping areas is obtained from
electronic charts and vessel logs. Thewater depth information
contained in electronic charts is updated at a certain peri-
odicity, closely related to the plan for channel measurement
and updating electronic chart updates. Therefore, electronic
charts do not provide current water depth information. Vessel
logs can only measure the water depth information under
the current vessel position, and are not suitable for pre plan-
ning routes that avoid in advance shallow areas, related to
grounding accidents. At present, there is no effective and
timely way to obtain water depth information for safe vessel
navigation, this study addresses this problem using big Auto-
matic Identification System (AIS) data and machine learning
techniques.

AIS data contains rich vessel traffic information in
real-time. This data is aggregated and sent through coastal
base stations and contains a wealth of ship information.
If water depth data for channels can be obtained and exca-
vated through AIS data then water depth information can be
extracted from vessel traffic data in real time. If a vessel
has safely passed through a certain location of a channel,
then vessels of the same type and draft should be able to
pass safely through the same location and area. Among them,
the ship water depth information by looking for the relevant
strong captain, the breadth of the ship, draft information to
predict access. Information about the safe navigation area of
the ship is obtained from the trajectory of the ship through
the method of convex hull. By establishing safe navigation
zones for ships with different draft requirements, it is possible
to determine the safe sailing water depth range. Water-depth
information for a channel can be extracted from the historical
vessel tracks found in AIS point data.

Trajectory data is a type of spatiotemporal data that records
the movement of an object by positional sampling. According
to the sparseness of positional sampling, trajectory data can
be divided into two categories: sparse sampling and dense
sampling. With the development of satellites, wireless net-
works, and positioning devices, trajectory data of a large
number of moving objects is increasing rapidly, such as
animal migration data, climate airflow data and personnel
movement data [2], [3]. The study of trajectory data and the

acquisition of unknown knowledge about motion of objects
will become a future research hotspot.

In our research, we extracted channel water depth infor-
mation from big AIS data, and then constructed Vessel Safe
Navigation Depth Reference Map, which provides the chan-
nel water-depth information for different types of safe nav-
igation. The vessel safe navigation depth reference map can
provide timely reference information for safe vessel naviga-
tion and dynamic maritime supervision.

The rest of this paper is as follows, the second section
reviews the literature on water depth and traffic flow predic-
tion, and the third section introduces AIS data. The fourth
section introduces the research methods in this paper and the
proposed method for constructing a safe navigation, depth
reference map. The fifth section presents prediction results
for water depth and traffic flow in the Meizhou Bay and in
the port of Nantong city, in China. The sixth chapter draws
conclusions.

II. RELATED WORK
Several approaches have been developed for improving nav-
igation safety and enhancing the real-time data processing
ability in electronic charts. Methods of determining safe
nautical depths and effectively deploying e-Navigation are
the most relevant to water-depth information mining and
electronic reference map construction. Mcanally et al. [4]
developed a nautical depth concept suitable for selected ports
and waterways to reduce the need for the frequency and
volume of dredging. However, this method uses a small
amount of data and requires intensive coordinated efforts
among national, regional, and local agencies. The nautical
depth concept and data processing method is applicable to
efforts towards mapping of fast changing channels in rivers
and estuaries, essential to safe navigation.Weintrit introduced
the e-Navigation concept and its definition, proposing the
use of e-Navigation for water-depth safety requirements and
safe navigation standards. E-Navigation can meet certain safe
navigation challenges in a general way; however, the specific
means for e-Navigation are inefficient and cannot address
actual navigation problems such as prediction of real-time
safe water depths and navigation conditions [5]. AIS data
contains rich information, and thus a valuable resource for
research. Big AIS data could be more effectively exploited
to extract dynamic and static data from vessels to map safe
navigation areas in a timely way.

Many different methods make use of AIS data. Among the
AIS applications deploying data mining methods, the most
widely used are analyses of AIS data to extract and model
vessel motion trajectories and to establish ship-monitoring
systems. Bomberger et al. [6] used AIS data and a neural
network to extract and learn the pattern of regularities in
the trajectories of vessels. This method supports the con-
struction of historical vessel trajectories. Jalkanen et al. [7]
proposed an algorithm to draw vessel trajectories based
on an analysis of AIS data. This method is efficient and
effective, but is not based on real-time AIS data with an
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off-line processing environment making it unsuitable for real
time mapping. Focusing on analysis of vessel trajectories,
Ulvila and Gaffney, Jr. et al. [8] used a nonlinear regression
analysis algorithm to cluster AIS data and identify trajectory
patterns, but this algorithm is complex and inefficient, and
takes a lot of time to preprocess and cluster the AIS data.
There are many studies on ship monitoring systems based
on AIS data. Høye et al. [9] proposed a method for a global
vessel supervision system based on AIS to boost the tracking
ability for maritime navigation. This supervision system can
boost the supervision ability and help the maritime sector to
make decisions, but the system needs many sensors, and the
data-mining algorithm is inefficient. A detailed case study
of a Dutch and a Chinese supervision system based on AIS
data analysis explores how lateral position, speed, heading
and interval times for different types and sizes of vessels are
treated in the two cases [10]. A supervision system can be
used for safety assessment of ship traffic in a waterway, or for
improving safety and efficiency, but the supervised area of
the system is limited, and the installation and setting of the
sensors is complex and cannot be monitored in a wide range
and in a real time way.

The study reviewed that the method of e-navigation
can solve the safety problem in ship navigation; however,
the work process is inefficient and cannot make a reasonable
response to the complex situation of maritime traffic. Bymin-
ing the AIS data and building a maritime surveillance system,
it is possible to make full use of the information of ship
navigation. However, the lack of support of the corresponding
electronic chart and other technologies cannot demonstrate
the safety of navigation in a real time way. This paper com-
bines these two methods and presents a novel method to
extract the channel water-depth information from the real-
time and historical trajectory data from vessels, based on
big AIS data and analyze the characteristics of navigation
trajectories about different types of vessels, and then generate
the safe navigation, depth reference map for different vessels.
By mining a large amount of AIS data, this new method
can define quickly and accurately a safe navigation area for
different types of ships.

III. AIS DATA
AIS was developed and deployed to improve navigation
and ensure the safety of property and the lives of the
crew [11]–[13]. An AIS has four goals, the first is to identify
the vessel effectively, the second is to help maritime man-
agement identify unusual traffic patterns, the third simplifies
vessel-vessel and vessel-shore information exchange, and the
fourth goal is stopping vessel collision accidents. AIS is
composed of onboard ship platform, onshore base station and
communication link, and establishes a ship-shore, ship-ship
information interaction system. The AIS system can be used
to understand the ship traffic situation in the segment and
take timely measures to prevent the danger of the ship and
improve maritime affairs regulatory capacity and efficiency
of the department.

AIS data contains static and dynamic data. The static
data includes International Maritime Organization (IMO)
number, vessel’s name, vessel’s Maritime Mobile Service
Identity (MMSI) number, vessel length and vessel breadth,
draft depth, type of vessel and other information. The
dynamic data contains information such as longitude, lati-
tude, navigation time, the speed, and heading. AIS data are
constantly updated and sent to a base station. The dynamic
location data enables the tracking and supervision of vessels
in real time to reduce accidents.

There are many errors in AIS data. Taking the existing
dynamic data for example, the waterway in Nantong China
which are between the latitude and longitude from(longitude
120.725 ◦, latitude 32.049 ◦) to (longitude 120.835 ◦, lati-
tude 31.981 ◦), the time of data is from 9:00 to 09:30 on
February 6, 2017, among 170900 records 4953 records had
negative latitude and longitude, while 103 MMSI numbers
were not nine digits. There was only 2025 vessel data useful
in 13330 dynamic data and the useful data only accounted for
15.3% for the dynamic data.

IV. METHODS
As shown in Figure 1, the method can be divided into two
steps, but the data must be cleaned to remove abnormal and
redundant data from the original AIS messages, seen at the
top left of the flowchart. After preprocessing, the first step,
illustrated on the left side, is AIS data mining and extrac-
tion of ship trajectories and prediction the draft informa-
tion of ships. The second step, shown on the right, is data
extraction and data fusion, linking ship trajectories and draft
information.

FIGURE 1. A New Method to Construct Real-time Vessel Safe navigation
Depth Reference Map.

In the process illustrated in Figure 1, the Hermite method
is used to interpolate vessel trajectories generated from
AIS data, and data clustering generates the active area of the
vessels, as detailed in part C of section IV. Real-time vessel
trajectory data, extracted from vessels that recently passed
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through the channel, are the primary source of information
used to create the reference map, as described in part C of
section IV. Vessel trajectory and vessel draft data are fused
to generate a safe navigation area for a vessel, based on draft
data obtained fromAIS data, discussed in part B of section IV.
As shown in Figure 1, if the draft data is missing, the BP
neural network is used to forecast and patch the missed draft
data. A real-time, vessel safety navigation depth reference
map is constructed from safe navigation areas of vessels,
through computer graphics rendering; we discuss this process
in part C of section IV. The impact of the ship’s sailing depth
on the accident of a ship has an important guiding role for the
safe navigation of the ship, discussed in part D of section IV.

A. SELECTION OF AIS DATA
Since there are large numbers of vessels in waterways and
the time interval required for transmitting AIS data is small,
so maritime and waterway management departments cannot
easily process the large amount of AIS data. Thus, the data
must be classified before processing. There are three methods
to classify AIS data. The R language is used to select the data.

Select a specific area, such as a region with a longitude
more than x1 less than x2 and a latitude more than y1 less
thany2, bringing the data into compliance with the require-
ments using the data frame.

ais1<-ais[ais$Longitude> x1&ais$Longitude< x2
&ais$Latitude> y1& ais$Latitude< y2,]
AIS data can be filtered out of a data frame called ais1,

which meet the requirements of the longitude and latitude.
When select a specific period t1 to t2of AIS data, using data

frame to select the data.
ais2<-ais[ais$UTC> t1&ais$UTC> t2,]

B. PREDICTION OF DRAFT-DEPTH DATA
1) VESSEL MAXIMUM DRAFT DEPTH
Although the static data of AIS data includes the draft-depth
information, it is not the actual draft-depth of vessel but an
inherent attribute. In fact, although the actual draft-depth of
the vessel is not necessarily related to the maximum draft-
depth of the vessel, a range for the actual draft-depth of a
vessel can be extracted by analyzing the maximum draft-
depth of the vessel. For marine traffic, the actual draft-depth
cannot exceed the maximum draft depth. If the actual draft-
depth exceeds the maximum draft of the vessel, it may affect
handling performance, and a vessel cannot effectively prevent
accidents.

2) PREDICTION OF UNKNOWN MAXIMUM DRAFT DEPTH
Due to errors in the AIS system itself and data transmission
problems, there will often be some information loss before
receiving and analyzingAIS data. It is necessary to predict the
maximum draft of the vessel based on other kinds of vessel
information.

BP neural network model is a typical model in neural net-
work technology. BP neural network applies network learning

to ascertain the correspondence between input and output
parameters. In a network learning process, the output of BP
neural network will include error in the target output, and
the network will feedback this error to the front layer, con-
stantly adjusting the weights and thresholds between every
node [14]–[18]. Because of these features, there is no need to
build a mathematical relation between the input and output
parameters when training the BP neural network. In general,
the structure of a neural network contains three layers: input
layer, hidden layer, output layer. A BP neural network is
a model connected by a large number of nodes (neurons).
Different individual neurons represent different excitation
functions. Neurons have different weights, the network learns
by training the neurons and changing weights. Figure 2 shows
the structure of BP neural network we used.

FIGURE 2. Structure of BP Neural Network.

In Figure 2, there are input layer, output layer and six
hidden layers. The activation function of the first three is relu
while the activation function of last three layers is sigmoid.

To predict the maximum draft depth, it is necessary to
determine the parameters of the neural network. This design
is based on four types of parameters to set the neural network.

Stochastic gradient descent algorithm can be used to find
the optimal network parameters, making the network perform
at the optimal level.

After training the AIS data, the range of parameters of the
network can be expressed as;

f ∈ {tanh(x), sigmoid(x),max(x, 0)}

λ ∈
{
10−4, 10−2

}
n ∈ {1, 15}

Nl ∈ {1, 200}n

xma+h,b+h = (f1 · f2 · fn)xm

fl = f (wTl xl + bl) (1)

In (1), f is the activation function, λ is the learning rate, and
n is the network layer number, Nl is the number of iterations,
xma+h,b+h is the structure of the draft-depth prediction model.

According to vessel width, and the types of vessel based on
the existing AIS data, it is necessary to see if there is correla-
tion between these data. The duplicate records were deleted,
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and a total of static AIS data points for 2025 vessels were
obtained. In this paper, static information for 1675 vessels
was used for correlation analysis.

The BP neural network uses the parameters, vessel length,
and vessel breadth to predict the draft-depth of the vessel;
therefore, the vessel maximum draft-depth value was selected
as the neural network output parameter.

In theory, only one hidden layer is required in a neural net-
work when processing maps, but accuracy is low when using
only one hidden layer. This can be corrected by increasing
the number of hidden layers. However, many hidden layers
will make the network structure complex, and data processing
will consume a great deal of time. If the correlation between
parameters is not particularly complex, a single hidden layer
neural network is generally preferred.

The number of hidden neurons has an effect on the predic-
tion of BP neural network, if the number of neurons is set too
low, it may affect the effectiveness of training. If the number
of neurons set too high, it will affect the training time.

The Pearson correlation coefficient is used to analyze the
correlation of vessel width, vessel breadth, and the maximum
draft depth. This is executed in two stages, first calculating
the degree of linear correlation between the vessel width and
maximum draft depth, and between the vessel breadth and
maximum draft depth, and then between these results. (2) is
the formula of the correlation coefficient, r is the coefficient,
n is the number of samples, xi and yi are the values of
samples [19]–[21].

r =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑
i=1

(xi − x̄)2(yi − ȳ)2
(2)

Formula (2) indicates the correlation of xi and yi. When the
positive correlation between x and y is stronger, the value of
r is closer to 1. In the same time, if the negative correlation
between x and y is stronger, the value of r is closer to −1.

C. CONSTRUCTING NAVIGATION AREA
1) VESSEL TRAJECTORY SEGMENTATION
Not all the vessel motion points are appropriate for con-
structing trajectories because vessel AIS information may be
lost during the transmission of data from vessels to the base
station. If information for vessel motion points is missing for
a period, errors will occur when estimating ship trajectories.
Therefore, we divide of the vessel trajectories into those
with complete and those without complete information. The
adjacent latitude and longitude information will be regarded
as a different trajectory if the receiving time of the data
exceeds T . The time threshold T cannot be set too small,
if it is too small, the trajectory of a vessel may be divided
into a large number of sub-tracks; short sub-tracks cannot
reflect the overall movement of the vessel and navigation
characteristics [22]. Therefore, we combine the longitude and
latitude with the time of the data was received.

(a) Vessel latitude and longitude points are considered the
same vessel’s location information only if the MMSI number
is also same with the vessel.

(b) If the receive time of data are more than 20 minutes, the
trajectory will be divided into two different sub-tracks.

(c) If there are less than two points in a sub-track, it will be
considered as useless information and be deleted.

After getting the data of vessel trajectory segmentation, it is
found that due to the lack of data in the course of data trans-
mission, the data of vessel segmentations have discontinuity,
so the data needs to be processed, the missing point must be
interpolated and repair the vessel trajectories.

2) VESSEL TRAJECTORY INTERPOLATION
Since there are missing points in the trajectory of a vessel,
the longitude and latitude data must be imputed by trajectory
interpolation, making the vessel trajectory more complete.

Hermite interpolation is used to complete the missing
points [23], [24]. Hermite interpolation uses values and
derivative values of the unknown function to construct an
interpolation polynomial. Formula (3) shows the polynomial.

a ≤ x0 < x1 . . . < xn ≤ b (3)

In (3), a and b are the adjacent time points, and xj is the
point to be interpolated:

yj = f (xj), mj = f ′(xj), (j = 0, 1, . . . n) (4)

In (4), yj is the longitude and latitude of the points, f (xi) is
the constructor function for the points to be interpolated, mj
is the derivative of f (xi) [25]. Formula (5) is the formula for
Hermite interpolation.

H2n+1(x) =
n∑
j=0

[yjαj(x)+ mjβj(x)]. (5)

Hermite interpolation can determine a polynomial of no
more than 2n + 1, and a2n+1 in (5) is the polynomial
coefficient:

Formula (6)-(8) are the other coefficients in (5).

αj(x) = (1− 2(x − xj)
n∑

k=0,k=j

1
xj − x

)l2j (x) (6)

βj(x) = (xj − x)l2j (x) (7)

lj(x)=
(x−x0) . . . (x−xj−1))(x−xj+1)) . . . (x − xn)
(xj−x0) . . . (xj−xj−1))(xj−xj+1)) . . . (xj−xn)

(8)

xj is the point to be interpolated, yj is the longitude and lat-
itude of the points, and αj(x), βj(x), and lj(x) are coefficients
used in (5).

After interpolating missing latitude and longitude points,
all the points will be connected to temporal periods.
Taking the AIS data of the specific vessel whose MMSI is
413769173 for example. Table 1 shows the AIS data frag-
ments of the vessel to be interpolated,
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TABLE 1. AIS Data Fragment of a Vessel whose MMSI is 413769173.

3) SAFE NAVIGATION AREA
In order to obtain a safe draft-depth navigational area, the
convex hull method is applied to connect the outer edge
points to obtain the safe navigation areas for different types
of vessels [26]. The convex hull is a convex polygon that
joins the outermost points, which contain all the trajectory
points. Convex hull is a concept in graphics. If there is a
certain type of point set on a plane, the convex hull is a convex
polygon formed by connecting the outermost points, which
can contain all the points in the point set. Vessel trajectories
are all surrounded by a convex hull. Using the convex hull to
connect a point on the outer edge of the region, different types
of vessel navigation areas can be constructed. The method of
constructing vessel water depth using a convex hull is as:

(a) For the same type of vessel, the vessel has different
trajectory points p1, p2, . . . , pn.Therefore, the aggregate tra-
jectory P of this type of vessel can be obtained by connecting
the trajectory points, and (9) produces the trajectory of a
vessel as:

P = p1 ∪ p2 . . . ∪ pn (9)

(b) To calculate the aggregate trajectories of all the vessels
of all types in an area, a threshold method is adopted to set

the threshold u. If the distance d between the two vessel tra-
jectories is d > u, then the historical trajectories between the
two trajectories are removed, so that a part of the empty space
in the trajectory of all the vessels is generated. This part of a
waterway may be isolated island or shoal. A gift-wrapping
method is used to construct a convex hull for the aggregated
trajectories of all vessels in an area, a point in each trajectory
is selected randomly [27]. These points are taken as initial
points while the outermost points from all the vessel trajec-
tories are selected in a counterclockwise direction. When the
algorithm returns to the initial point, the set of collected points
outlines a convex hull for the aggregated trajectories of all the
vessels in an area, as illustrated in Figure 3.

FIGURE 3. Construction of a Convex Hull.

Figure 3 shows a convex hull construction diagram, where
x is the initial point selected by the gift wrapping method, and
area A is a blank area in the trajectories of all the vessels in
the area obtained through our threshold method.

(c) The safe navigation area R of a vessel is expressed
by (9), where Convex () is the convex hull function. The hull
area of this vessel R, is obtained by convex hull method as

R = Convex(P) (10)

Formula (10) shows the method of convex hull, the safe
navigation area of vessels will be constructed by this method.

4) SAFE NAVIGATION DEPTH REFERENCE MAP
According to the maximum draft-depth of the vessel,
the points will be divided into different categories, the tra-
jectory points of the same type of vessel are connected.

G1 = F(RA); G1 = F(RA); G3 = F(RC ); G4 = F(RD)

(11)

Formula (11) shows the construction of draft-depth map
for each type of vessel, Gi is the map of each type of vessel,
F(∗) is the function to construct the draft-depth map.

G = G1 ∪ G2 . . . ∪ Gi . . . ∪ Gn (i = 1, 2, 3 . . .) (12)

Formula (12) shows the method of creating a comprehen-
sive draft-depth map by adding each map of the specific
vessel, G is the draft map,Gi is the map of each type of vessel.

S = G ∪ F (13)

Formula (13) is to combine the different types of draft-
depth maps with waterway electronic chart, S is the safe
navigation draft-depth reference map, F is the electronic
chart.
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D. REFERENCE MAP AND NAVIGATION SAFETY
1) SAFETY ANALYSIS
Accidents caused by insufficient actual navigational water
depth include vessels hitting rocks, stranded vessels, and
other accidents. Among the accidents, vessel hitting rocks
and stranded vessels are the main types of accidents related
to insufficient water depth, caused by channel siltation. The
stranded vessels disrupt cargo transport but also are a threat
to the environment.

The safe navigation depth is composed of the full
draft of the vessel and the Under Keel Clearance (UKC).
Formula (14) indicates safe navigation of the vessel. D is
the vessel safe navigation depth, 1Z is the vessel UKC.
Formula (15) represents the composition of the vessel
surplus,

D = T +1Z (14)

1Z = Z0 + Z1 + Z2 + Z3 (15)

where Z0 is the amount of navigation sinking, related to
navigation speed, and channel water depth. Z1 is the smallest
UKC of water depth, related to submarine obstacles, Z2 is the
wave UKC, related to wave factors, and Z3 is the increased
stern draft due to an uneven load. As can be seen from (13),
adequate water depth and draft are critical factors for the safe
navigation of the ship.

In order to analyze the influence of the water depth when
the vessel is stranded, the accidents are analyzed by select-
ing the appropriate parameters of AIS data. Table 2 shows
the sample of data in the dataset from Nantong waterway,
we choose 6 vessels with different tonnage as sample data.
DWT is the dead weight tonnage of vessel, COG is the course
of the vessel, SOG is the speed of the vessel.

TABLE 2. Sample of data.

Based on the statistics and analysis of 252 vessel accidents
from 2002 to 2015, it can be concluded that when the ves-
sel is stranded, the actual navigational depth of the vessels
described in Table 2 do not satisfy the draft requirements of
the vessel as, the actual draft is related to the navigation speed.

An analysis of stranded vessel accidents shows that
draft conditions are different for varying vessel lengths and
breadths, and the data of COG and SOG is the same. For the
vessels with the same length and breadth, the drafts are close
to the actual depth, and the data of COG and SOG is the same
for all vessels of the same type.

Since the water depth in the electronic chart is updated
slowly, the safe navigation area for different types of vessels
can be separated in the safe navigation depth reference map

to meet varying draft-depth requirements for different types
of vessels. The depth reference map for safe navigation can
guide vessels. Vessels with the greatest draft-depth demands
sail near the deep-water areas; while vessels with smaller
draft-depth sailing closer to shallowwater areas. This will not
only ensure the safe navigation and avoid the stranded vessel
accidents, but will also guide the speed of the vessels, thus
reducing occurrences of waterway congestion to improve
the effective utilization of waterways with safer navigation
practices.

2) VESSEL RISK ASSESSMENT UNDER DIFFERENT
WATER DEPTHS
More attention must focus on accidents related to water depth
conditions that have a greatest impact such as strandings or
collisions with rocks. When the actual water depth surround-
ing a vessel is too small to meet the water draft requirements
for safe navigation, the resistance of the vessel will increase.
At this time, the propulsion efficiency of the vessel is reduced,
which may mean a vessel goes out of control. In addition,
when the water depth is small, navigating shallow waterways
may compromise the stability of a vessel, and could possibly
cause damage to the vessel, rupture the hull, or have other
consequences that may adversely affect navigation. In serious
cases, the safety of the crew may even be endangered.

The classification of risk is based on the Low as Reason-
ably Practical (ALARP) principle. The risk level of a vessel
under different water depth conditions were established as
in [28], and shown in Table 3.

TABLE 3. Vessel risk classification.

3) DETERMINATION OF VESSEL RISK RATING STANDARDS
UNDER DIFFERENT WATER DEPTHS
Establishing 4 ∗ 4 dimensional fuzzymatrices for water depth
conditions

D(t) =

A B C D d11(t) d12(t) d13(t) d14(t)
d21(t) d22(t) d23(t) d24(t)
d31(t) d32(t) d33(t) d34(t)
d41(t) d42(t) d43(t) d44(t)


=
[
r1(t) r2(t) r3(t) r4(t)

]
(16)
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In (16), dij(t) (i = 1, 2, 3, 4; j = 1, 2, 3, 4) indicates the
degree of the j-level risk when the water depth condition is i.

The probability of different water depth conditions is A =[
a1 a2 a3 a4

]
, ai represents the probability of different water

depth conditions. The fuzzy subset of the risk rating for bulk
carriers is

B =
[
max
1≤k≤4

{A ◦ a1(tk )} max
1≤k≤4

{A ◦ a2(tk )}

max
1≤k≤4

{A ◦ a3(tk )} max
1≤k≤4

{A ◦ a4(tk )}
]

=
[
x1 x2 x3 x4

]
(17)

According to the fuzzy matrix method and related experts
questionnaire survey, the determination of Vessel Risk Rating
was established in the Table 5 (D in the Table 5 represents
water depth).

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. STUDY AREAS AND DATA
In this paper, we selected two waterways which are between
the latitude and longitude from(longitude 120.725 ◦, lati-
tude 32.049 ◦) to (longitude 120.835 ◦, latitude 31.981 ◦)
and (longitude 118.926 ◦, latitude 25.236 ◦) to (longitude
119.003 ◦, latitude 25.199 ◦). The data for Nantong Port,
Jiangsu Province and Meizhou Bay in Fujian Province were
collected from 9:00 to 11:00 on February 6, 2017. The
Nantong waterway is on the Yangtze River estuary, while
the Meizhou Bay waterway is in Fujian Province. The traffic
situation of Nantong is a complex inland waterway with
many kinds of vessels passing through the area. In contrast,
the Meizhou Bay is next to the East China Sea and it has been
a critical port in China with convenient traffic. The number of
data in the experiment is up to 100,000,000 and the big data
processing environment is introduced in the process of the
case study.

B. EXPERIMENT RESULTS
BP neural network was used for the prediction of the draft-
depth data. Table 4 shows the results of correlation of

TABLE 4. Correlation of vessel width, vessel breadth and the draft depth.

vessel width, vessel breadth and the draft-depth for the input
parameters of BP neural network.

Table 4 indicates that there is a strong correlation between
the vessel length, vessel breadth and the depth of the draft.
Thus vessel length and vessel breadth can be used as the input
parameters of the BP neural network.

Figure 4 shows the results of Hermite interpolation for
interpolating the missing AIS data.

FIGURE 4. Results of Interpolation.

In Figure 4 (a), the trajectory connected by the primi-
tive AIS data that have not been interpolated, Figure 4 (b)
shows that after Hermite interpolation, the vessel trajectory
is smooth.

Figure 5 shows the construction results of safe naviga-
tion area. Figure 5 (a) shows a vessel trajectory which

FIGURE 5. Results of Safe Navigation Area.
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is constructed by connecting the vessel movement points.
Figure 5 (b) shows the safe navigation area produced by the
convex hull method.

It can be seen from Figure 5 that the vessel’s navigation
trajectory is generated by superimposing different locations
of the same type of vessel and can reflect the traffic charac-
teristics of ships in a specific area of the waterway. By using
the convex hull method to process the vessel trajectories,
a closed area can be obtained, inwhich the ship sailing ismore
frequent and can meet the draft requirements of this type of
vessel, so the area is the safe navigation area for that vessel.

Before the construction of safe navigation reference map,
the vessels were divided into four types: type A includes
vessels with a maximum draft between 0.1-10.8 meters;
and type B were vessels with a maximum draft between
10.8-14.6 meters. Type C were vessels with a maximum draft
between 14.6-20 meters; and type D included vessels with a
maximum draft of more than 20 meters. Figure 6 shows the
reference map we constructed in Nantong waterway.

FIGURE 6. Results of Depth Map in Nantong waterway.

Figure 6 (a) is the map of type A vessel; Figure 6 (b) is
the map of type B vessel; Figure 6 (c) is the map of type C
vessel; Figure 6 (d) is the map of type D vessel. In the figures,
the different blue areas represent the safe navigation areas of
each type of ships, where the darker the blue is, the higher
the requirements of the ship for draft, the more concentrated
the navigation areas is in the center of the waterway. In order
to compare the Nantong Port and Meizhou Bay navigation
area, the same safe navigation area map was established for
the Meizhou Bay navigation waterway in Figure 7.

Figure 7 shows the reference map we construct in Meizhou
Bay waterway. Figure 7 (a) is the map of type A vessel;
Figure 7 (b) is the map of type B vessel; Figure 7 (c) is the
map of type C vessel; Figure 7 (d) is the map of type D vessel.
In the safe navigation area of Meizhou Bay, the bigger the
draft, the safe navigation area is concentrated in the center
of the waterway, to meet the draft of vessels and ensure the
safety of navigation. By superposing the safe navigation area
map and the electronic chart of the two waterways, a safe

FIGURE 7. Results of Depth Map in Meizhou Bay waterway.

navigation reference map of the ship is generated as shown
in Figure 8.

FIGURE 8. Results of Reference Map.

Figure 8 (a) is the Nantong waterway map combined with
bathymetric chart, the green line is depth contour. Figure 8 (c)
is the Meizhou Bay waterway reference map. The navigation
areas are substantially in line with the water depth in the
waterway.

Figure 8 (b) and (d) are the maps combined with electronic
chart. The safe navigation, depth reference map covers 86%
of the waterway part of the electronic chart, and the overlap
area of the safe navigation reference map of the deep-water
area and the deep-water part of the channel map is 80 %. The
reference map demonstrates that vessels with smaller drafts
are beyond the scope of the waterway, which indicates that
the depth of the waters outside the waterway can meet the
requirements of these vessels. In the deep- water area of the
reference map, the distribution of the deep-water area is not
average, indicating that the depth of the deep-water area in
the map may not satisfy the demands of vessels with large
drafts.
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The experimental results show that the safe navigation,
depth referencemap is consistent with the waterwaymap pro-
vided by Changjiang Waterway Bureau. To some extent, our
referencemap reflects the actual water-depth of thewaterway.
This map could boost the ability to supervise traffic within
less time.

As discussed in part D of section IV, the water depth
affects the possibility of ship accidents, and the Determina-
tion of Vessel Risk Rating is obtained by fuzzymatrix method
in Table 5.

TABLE 5. Determination of vessel risk rating

It can be seen from the table that the vessel with the highest
requirement for water depth is 4000t-5000t bulk carrier and
the lowest requirement for water depth is a general ro-ro pas-
senger boat type. As the water depth decreases, the vessel risk
rating tends to increase. When the water depth is below 25m,
all types of ships are at or about to be in high-risk navigational
conditions. Effective use of safe depth maps, in ship navi-
gation, the rational design and planning of ship navigation
routes, can avert and mitigate ship accidents, reduces the
potential risks.

We can see similarities and differences in the refer-
ence maps when comparing the Nantong Port case and the
Meizhou Bay cases. In Figure 6 and Figure 7, for ships with
larger drafts, the safe navigation area is concentrated in the
middle of the waterway. The water depth of this area is large,
which can meet the draft requirements of large ships and
conducive to the safe navigation of ships. For ships with
smaller drafts, the safe sailing area is located more on outer
margins than that of a large ship, a wider area can meet the
draft requirements of smaller ships.

Table 5 shows that larger draft vessels have safer navigable
conditions and will experience medium or high risk when the
depth of the watercraft cannot reach safe depth. For ships with
smaller draft, its safe sailing depth is medium, and its water
depth threshold at medium or higher risk is smaller and larger
than that of a large ship.

The proposed method based on ship motion trajectory
aggregation is simpler than the other methods. From the
experimental results, it can be seen that the safe navigation

area of the ship is consistent with the actual ship navigation
area. Through the calculation of the ship’s risk, it can be seen
that the ship’s safe navigation referencemap can help to avoid
the propagation risk. The safe navigation map can control the
navigation area of the ship so that the actual water depth of
each type of ship sailing satisfies the requirements of this
type of ship draft demand, thereby enhancing the safety of
navigation. In addition, since AIS data is obtained in real
time, the construction method of safe navigation reference
map is also in a timely way.

VI. CONCLUSION AND FUTURE WORK
For safe navigation of vessel, the safe navigation reference
map is constructed from big AIS data. Firstly, AIS dynamic
data and static data are preprocessing respectively. Secondly,
for some AIS data, there are many missed data during the
transmission period. The BP neural network is used to predict
maximum draft data according to vessel length and breadth.
In this step, the correlation of vessel width, vessel breadth and
the draft-depth is analyzed by the method of Pearson correla-
tion coefficient. Thirdly, the method of Hermite interpolation
is introduced to complete the data between two location
points of vessel. The safety navigation depth-reference map
is constructed according to different types of vessel. At last,
the latest version of the electronic chart data is used to verify
the accuracy of the safe navigation depth-reference map. The
results show that, the safe navigation depth-reference map
can more accurately reflect the water depth of waterway
in time, and can provide full safety navigation information
for vessel navigation. The method of this study can provide
reference for data processing and mining trajectory data.

However, the constructing method of the safe navigation
depth-reference map will consume much time for the trans-
mission and processing of AIS data, which may mean the
system cannot construct the map in a real-time state. Future
works might combine the constructing method of map with
big data processing platform in a distributed environment to
enhance the processing ability, to improve the accuracy and
timeliness of vessel navigation, and make maritime sector
supervision of the depth conditions of waterways timelier.
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