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ABSTRACT As solar photovoltaic (PV) generation becomes cost-effective, solar power comes into its own
as the alternative energy with the potential to make up a larger share of growing energy needs. Consequently,
operations and maintenance cost now have a large impact on the profit of managing power modules, and the
energy market participants need to estimate the solar power in short or long terms of future. In this paper,
we propose a solar power forecasting technique by utilizing convolutional neural networks and long–short-
term memory networks recently developed for analyzing time series data in the deep learning communities.
Considering that weather information may not be always available for the location where PV modules are
installed and sensors are often damaged, we empirically confirm that the proposed method predicts the solar
power well with roughly estimated weather data obtained from national weather centers as well as it works
robustly without sophisticatedly preprocessed input to remove outliers.

INDEX TERMS Solar power forecasting, deep learning, convolutional neural networks, long-short term
memory.

I. INTRODUCTION
As rapidly growing interest in renewable energy and gradu-
ally decreasing costs of power generation, alternative power
generation has received a lot of attention over the last decade.
Especially, solar power has the potential to make up a larger
share of growing energy needs as it becomes more and more
cost-effective. Reportedly, photovoltaic (PV) module costs
have fallen by about four-fifths, making residential solar PV
systems as much as two-thirds cheaper than in 2010 [1]. As
the installation of PV modules becomes cheaper, operations
and maintenance (O&M) cost gradually takes a large portion
of the power generation cost.

Maintaining PV operations may typically be considered
simpler and cheaper than the other alternative energy sources,
such as wind power and natural gas; however, due to the
power supply being largely dependent on the changing
weather, deciding power price and managing the budget of
production for system operators and power market partici-
pants become the essential issues to keep power plants com-
mercially profitable [2].

Solar PV system operators are using long and short term
solar power forecasts to schedule generation, estimating

operating reserves and ensuring the system stability by fluctu-
ation in output. Market participants also manage their gener-
ation portfolios based on forecasts. Considering that 38 GW
of solar capacity is traded on the energy market in 2014 in
Germany for example [3], solar power forecasting influences
the market price and cost-efficiency of power generation
substantially. Hence, solar power forecasting is playing an
important role in the management of PV systems nowadays.

Solar power forecasting techniques have been exten-
sively studied not only in solar power industry but also
in the academic communities (See recent surveys for an
overview [3]–[6]). The list of traditional regression tech-
niques used for solar power prediction includes multiple lin-
ear regression [7], [8], random forest regression [9], support
vector regressor [10]–[12], k-nearest neighbor [11], autore-
gressive moving average (ARMA) and autoregressive inte-
grated moving average (ARIMA) [13]–[16].

These traditional forecasting techniques have been gen-
erally relied on physical models calculating solar power
based on irradiation or a simple linear/non-linear regression
model. However, due to not only the non-linear dependence
of the efficiency of solar power generation on meteorological
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variables such as irradiation and temperature [4], but also
irregular errors in input data exhibited by inaccurate sen-
sors [17], they require heavy preprocessing to refine input
data and also suffer from poor accuracy with incomplete
inputs. Thus, deep learning, which is the-state-of-the-art
machine learning technique based on artificial neural net-
works that has been achieved a great performance improve-
ment in various prediction problems, is recently introduced
for forecasting solar power [8], [12].
Our contributions: In this paper, we propose an effective
solar power forecasting technique by introducing convolu-
tional neural networks (CNNs) and long-short term mem-
ory (LSTM) networks recently developed for analyzing time
series data in the deep learning communities. Considering
that weather information may not be always available for
each site where PV modules are installed if weather station
is not near that area or sensors are damaged, we predict the
solar power generated in the next day based on the records
measured in each PV inverter as well as the weather data
observed with a large granularity by the national meteoro-
logical organization.

As we mentioned in the above, almost recent techniques
either depend on exact and clear data inputs or require some
unusual data costing a high price to measure them. In [8],
the propose method uses optical devices called Clear Sky
camera filters that can estimate the irradiation under cloudless
sky. In [18], they analyze sky images using deep learning
techniques for estimating the weather and solar irradiation
more accurately. The method proposed in [19] requires data
measured from weather satellites. Furthermore, the tech-
niques proposed in [20] and [21], which predict solar power
based on deep learning, resort in heavy preprocessing to
obtain clear training data without outliers. Even if exploiting
such unconventional data and preprocessing with great effort
may improve the accuracy of forecasting, it significantly
raises the cost of maintenance and possibly increases the cost
of power generation.

Despite of the rapid growth in deep learning techniques
and its flexibility for developing various networks suit-
able for applications, it has not been extensively applied to
solar power forecasting. Furthermore, most of traditional and
recent works have been assumed clean preprocessed training
datasets without outliers. Our contributions are summarized
as follows:
• We develop a novel deep neural network to estimate
the next day’s solar power; in our network, we select
appropriate layers very suitable for regressing a target
value (i.e., the next day’s solar power) from a time series
data observed in the previous day such as temperature
and solar irradiation measured every 10 minutes.

• We extensively evaluate the performance of the state-
of-the-art related work and our proposed algorithm, and
confirm that our algorithm predicts the solar power accu-
rately and robustly even we do not refine the raw data
with great effort. Furthermore, we show that our model
improves the performance using weather data roughly

estimated with data obtained from national meteoro-
logical centers, which was not observed exactly at the
location where PV modules are installed.

We organize the paper as follows: In Section II, we exten-
sively investigate the solar power forecasting techniques
developed so far. In Section III, we formulate the problem
of solar power prediction with the definition of notations
for input and output data sets, and briefly discuss the recent
technologies of deep learning to be used in our method.
We present our proposed network in Section IV and the
empirical performance evaluation of the proposed method in
Section V.

II. RELATED WORK
Regression is an analytical technique that predicts a target
value by modeling the relationship between input variables.
To predict solar power of near future based on various mea-
sures such as PV output power, temperature, humidity and
precipitation, regression has been thus widely used. In this
section, we examine the techniques developed for forecasting
solar power and categorize them by the regression algorithms
used. We provide the summary of some important work
selected from each category in Table 1.

Multivariate linear regression (MLR) models the relation-
ship betweenmulti-attributed input and output using an affine
function, and is utilized for solar power prediction in [7].
Due to the linearity assumption, it however suffers from
poor performance. Hence, support vector regression (SVR) is
developed to represent the relationship between two variables
nonlinearly. In [10] and [23], SVR is exploited to predict
solar power by including weather information such as cloudi-
ness, atmosphere transmissivity and sun duration in the input
attributes.

Autoregressive moving average (ARMA) and autoregres-
sive integrated moving average (ARIMA) models are widely
used in regression when the input is time series data. ARMA
models use the past n input values to predict the current output
based on linear regression model, and ARIMA, a generalized
model of ARMA, considers the difference between two out-
puts in a row in the past as well. Many works have dealt with
solar power forecasting using these methods in [13]–[16].
However, since ARMA and ARIMA are still based on linear
regression, they inevitably result in bad performance.

In [9], an ensemble method called bagging [26] is utilized
to achieve accurate predictions by aggregating the results cal-
culated by heterogeneous regression models such as decision
tree and k-nearest neighbors (KNN). In [12], a simple ensem-
ble using both deep belief networks and SVR is proposed.
These works have obtained a slightly better performance
compared to using a single technique individually. However,
they fail to overcome the limitation of the traditional regres-
sors used in the ensemble methods.

Traditional artificial neural networks (ANNs), which have
a basic structure called fully-connected networks, have also
been widely applied to solar power prediction. In [24], a gen-
eralized ARMA model by using a fully-connected network,
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TABLE 1. A summary of related work for prediction of renewable energy.

called non-linear auto regressive models with exogenous
input (NARX), is introduced. Furthermore, many solar power
forecasting systems have been developed based on ANNs
in [22], [24], and [25] using various inputs such as Aerosol
Index [27] that are known to affect power generation. How-
ever, due to the large computational cost andmemory require-
ments of the traditional ANNs, it is hard to obtain a regressor
accurate enough to use practically.

Recently, on the progress of parallel computing using
GPUs and the availability of large datasets, various archi-
tectures of ANNs are developed by deepening the net-
works such as long short term memory (LSTM) [28]
and convolutional neural networks (CNNs) [29]. By the
adoption of such techniques, solar power prediction has
been significantly improved. In [8], a deep learning net-
work for forecasting solar power is proposed by combining
auto-encoder (AE) [30] and LSTM, and achieved a large

improvement of performance; AE reduces the dimensionality
of input vectors for each time slot and LSTM (we will study
about it later in detail since we also adopt it in our model)
is the state-of-the-art recurrent neural network developed to
capture the features in a time series efficiently.

III. PRELIMINARY
In this section, we define some notations required to formu-
late our problem and give our problem definition. To tackle
the problem, since we will use the state-of-the-art technique
called deep learning, we provide backgrounds about the tech-
nique.

Let D = {D1, . . . ,DT } be the dataset collected for T days.
Let Dj = (Xj,0, . . . ,Xj,N−1, yj) be a tuple recorded in the j-
th day and it contains a sequence of vectors Xji, where Xji
consists of M attributes (i.e., Xji = 〈A1, . . . ,AM 〉ij), and the
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FIGURE 1. Features are extracted with filter from data with element-wise
multiplication.

corresponding output data yj. In this paper, Xji represents a
set of values collected from a photovoltaic inverter for every
10 minutes, including voltage, electric capacity, the amount
of power generation, irradiation and temperature, as well as
weather attributes obtained from national weather centers
such as wind speed, humidity and precipitation. Since the
sensors measure those values a day long, N is then 144.
Furthermore, yj denotes power generation of the j-th day.
Given Dj collected from photovoltaic inverter and mete-

orological observation, our goal is to predict the amount of
solar power yj+1 for the next day j+ 1.

A. CONVOLUTIONAL NEURAL NETWORK FOR TIME
SERIES DATA
Convolutional neural network (CNN) was originally pro-
posed in [31] for automatic classification of digit images
and has been achieved great successes in a number of
image recognition applications [32]–[34]. Compared to the
traditional fully connected neural networks which may
discover patterns scattered over all coordinates, CNN is
designed to focus on finding local patterns (i.e., patterns
located in adjacent dimensions) that frequently occur in
2-dimensional images. Thus, CNN is naturally well adopted
with 1-dimensional time series data for various classification
as introduced in [35].

CNNs also successfully optimize the performance with a
less memory requirement; fully connected neural networks
have connection between all neurons in the adjacent lay-
ers. Therefore, the fully connected neural networks have a
tremendously large number of model parameters. However,
CNNs share model parameters named filters and the number
of parameters used in CNNs can be efficiently reduced [36].
Furthermore, CNNs are capable to well extract features with
various lengths [37] The following example shows howfilters
work in a CNN to estimate the outputs.
Example 1: Suppose that we have a tuple Dj with only a

single attribute which is irradiation recorded every 10minutes
as shown in Figure 1, and want to predict the power genera-
tion of next day. For example, the solar power of a cloudy day
when the irradiation shows the pattern similar to the signals
between two dashed line in Figure 1 probably decreases. Let
assume that filter A and B represent the features positively
correlated with cloudy and sunny days respectively. The con-
volution of the signals between two dashed line and the filter

FIGURE 2. LSTM conveys information using input data with cell state and
hidden state from previous unit.

A results in a large value (e.g., 1.0) indicating that it will be
cloudy, while that of the signals and the filter B outputs a
small value (e.g., 0.1) implying that it will not be sunny.

B. LONG SHORT TERM MEMORY FOR TIME SERIES DATA
Long short term memory (LSTM) is one of recurrent neural
network (RNN) that has successively dealt with a vanishing
gradient problem of the traditional RNNs, which makes it
impossible to find useful features occurring in the early posi-
tion in input sequences. By introducing cell status which is
specially designed to keep old information well, LSTM has
alleviated the problem effectively. In Figure 2, we illustrate
the process the forward propagation with a sample signal. The
LSTM network depicted in a box takes a vector Xji as well as
hidden hj,i−1 and cell Cj,i−1 statues, which are output by the
previous run of LSTM, as input. Then, it outputs hidden hi
and cellCi statuses, which is recurrently input to the next step
with the next input vector Xj,i+1. Note that even if the LSTM
networks in boxes are presented separately in Figure 2, we use
a single LSTM network repeatedly. In the following example,
we discuss why LSTM tends to capture the patterns over time
series well.
Example 2: Suppose that we have a time series where a

signal gradually increases in its early stage but decreases in
the last moment. Assume that we want to find the point that
the signal shows such a pattern, that is, a sudden decrement
after a long increment. With feeding signals that grows grad-
ually, LSTM may recognize a feature which describes the
pattern of increasing signal and such feature will be encoded
in the hidden status. Then, if the signal is decreased, LSTM
may discover the moment we want to find.

IV. POWER GENERATION PREDICTION USING
DEEP NETWORKS
We exploit CNNs and LSTMs in our model to extract useful
features for the solar power prediction of the next day. Since
solar energy is converted to electrical energy directly by
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semi-conductors materials, solar radiation level and temper-
ature are the most important factors. It is known that solar
radiation level has a positive correlation on solar power,
on the other hand, there is a negative correlation between
temperature and panel power. In this section, we describe the
details of our model.

We first define a training dataset as follows: For each
j-th day, the input is a sequence of multi-attributed vectors
Xj,0, . . . ,Xj,N−1 where Xji is a vector withM values collected
from various sensors every 10 minutes as defined in Prelim-
inaries. The output is then the solar power yj+1 of the next
day.

A. ADOPTION OF RECURRENT NEURAL
NETWORKS (RNNS)
To predict the power generation of the next day based on
the input such as irradiation, temperature and power output
collected all day long on the previous day, the most simple
way is to represent the previous day’s input as a vector with
the average of each attribute, and use linear or non-linear
regression algorithms, such as logistic regression or SVR, that
calculate the next day’s output. However, it is hard to exactly
predict the power without considering the trends of changes
in the input attributes over time because we cannot utilize
the momentum in the input signals; for example, the trend
of temperatures in a day may give us a useful clue to consider
the next day’s weather. We discuss in detail that the trend of
changes has a correlation to the next day’s power output in
the following.
Example 3: Suppose that we have collected temperature,

precipitation, irradiation and DC current by every 10 minutes
in a day as shown in Figure 3. Figures 3(a)–(d) show four pat-
terns of changes in each attribute, which represent (a) sunny
day, (b) rainy day, (c) sunnymorning and rainy afternoon and,
(d) sunny day with a system failure respectively.

With a high chance, the next day of a sunny day may
be a sunny day too and the next day of a rainy day may
become another rainy day rather than a sunny day. In such
days, the solar power of the next day may not largely differ
from that of the previous day. In a day when it is sunny in the
morning but rains from the afternoon as Figure 3(c), however,
it probably rains in the next day and thus, the changing pat-
terns of the observed values over time should be considered
in the prediction of the next day’s power output.

It is not limited to the values related toweather only; chang-
ing patterns of other attributes such as current and voltage
may indicate the performance of power generation systems.
For example, a sunny day when DC current suddenly drops
by a system failure (see Figure 3(d)) may be followed by a
day with a low power output.

Note that we do not aim at forecasting the next day’s
weather explicitly in our model. We illustrate some cases
using precipitation and temperature in the above, however,
it is simply to show that we can find useful patterns in those
attributes by our model.

FIGURE 3. Weather condition affects solar power generation. (a) Sunny
day. (b) Rainy day. (c) Sunny morning and rainy afternoon. (d) Sunny day
with PV inverter malfunction.

The above examples show that considering a time series
of data is crucial to improving the performance of pre-
diction, even if it increases computational cost due to the
high dimensionality by using the time series as input. As
we have introduced in Preliminaries, RNNs are especially
designed to handle the time series data, where the correla-
tion between inputs with a time distance get weaker as the
distance increases, that is, patterns typically have short-term
local dependencies. Furthermore, LSTM networks [38] have
shown the best performance among RNNs, we exploit LSTM
in our model.

B. EXPLOITING CNNS FOR SHORT-TIME LOCAL FEATURES
The straightforward way to exploit LSTM for finding local
patterns from time series data is to simply use the raw vec-
tor in each time slot as input to LSTM networks. To learn
local features from time series data frequently measured
between short terms, the performance is, however, signif-
icantly degraded since RNNs unfortunately tend to forget
early patterns in a time series. Thus, in [8], Auto-encoder
[30] is introduced for dimension reduction; an encoder is
trained in advance to the actual learning of regressor for
power prediction and then, in the phase of training a LSTM
network, the latent factor vector of a smaller dimensionality
output by the pre-trained encoder is input to the network.
However, we hardly expect that the encoder can find relevant
latent factors for the power prediction since the encoder
is independently trained regardless of the next day’s solar
power.

As we have discussed in Preliminaries, CNN [29], which is
originally proposed to capture local features in 2-dimensional

73072 VOLUME 6, 2018



W. Lee et al.: Forecasting Solar Power Using LSTM and CNNs

images, has been well adopted for finding short-time local
features from time series data [35]. Theoretically, using a
large filter in CNNs may enable us to discover long-range
features as well as short-time local features if there exist
some useful ones with a strong correlation with the output.
However, a large filter increases the computational cost sig-
nificantly and moreover, training data also should be very
large enough to cover all size featureswith using a single large
filter. In [39], a doubled CNN (D-CNN) by concatenating
the output from two CNNs with different sizes is proposed
to adaptively extract both long-range and short-time local
features. As some recent works such as [40] and [41] have
confirmed the efficiency of D-CNN in the applications that
take time series data as input, we also utilize D-CNN in
our model. The architecture of D-CNN used in our model is
shown in Figure 4.

C. SETTINGS OF OUR NETWORKS
We describe the architecture of our proposed networks
by presenting the computation of forward propaga-
tion. First, we present the setting of D-CNN depicted
in Figure 4.

Let n and s denote the interval and stride sizes respec-
tively, which are constants for slicing the time series.
D-CNN takes a sequence of 6n vectors as input rep-
resenting n-hours observations measured between every
10 minutes. With k = 0, 1, . . ., a subsequence
〈Xj,k·s,Xj,k·s+1, . . . ,Xj,k·s+6n−1〉 of the time seriesDj is input
to two separate CNNs both of which have 128 filters but,
whose filter sizes are 2 and 4 respectively; since the input
signal contains M channels, each filter of the first convolu-
tional layers in two CNNs is then represented by (M × 2)
and (M × 4)-dimensional vectors respectively. The forward
propagation is computed following the layers as shown
in Figure 4 through two CNNs, and the last outputs by the
batch normalization layer in both CNNs are concatenated and
fed into a fully-connected network after flattening. Finally,
the 1024-dimensional vector output by the fully-connected
layer is input to LSTM network illustrated in Figure 5.

For our LSTM network, we set both of the hidden state
and the cell state sizes to 1024. A 1024-dimensional vec-
tor, calculated by D-CNN with a slice of input sequence
of length 6n, is input to LSTM network and the hidden
state output by the network is recurrently fed into the net-
work with the next output of D-CNN. Finally, the hidden
state computed with the final input is used for forecasting
the next day’s solar power by going through two fully-
connected layers whose output sizes are 1024 and 1 respec-
tively. Note that the batch normalization layers in Figures 4
and 5 indicate optimization layers which are used in the
training phase only; it is developed in [42] to boost learning
efficiency.

With all convolutional and fully-connected layers, the acti-
vation function is set to the rectifier function [43], except
the last full-connected layer in Figure 5 that is using a linear
function.

FIGURE 4. Convolutional neural network layers with small and large
sized filters.

D. VARYING THE SETTING FOR THE OPTIMAL NETWORKS
To find the best setting of networks such as the architecture
of layers (e.g., the number of convolutional layers used) and
filter sizes in D-CNN, we perform experiments with varying
the networks. To see the influence of increasing the depth
of convolutional layers in D-CNNs, we have inserted three
convolutional layers in both CNNs as enclosed in the dashed-
line boxes in Figure 4. Furthermore, we also vary the filter
sizes in D-CNNwith (2, 4), (4, 8) and (8, 16) using input time
series sliced by 3 hours with setting stride size to 3 hours.

In Table 2, we present the results of varying the settings in
terms of MAPE, which will be defined later in Experiments.
The result shows that using more convolutional layers rather
degrades the performance by increasing the complexity of
networks. With varying the filter sizes in D-CNN, larger fil-
ters usually result in better prediction. The filter sizes (8, 16)
are valid with 3 hours-long sequences (i.e., length of 18),
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FIGURE 5. Sequence model with feature extraction unit.

TABLE 2. Parameters search for CNNs.

however, it does not when we use input sequences with a
shorter size. Thus, in our experiments in the next section,
we use the largest valid filter sizes among (2, 4), (4, 8) and
(8, 16) according to the input sequence size.

Furthermore, we have also tested the performance of power
prediction with changing the hidden state size of LSTM
network in Figure 5. With size 1024, we have obtained the
good enough performance and using larger hidden states does
not improve the performance much while the training time
grows largely.

V. EXPERIMENTS
We empirically demonstrated the accuracy of the proposed
algorithm forecasting solar power of the next day. The exper-
iments are done on a workstation with Intel(R) Core(TM)
i7-6850K CPU at 3.60GHz and 125GB of main memory. In
the machine, three NVIDIA GeForce GTX 1080 Ti graph-
ics cards are installed. We implemented all algorithms with
Python 3.x and used opensource machine learning packages
such as Scikit-learn 0.19.2 as well as Keras 2.0.8 using Ten-
sorFlow 1.4.0 as backend.

A. DATASETS
We have collected data from 71 photovoltaic (PV) inverters
in 14 sites where solar power generators are installed in South

TABLE 3. The term of data collection and the number of inverters in each
site.

Korea as shown in Table 3; the data is collected from 10 cities
between Feb. 29, 2012 and Jan. 6, 2016 while the terms for
data collection with each inverter are slightly different. The
records obtained from all inverters contain the same list of
attributes, which are inverter ID, site ID, date, time, power
generation, irradiation and temperature. Table 4 summaries
the attributes recorded from inverters.

We also obtained the weather records from Korea Meteo-
rological Administration1 for those locations where the solar
power generators are installed. In the dataset, weather con-
ditions such as temperature, wind speed and humidity are
recorded at intervals of an hour. In Table 4, we provide the
list of weather attributes used in our experiments.

Preprocessing: We performed the minimal preprocessing
and used as it is as close as possible to the raw data collected

1https://web.kma.go.kr/eng/
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TABLE 4. Recorded attributes from inverters and weather center.

from PV inverters. For preprocessing, we have substituted
the negative solar power values, which are obviously erro-
neous values, with zero. The categorical attributes such as
inverter ID (0∼70) and date (0∼365) are replaced by one-
hot encoded vectors; for example, date is represented by a
366-dimensional vector whose all entries are 0 but only the
corresponding coordinate has 1. We also simply normalized
all numerical attributes to be between 0 and 1. Furthermore,
since our problem is to forecast the next day’s solar power
based on the data observed in the previous day, we selected
the records collected from a pair of adjacent days only;
the records of a whole day are often omitted because some
inverters have been power-off due to maintenance operations.

We join the records from inverters, consisting of the
attributes from No. 1 to No. 9, and those from the national
weather center, including the attributed No. 10 to No. 17,
using date, time and location name as joining keys. Finally,
we obtained a data set with 18,620 pairs of input time series
and output value (i.e., input records of 18,620 days and the
next day’s power output). Then, we split the data set into a
training and test data sets by the ratio of 75:25. Furthermore,
to obtain an unbiased evaluation of a model fit by avoiding
overfitting, we shuffled the training data set and sampled
10 percentages of the data for validation. The remainder
90 percentages of training data set is then used for fitting
model parameters, and by assessing the loss function with the
validation data set, we examine if the model is biased or not
and determine to stop the training epochs; we stop training
networks if the loss is gradually increased or does not change
for the last 500 steps.

In Figure 6, we plotted the losses of training and vali-
dation data sets with every epoch until training stops; the
graph shows the losses calculated while training our model
CNN+LSTM 1h which will be defined later in this section,
and the other models trained in our experiments show similar
trends. In the graph, it takes about 40,000 epochs for training
until the stop condition is satisfied (i.e., the loss with valida-
tion data set does not change for 500 epochs).

FIGURE 6. Loss of training and validation data sets in the training phase.

B. PERFORMANCE MEASUREMENT
Mean absolute percentage error (MAPE), root mean square
error (RMSE), and mean absolute error(MAE) are frequently
used to assess the difference between the prediction of a
model and the actually observed value.

MAPE calculates the average error ratio in percentage to
the correct values as

MAPE =
1
n

n∑
t=1

∣∣∣∣At − FtAt

∣∣∣∣ ,
where n represents the size of test data set, At is the actual
solar power and Ft is the estimated one for the t-th day in the
test data set.

RMSE is the average of the root mean of squared error
between the predicted value and the observed value, and
calculated as

RMSE =

√∑n
t=1(At − Ft )2

n
.

MAE denotes the mean of absolute difference between
the predicted solar power and the observed one, which is
computed as

MAE =

∑n
i=1 |At − Ft |

n
.

Considering that the purpose of forecasting solar power
in many applications is usually to estimate energy supply in
advance for trading in a market, RMSE andMAE are suitable
quality measures to evaluate prediction algorithms. However,
since RMSE andMAE assess the errors of prediction without
considering the scale of error or observed solar power, the
error in a small scale is simply considered as the same as that
in a large scale, and thus, MAPE is also useful to identify the
method that predicts the trend well. In particular, because the
solar power value often gets close to zero in cloudy or raining
days, considering RMSE and MAE only may mislead for
evaluating the algorithms.

C. IMPLEMENTED ALGORITHMS
We implement 9 traditional regressors for comparative per-
formance evaluation. For traditional regression algorithms,
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we simply flatten each input sequence of vectors to be a
1-dimensional vector.

For solar power prediction using deep learning, we imple-
mented the state-of-the-art deep learning method which con-
sists of autoencoder and LSTM proposed in [8]. Note that it is
reported that the network outperforms deep learning methods
such as fully-connected neural network, LSTM as well as
deep belief net for forecasting solar power in [8].

The implemented algorithms are summarized as follows:
• LR: This is an implementation of a linear regression that
discovers the relationship between input variables and
an output response by fitting a linear function such as
y = β0+

∑
i βiXi where Xi is an input variable, βi is the

model parameter and y is output.
• RFR: It indicates the implementation of a random forest
regressor [44]. This method ensemblesmultiple decision
trees and chooses the mean value of their predictions
for an answer. In our implementation using scikit-learn
package, we set to use 10 decision trees and all the other
parameters are left to default values.

• SVR: This denotes a support vector regressor [45]
implemented using scikit-learn. To represent the rela-
tionship between two variables non-linearly, we select
RBF for kernel.

• EN: It implements Elastic Net [46]. Elastic Net is a
technique that regularizes coefficients in a linear regres-
sion; in the linear function shown in the above, it finds
βi minimizing the l1-norm and l2-norm together as
argminβ (||y− Xβ‖|2 + λ2‖β‖2 + λ1‖β‖1).

• SGDR: It is based on the identical model and regular-
ization to EN, but utilizes a stochastic gradient descent
for optimizing model parameters, which is also provided
in the scikit-learn package.

• BR: This is Bayesian ridge algorithm [47] that improves
linear regression by using probability distribution
instead of individually estimated values for objective
function.

• LL: It denotes the implementation of lasso that is basi-
cally a linear regression using l1-norm for regularization.

• PAR: It is a passive agressive regressor [48]. This can
optimize the coefficients in a linear regression model
incrementally with streaming input.

• OMP: This implements an orthogonal matching pur-
suit [49] which is developed to handle high dimensional
inputs well in a linear regression and minimizes the sum
of coefficient in l0-norm for regularization.

• AE+LSTM nh: It denotes the solar power prediction
method based on a deep neural network combining auto-
encoder and LSTM proposed in LSTM [8]. Note that n
indicates the length of sliced sequences to be fed into
LSTM in hours.

• CNN+LSTM nh:This is our deep neural network based
algorithm presented in Section IV, which combines
D-CNN and LSTM for estimate the next day’s solar
power with the previous day’s observation in a time
series.

FIGURE 7. Splitting 1 day record into 1, 2, 4 and 6 hours using window
slide.

TABLE 5. Performance (MAPE, RMSE, MAE, standard deviation) for
algorithms with weather data.

Since both our network using CNN and the model using
auto-encoder utilizes LSTM that takes a time series sequence
as input, we split the input sequence observed in a day by
intervals of 1, 2, 4 and 6 hours, and each slice is fed into CNN
and auto-encoder networks in CNN+LSTM and AE+LSTM
respectively. Figure 7 shows how we split the sequence by 1,
2, 4 and 6 hours.

D. PERFORMANCE EVALUATION
We compute MAPE, RMSE and MAE for all algorithms to
evaluate the performance and present the result in Table 5. It
is clear that the traditional methods based on linear regres-
sion fail to forecast solar power better than AE+LSTM and
CNN+LSTM in terms of all qualitymeasures.With those two
algorithms based on deep learning, Table 5 confirms that our
proposed CNN+LSTM has achieved the best performance
with all quality measures. Furthermore, the results show that
CNN+LSTM best predicts the next day’s solar power when
we divide the input sequence of a day by 1 hour and feed them
into D-CNN, rather than using longer intervals. It implies
that long-time features during a day, which is expectedly
detected by LSTM, has a stronger correlation on the next
day’s solar power than the short-time local features that might
be discovered by D-CNNs.
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FIGURE 8. Performance (MAPE) for deep learning methods.

TABLE 6. Performance (MAPE, RMSE, MAE, standard deviation) for
algorithms without weather data.

We also test the performance of all implemented algo-
rithms with the data obtained from PV inverters only without
merging with the data obtained from the national meteoro-
logical center. In Table 6, we can see that the performance
in most algorithms generally is degraded compared to that
using weather data together. In Figure 8, we plotted MAPE
of deep neural network based algorithms obtained with and
without the weather information. As we have argued, it con-
firms that utilizing a coarsely estimated weather informa-
tion can improve the accuracy of solar power prediction
significantly even if we do not have a high-end sophisticated
device.

Next, we have evaluated the performance of CNN+LSTM
with each PV inverter individually. Table 7 shows three
quality measures calculated with the test inputs from some
selected inverters that has enough number of samples in the
test data set. It reveals that the prediction for the inverter
No. 2674 is unusually inaccurate; MAPE is 1692.40 % while
that with the other inverters is at most 26.35 %. With a close
investigation of the data from inverter No. 2674, we found
that in a large number of records, power output is positive
while the irradiation recorded from the inverter is zero. It is
likely that irradiation sensors installed in the inverter were

TABLE 7. Prediction accuracy with data from 7 inverters.

damaged. However, even if there still exist outliers in the
training data set due to the minimum preprocessing, we dis-
covered that deep neural network based solar power predic-
tion can work robustly.

E. CASE STUDIES
To show the actual solar power output and the estimated
one together, we selected a PV inverter installed in Haenam,
South Korea, and plotted the power output and predicted
value for 200 days in the test data set in Figures 9(a) and
9(b), which are respectively obtained using CNN+LSTM 1h
and AE+LSTM 1h. In both graphs, the actual power output
is drawn with a blue line, and the prediction is shown with
a orange line. Plotting the prediction with the correct answer
clearly shows that the prediction by CNN+LSTM is closer to
the line of actual solar power output in Figure 9(a) while the
prediction line of AE+LSTM often falls off from the line of
actual output in Figure 9(b).

To test the relative precision of both algorithms, we also
plotted the absolute prediction error in percentage (APE)
(i.e., |A − F |/A ∗ 100 with an actual output A and pre-
diction F) in Figure 9(c) with the data from the same
inverter. The APEs of CNN+LSTM and AE+LSTM are
depicted with a blue solid line and red dashed line respec-
tively. The result also shows that CNN+LSTM estimates
the solar power more precisely than AE+LSTM. Further-
more, while AE+LSTM often predict inaccurately in the
days generating a pitch (See the red dashed line at Day
74 in Figure 9(c)) when solar power is very low (See the
blue solid line at Day 74 in Figure 9(b)), CNN+LSTM rela-
tively estimates the solar power well without exceeding 60%
of APE.
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FIGURE 9. Estimated solar power for 200 days. (a) Proposed prediction and ground truth with weather data.
(b) Prediction of AE with LSTM and ground truth with weather data. (c) Prediction errors between proposed model and
AE plus LSTM with weather data.

VI. CONCLUSION
As forecasting solar power is important for solar power grid
operators and energy market participants, we introduced a
novel deep neural network to be trained to predict the next
day’s solar power using time series data collected from photo-
voltaic inverters and national weather centers. We combined
two CNNs with filters of different sizes to extract short-time
local features well and LSTMs to capture long-time features
efficiently. By extensive experiments with real-life data sets,
we showed that our network outperforms not only several

traditional regressors but also another state-of-the-art deep
neural network based solar power prediction algorithm.
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