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ABSTRACT At present, the sound source localization methods based on microphone arrays can be roughly
classified into three categories: the controllable beamforming technology based on amaximum output power,
the high-resolution spectrogram estimation technique, and the sound source localization technique based on
time difference of sound. However, an existing localization technology in unstructured indoor environment
lacks of localization accuracy and adaptability. In some practical situations, the location of sound source is
limited to predefined areas. In this paper, we propose a research method of source region location system
based on convolutional neural networks (CNNs). Based on the characteristics of weighted values of CNN,
we realize the regional of indoor single sound sources transforming the sound source signals into grammar
diagrams and then inputting them into the CNN. Thewhole process is based on the characteristics of weighted
values of CNN. Finally, this paper completes the training and testing for CNN by using the Tensorflow
framework. Simulation experiments on the test sets show the effectiveness of the proposed method.

INDEX TERMS Sound source localization, machine learning, spectrogram, CNN.

I. INTRODUCTION
With the development of voice processing technology and
artificial intelligence technology, natural voice has gained
much attention in the field of human-computer interaction in
its friendlyway. As an importantmedium of human-computer
interaction, voice has significant advantages over other
sources, such as omnidirectionality, high time resolution and
the ability of spreading out of visibility. Using microphone
arrays for sound source localization research has been a
research hotspot in the field of signal processing [1]–[5].
It has already been applied in search, rescue, mobile robot,
voice recognition, acoustic detection and intelligent vehi-
cle [6]–[13] as well as other aspects.

At present, the traditional sound source localization
methods based on microphone array can be roughly
divided into three categories: the controllable beamform-
ing technology based on a maximum output power, the
high-resolution spectrogram estimation technology and the
sound source localization technique based on time differ-
ence of sound [14]–[20]. Reference [21] used beam- forming
algorithms for sound source localization. Although the array

optimization improves the performance of the sound source
localization system, it requires more microphones and higher
computational complexity. Reference [22] used a music
algorithm based on high-resolution spectral estimation and
achieved a multi-target localization technique. However, this
technique is only applicable to far-field models, and the
reverberation generated by the reflection will also seriously
interfere with the localization accuracy. Reference [23] pro-
posed an iterative least square method, according to which,
the GCC-PHAT method is used to find the sound local-
ization. However, the sound source localization technique
based on the time difference of sound takes the time-delay
feature as an input variable. The obstruction and reflection
of objects indoor such as tables and chairs, glass and walls
still cause some delay deviation. With the popularity of
pattern-based source localization algorithms, more and more
researchers begin to investigate the sound source localiza-
tion based on machine learning algorithms [24]–[27]. Ref-
erence [28] applied the BP neural network to the sensor
array to improve the accuracy of localization in the indoor
environment to certain extent. However, there still have some
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problems such as the overlong training time, insufficient
localization accuracy and insufficient fitting ability of the
model. Reference [29] proposed a sound source localization
method based on a Gaussian mixture model, which used
the phase difference between the array elements caused by
the mismatch between the room acoustics and the micro-
phone to locate. Reference [30] proposed to use the LS-SVM
(Least Square Support Vector Machine) to identify TDOA
for sound source localization, but the localization effect in
bad environment is not ideal. Reference [31] proposed a RBF
kernel support vector machine to construct a weighted min-
imum variance distortion-free response beamformer, which
could effectively deal with the single-source localization
problem in near-field. However, the computational complex-
ity of the model is too high to apply in many real world
applications. Ma et al. [32] proposed a machine-hearing
framework which combines DNNs and head movements for
robust localization of multiple sources in reverberant con-
ditions. However, the self-noise generated by head rotation
increases the number of the localization errors and this study
merely adapted to the case where the sound source is sta-
tionary and the number of active sources is verified. In the
same year, Vesperini et al developed completely data driven
approach for Speaker Localization (SLOC) in multi-room
environment, considering both the moving and the station-
ary conditions. The multi-room speaker localization algo-
rithm is implemented by DNN-SLOC. Since the proposed
algorithm consists of feature extraction and artificial neural
network, the computational complexity of the algorithm is
high. Besides, the localization of the microphone has a great
influence on the accuracy of localization.

In recent years, deep-learning has achieved great success,
which greatly promotes the development of machine learning
and attaches great importance of researchers in relevant area
as well as some high-tech companies all over the world.
CNN are a typical kind of deep neural network [34], [35].
Its weight-sharing network structure makes it more similar to
biological neural network, Which reduces the complexity of
networkmodel and the number of weights. Since this network
structure has high invariance in translation, scaling, tilting
and other forms of deformation, it has been widely used in
image processing [36]–[39].As a visual representation of the
time-frequency distribution of speech energy, the spectro-
gram itself contains speech features such as energy, pitch, and
fundamental frequency. There are already some researchers
using the spectrogram to combine image processing with
speech processing, which made a good achievement [40].
Reference [41] proposed a speaker separation technique for
the spectral Radon transform and discrete cosine transform.
Reference [42] proposed a novel single channel speech dere-
verberation method using guided spectrogram filtering by
considering a speech spectrogram as an image.

In this paper, we deal with the issue of sound source
localization from the perspective of machine learning. With
the observation in some practical situations, that the localiza-
tion of the sound source of interest is only limited to some

predefined areas [43], and the existing localization technol-
ogy in unstructured indoor environment is lacking of location
accuracy and adaptability, this paper proposes a research
scheme for indoor sound source regional localization based
on convolutional neural network. To our best knowledge,
this is the first application to solve the indoor single source
localization under the condition of convolutional neural net-
work and spectrogram. The reason why we use convolutional
neural networks is that compared to other existing machine
learning methods; convolutional neural networks have trans-
lational invariance. Translation invariance refers to a mode
that can be recognized by CNN regardless of its position at
the input. This feature coincides with the need to identify
a large number of repetitive local patterns in the spectro-
gram. Which also motivates us to apply CNN in this work.
Besides, CNN uses weight sharing which means less training
parameters, and can bring better robustness and generaliza-
tion. Firstly, we convert the sound source signal collected by
the microphone into a spectrogram to construct the location
dataset and input it into the CNN for training, to realize the
regional localization of the indoor single sound source. Then,
we use Tensorboard to visualize the training and test results
of the CNN, making the training process of the CNN more
intuitive. Finally, we compare the proposed model with KNN
(K-Nearest Neighbor), BP (Back Propagation) neural net-
works and SVM (Support Vector Machine). The simulation
results verify the effectiveness of the proposed method.

II. BACKGROUND
A. BUILDING A SIGNAL MODEL
It is assumed that the propagation of sound satisfies the
linear wave equation, and then the sound wave propagation
channel between the sound source and the microphone can
be considered as a linear system [44]. Actually, in a small
room environment, considering the reflection of the room
wall, the speech signal is multipath propagated in the room,
which causes the amplitude attenuation of the received signal
and the deterioration of the quality of the sound. This is the
reverberation effect. Since reverberation affects the perfor-
mance of a voice microphone array system, the room impulse
response model must be conducted by multipath propagation.
Suppose the signal received by the nth microphone is xi(t),
which can be expressed as [45], [46]:

xi(t) = s(t) ∗ hi(t)+ vi(t) (1)

Where s(t) is the sound source signal, vi(t) is the noise, hi(t) is
the total impulse response, and ‘∗’ is the convolution operator.
hi(t) is a function of the sound source spatial direction and
the localization of the microphone, which is the output of the
two-stage cascade filter of the room impulse response and
the microphone channel response. The former includes all the
characteristics of the acoustic path from the sound source to
the microphone, including the direct path. vi(t) is the sum of
acoustic multipath reflection interference and ambient noise.
Usually, ambient noise is more significant than channel noise
and is the main part of vi(t). Assuming that s(t) is not related
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to vi(t), considering the impulse response of the direct path
component, which can be showed as

xn(t) =
1
rn
s(t − τn) ∗ gn(t)+ vn(t) (2)

Where rn represents the distance between the sound source
and the microphone, τn represents the delay of the direct
path, and gn(t) represents the corrected impulse response,
which consists of the original response minus the direct path
response.

The system uses four sensors and the sound source is
located in a four-way microphone array. The system model
in two-dimensional space is shown in Fig.1.

FIGURE 1. System model.

The system model in two-dimensional space is shown
in Figure 1.This paper will convert the voice signals captured
by the four microphones into grammar diagrams and use the
genograms as the input of the CNN. After the CNN training,
the classification results are obtained, so that the indoor sound
source regional localization research is conducted.

B. SPECTROGRAM
Spectrogram [47] is a graph showing the change of speech
spectrogram over time. It samples a two-dimensional plane
to express three-dimensional information. The vertical axis
represents frequency, the horizontal axis represents time, and
the intensity or color of each point in the image represents
the value of the energy. The deeper color is, the stronger
speech energy will be at this point [48]. The spectrogram
shows a large amount of information related to the speech
features of the speech. It combines the characteristics of the
spectrogram and the time-domain waveforms, clearly show-
ing the change of speech spectrogram over time, or a dynamic
spectrogram [49], [50]. The basic mathematical expression is

X (ω, τ ) =
∞∑

k=−∞

ω(k, τ )x(k)e−jωk (3)

In the formula: the integral interval in equation (3) is
(−∞,+∞), which is the entire time axis, ω represents the

angular frequency, j is the imaginary number, and X (ω, τ)
is a two-dimensional function which represents the Fourier
transform of the windowed sound whose center point is
located at τ , ω (k, τ ) is a window function of length N, and
x (k) represents the sound signal of the harmonic component
number k = 0, 1, . . . ,N − 1.
In summary, the process of implementing the spectral dia-

gram is shown in Fig.2.

FIGURE 2. The realization of the language spectrogram.

C. CONVOLUTION NEURAL NETWORKS
CNN is a feed-forward neural network, which mainly
includes an input layer, a feature extraction layer composed
of one or more sets of convolution layer+pooling layers, a full
connection layer, and an output layer, as shown in Fig.3.
Multiple convolution layers and pooled layers are alter-
nately combined to form the feature extraction stage. Finally,
the final classification is obtained by integrating the out-
put values of the pooled layers through the fully connected
layer [51].

FIGURE 3. Convolution neural network.

III. BUILDING A LOCALIZATION DATASET
In this section, this paper introduces the research method of
regional localization for sound source based on convolutional
neural networks, and the specific flow of simulation experi-
ment is given in detail.

A. DATA SAMPLE SELECTION
At the data sample selection stage, we need to locate the
localization reference point in the area, then collect the
sound information sent by the sound source at each refer-
ence point. As is shown in Fig.4, in the microphone array
(M0,M1,M2,M3) in the two-dimensional coordinate system,
the distance between adjacent micro- phones is d = 10.2m,
and the microphone M0 is the origin of the coordinates. Tak-
ing the microphone M0 as the coordinate origin, the coordi-
nates of the other three microphones are M1(d, 0), M2(d, d),
M3(0, d). In the square matrix formed by the microphone
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FIGURE 4. A two-dimensional model of microphone array.

(M0,M1,M2,M3), the uniform 100×100 = 10000 reference
points are arranged, and the coordinates of the reference point
at any localization of the sound source are (xi, yi). Taking
an actual speech signal received by the microphone M0 as
a reference (The sound source signal is a ringtone of the
mobile phone in the reality), we assume that the speech signal
received by themicrophoneM0 at each reference point are the
same. We can obtain as follows [52]:

The distance from the sound source to theM0 microphone:

r0 =
√
x2i + y

2
i (4)

The distance from the sound source to the M1 microphone:

r1 =
√
(xi − 10.2)2 + y2i (5)

The distance from the sound source to the M2 microphone:

r2 =
√
(xi − 10.2)2 + (yi − 10.2)2 (6)

The distance from the sound source to the M3 microphone:

r3 =
√
x2i + (yi − 10.2)2 (7)

When the sound propagation speed c = 340m/s, the time
difference between the microphones M1, M2, M3 and the
microphone M0 is:

1ti = (ri − r0)/340i = 1, 2, 3 (8)

The length of the actual voice signal received by the micro-
phoneM0 isN = 100k , then the number of backward moving
points of the microphone M1, M2, M3 relative to the M0
microphone is:

1di = 1ti × 100k i = 1, 2, 3 (9)

From formula (4-8), we get

1d1 =

√
(xi − 10.2)2 + y2i −

√
x2i + y

2
i

340
× 100k

1d2 =

√
(xi − 10.2)2 + (yi − 10.2)2

340
× 100k

1d3
r3 =

√
x2i + (yi − 10.2)2

340
× 100k

(10)

According to the obtained sound arrival time difference
and the number of delay points of each microphone relative
to M0, we can obtain the sound signals collected by the four
microphones at each reference point localization, for a total
of 10000 data samples.

B. THE ESTABLISHMENT OF LOCALIZATION DATASET
The recognition of speech signals are mainly from the time
domain and frequency domain, but the time domain signal
cannot represent the frequency characteristics; the frequency
domain cannot show the characteristics of changes with time.
So we consider using spectrograms as inputs to CNN.

The experimental data is generated in the matlab envi-
ronment. Since the simulation is in the indoor environment,
the distance between the microphones and the sound source
is different. Besides the received signal not only has a phase
difference but also has amplitude attenuation caused by
the propagation of the sound waves in the air. So we use
formula (11):

t ′ = (rand × 2− 1)× 5000 (11)

Give the signal received by each microphone a random
delay of 5000 points, then superimpose the delayed signal
and the original signal to achieve the effect of reverberation,
through the signal-to-noise ratio formula (12):

SNR = 10 log10

N−1∑
n=0

s2(n)

N−1∑
n=0

d2(n)

(12)

Gaussian white noise is added to the speech signal. In the

formula,
N−1∑
n=0

s2(n) denotes the energy of the signal;
N−1∑
n=0

d2(n)

denotes the energy of the noise. Reference [53] clarifies that
the energy of the point source signal is inversely proportional
to the square of the distance from the sound source to the
receiving point, according to the formula (13):

s =
s0

4π · d2
(13)

The attenuation model of the sound energy can be con-
structed, where s0 is the energy of the signal at the sound
source.

The sampling frequency of the sound signal is 100 kHz.
Four spectrograms can be generated at each reference point,
which are respectively obtained by the voice signal received
by the microphone M0,M1,M2,M3. In this experiment,
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the Hanning window is selected for the window function,
the frame length is chosen as 200, the frame shift size is
100, and the color is displayed. One of the speech waveforms
corresponding to a set of speech signal waveforms is shown
in the Fig.5.

FIGURE 5. The corresponding waveform and language spectrogram of the
four way microphone.

According to Figure 5, we can clearly see the waveform
and spectral map corresponding to the four-way microphone,
but the spectral map generated at each reference point cor-
responds to one data sample. In other words, the four sets
of voice signals received by the four-way microphone are
actually one sample. So we combine the four spectra into one,
then we can get the speech signal received by the microphone
M0,M1,M2,M3 at each reference point from the one spectra,
the amplitude of the speech signal corresponds to the strength
of the color in the spectrogram. As the picture shows:

The size of the picture is 875× 656. In order to improve the
training accuracy and facilitate the subsequent calculation,
the white edges and coordinates around the language map
are cropped out, and the size of the picture is adjusted to
100 × 100. Make a label for 10,000 spectrogram samples.
One image corresponds to a label number. Divide the area to
be located into nine blocks, as shown in Fig.7.

The database established in the experiment consists
of 9 regional categories. There are 10000 samples in total,
1100 in each category. 90% of the samples of these spectro-
grams are used as training samples and 10% as test samples.

IV. APPLICATION OF CONVOLUTIONAL NEURAL
NETWORKS IN LOCALIZATION OF SOUND
SOURCE REGION
Due to the weight sharing characteristics of convolutional
neural networks, the weight parameters of back- propagation
errors that need to be trained are reduced, and the complexity
of the network is reduced. The input of the network is a
colorful image of 100 × 100 size with a sample size of 64.

FIGURE 6. The corresponding waveform and language spectrogram of the
four way microphone.

FIGURE 7. Localization partition map.

The network structure of the CNN for localization of the
sound source are designed in this study is shown in Figure 8.

The CNN model of this experiment is composed of four
convolution layers four pooled layers and three fully con-
nected layers. The network structure is Conv1- (5 × 5,32) +
P1 + Conv2(5 × 5,64) + P2 + Conv3(3 × 3,128) + P3 +
Conv4(3× 3,128)+ P4+ FC1(1024)+ FC2(512)+FC3 (9),
where Conv represents a convolutional layer, P represents
a pooled layer, and FC represents Fully connected layers,
the size and number of convolution kernels are shown in
parentheses respectively, and the number of neurons are
shown in the brackets of the full connection layer. Here we
analyze a convolutional layer, a pooling layer, and a full-
connection layer.

The convolutional layer uses a training convolution to
conduct the convolution operation of the input data, that
is, feature extraction. Use the Relu activation function.
Each plane of the convolution layer is determined
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FIGURE 8. The network structure of CNN.

by formula (14):

Xl
j = f (

∑
i∈Mj

X l−1j ∗ k lij + b
l
j) (14)

WhereMj denotes the set of selected feature maps, l denotes
the current layer number, f denotes an activation function,
k lij denotes a convolution kernel corresponding to different
input feature maps, and blj denotes an additive bias corre-
sponding to the output feature map.

The resulting feature map is used as the input to the next
pooling layer to reduce the dimension. Dimensionality reduc-
tion has three effects on the system: it makes the features
more compact and highlights salient features. It reduces the
training parameters of the system. The n-size pooling layer
can reduce n2-fold parameters and increase the system’s
robustness. Each plane is determined by formula (15):

X lj = f (β lj down(X
l−1
j )+ blj) (15)

Where down(.) denotes a down sampling function, l denotes
the current layer number, f denotes an activation function,
β lj is the multiplicative offset corresponding to the output
feature map, and blj denotes an additive bias corresponding
to the output feature map.

The full-connected layer reduces the input two-dimensional
featurematrix to a one-dimensional feature vector to facilitate
the output layer for classification processing. The output layer
is classified according to the one-dimensional vector of the
output of the full connected layer above. This column uses
the softmax cross-entropy loss.

The CNN localization process in the indoor sound source
area includes the training process and the classification pro-
cess. The training process includes the forward propagation
process and the back propagation process. The classification
process uses the parameter model obtained from the training
for the test sample to perform the operation and obtain the
localization result. The specific process is shown in Fig.9.

FIGURE 9. The algorithm flow of CNN in the localization of the indoor
sound source region.

V. SIMULATION ANALYSIS
A. SIMULATION EXPERIMENTAL RESULTS
The CNN solve the weight through iterative operation. After
multiple iterations, the ideal parameters are obtained. Since
the noise in the actual environment is unpredictable, when
acoustic features change, the validity of the collected training
data varies. In this case, we need to ensure that the CNN is
still accurate and robust even when the environment changes
after training. So we collected five sets of training data,
SNR = −5dB, 0dB 5dB, 10dB and 15dB. The same param-
eter configuration is adapted during training: the learning
rate is 0.01, batch_size = 64. The experimental results of
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TABLE 1. The experimental results with iterations at SNR = −5dB.

TABLE 2. The experimental results with iterations at SNR = 0dB.

TABLE 3. The experimental results with iterations at SNR = 5dB.

TABLE 4. The experimental results with iterations at SNR = 10dB.

different iteration times under different signal-to-noise ratios
are shown in Table 1-5:

According to Table 1-5, in the case of a small number of
iterations, network learning is not sufficient, and the training
model is not ideal, so the classification effect of training
is poor. As the number of iterations increases, the network
parameters are continuously optimized, the classification
accuracy rate increases, and the number of iterations tends

TABLE 5. The experimental results with iterations at SNR = 15dB.

to be stable when it reaches 200. Moreover, it shows that the
CNN have strong robustness by comparing the experimental
results under different signal-to-noise ratios, and its final
average localization accuracy is about 98%.

Tensorboard is a visual tool embedded in Tensorflow. It can
display the various drawing data in process by reading the
event log. Since the accuracy of convolutional neural net-
works training results are nearly the same under different
SNR, this paper uses the Tensorboard tool to visualize the
results of 1000 training and testing when SNR= 10, as shown
in Fig.10 and Fig.11.

FIGURE 10. The accuracy and loss function on the training set.

FIGURE 11. The accuracy and loss function on the testing set.

It records the classification accuracy of the model on the
training set and the test set after each iteration and the loss
function of the model. It can be seen from the figure that the
loss function decreases with iterations, and the classification
accuracy increases with iterations. In the end, both changes
have stabilized. In the course of 10000 iterations, the accuracy
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of the model on the training data reaches a maximum of 1,
and the accuracy on the test data eventually tends to be
about 98.4%.

B. COMPARATIVE EXPERIMENT
In order to verify the performance of CNN in sound source
localization, this paper compares it with KNN (K-Nearest
Neighbor), BP (Back Propagation) neural network and SVM
(Support Vector Machine), using sklearn to test these three
machine learning methods [54]. For KNN, we use KNeigh-
borsClassifier; for SVM, we use SVC; for BP neural net-
works, we use MLPClassifier. Then, the localization dataset
of the spectrogram sample is trained and tested at a signal-to-
noise ratio of -5dB, 0dB, 5dB, 10dB, and 15dB respectively.
The experimental results are shown in Fig.12-Fig.16.

Since KNN has no parameter training process, it makes
direct classification decisions based on the distribution of
training data. Therefore, it is impossible to reproduce the
relationship between the accuracy of the KNN method and
the time in the line graph. We use Table 6 to show the
experimental results based on KNN.

TABLE 6. The experimental results on KNN method.

FIGURE 12. Comparison of localization accuracy at SNR = −5.

The experimental results show that the accuracy of indoor
sound source localization based on convolutional neural net-
work is significantly higher than that of other three machine
learning methods, and the convergence speed of the network
is also faster. According to Figure 12 - Figure 16, we can
get the training duration of CNN algorithm to be stable at

FIGURE 13. Comparison of localization accuracy at SNR = 0.

FIGURE 14. Comparison of localization accuracy at SNR = 5.

FIGURE 15. Comparison of localization accuracy at SNR = 10.

about 200s and achieve satisfactory training accuracy. The
training time required for KNN is about 560s, the con-
sumption of BP and SVM take about 3000s, and so from
the perspective of computational complexity, CNN is also
significantly better than the other three machine learning
methods. For traditional machine learning methods such as
KNN, BP, SVM, etc., complex feature engineering is usually
required. Firstly, perform the deep exploratory data analy-
sis on the data set, then a simple process of reducing the
dimension. Finally, carefully chose the best features to pass to
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FIGURE 16. Comparison of localization accuracy at SNR = 15.

the machine learning algorithm. When using CNN, we don’t
need to separate the two processes of feature extraction and
classification training. Because themost effective features are
automatically extracted during training, especially the images
of multi-dimensional input vectors which can be directly
input into the network. The complexity of data reconstruc-
tion during feature extraction and classification is avoided.
Therefore, the CNN algorithm is significantly better than the
other three machine learning methods.

VI. CONCLUSIONS
In this paper, a method of indoor sound source localization
based on convolutional neural network is designed. We bring
up the idea to convert the sound source signal into a spectral
map and input it into the convolutional neural network to
realize the regional localization of the single sound source for
the first time. The method proposed in this paper solves the
problems of low localization accuracy, high dependence on
model and high computational complexity in the traditional
unstructured space. The simulation experiment proves that
the convolutional neural network has good robustness and
good generalization ability for speech signals with different
SNR. Currently our research focuses on the application of
convolutional neural networks in sound source localization,
and the accuracy of the test also verifies the accuracy and
effectiveness of the algorithm. As future work, the first thing
we are going to do is to further verify the adaptability of
the convolutional neural network algorithm in indoor sound
source localization for different experimental environments
and experimental conditions. Secondly, this experiment only
involves the use of a single sound source for indoor area
positioning. For multiple sound source localization, it still
needs further study. Finally, wemay analyze CNNof different
structures and methods combined with other neural networks
to achieve higher accuracy and faster convergence.
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