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ABSTRACT This paper proposes an empirical model of RSSI radio map in order to improve the indoor
positioning accuracy of Wi-Fi RSSI. First, the signal feature point in RSSI space is proposed based on the
indoor RSSI map, which is similar to the geomorphic feature point in a topographic map. Then, we utilize
a small amount of the grid points in geometric space to fill the RSSI grid network by using the theory of
low rank matrix. Finally, a new algorithm for indoor RSSI radio map reconstruction has been proposed.
Both the grid point in geometric space and the signal feature point in RSSI space have been utilized in the
reconstruction of the RSSI empirical model, and different types of feature points have been weighted based
on their corresponding positioning accuracy. The proposed algorithm was tested by experiments conducted
within a room, and the results indicate that the proposed method significantly outperforms the traditional

grid network algorithm.

INDEX TERMS Empirical model, RSSI radio map, the signal feature point, the grid point.

I. INTRODUCTION

Indoor positioning technology has achieved great advances
recently mainly due to the rapid advances in information
science and technology. Positioning method based on RSSI
(Received Signal Strength Indicator) [1]-[3] has become the
mainstream for the advantages of low cost, wide coverage
and without additional physical hardware [4]-[6]. It is an
important aspect of indoor positioning system to establish
the location database. There are two categories: the loca-
tion fingerprint database with collecting the fingerprint ref-
erence point RSSI samples in off-line phase, and the forecast
database using the propagation model. The location finger-
print database uses a grid network to establish the RSSI
database [7]. The forecast RSSI database is established by
a propagation model, and this model needs to be trained with
RSSI sampling points. In this paper, in order to improve the
indoor positioning accuracy of Wi-Fi RSSI, a new algorithm
for indoor RSSI radio map reconstruction has been proposed.
Similar to the geomorphic feature point in a topographic map,

the signal feature point in RSSI space has been proposed for
the RSSI radio map reconstruction. The proposed algorithm
will be introduced in part II, and the corresponding perfor-
mance for indoor location is tested in part III.

Il. THE PROPOSED ALGORITHM

In order to get a realistically RSSI radio map, both the signal
feature point in RSSI space and the grid point in geometric
space have been used in the reconstruction of the RSSI empir-
ical model. The signal feature point in RSSI space closely
associates with the indoor environment and its internal struc-
ture, which can be obtained from a RSSI empirical model.
According to [8] and [9], all the grid points in geometric space
can be calculated with a small amount of RSSI data by using
the low rank matrix theory [10]-[14].

A. RSSI GRID POINTS FILLING WITH LOW
RANK MATRIX THEORY

RSSI data on each fingerprint point needs to be sampled
in the traditional fingerprint location method, but it is time
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FIGURE 1. The sketch of RSSI sampling.

consuming and manpower consumption. Therefore, com-
pression sensing technology has been proposed [15]-[17].
Compressive sensing provides a new framework for recov-
ering sparse or compressible signals with fewer mea-
surements than that needed by the Nyquist sampling
theorem [18], [19].

Low rank matrix filling theory is based on the compression
sensing, which mainly solves the problem of how to recover
the low rank matrix from sparse measurements [20]. Suppose
that the target location area is a rectangular area with m x n
fingerprint points for RSSI data sampling, then every Wi-Fi
access point (AP, also termed hotspot) will form a sampling
matrix of signal intensity m x n. Assuming that only a small
subset of RSSI sampling points is collected, one needs to
reconstruct the two-dimensional matrix of the whole target
area. The grid points denoted by solid dot are RSSI sampling
points, and the rest points need to be filled with low rank
matrix theory, as shown in Figure 1.

The target area is defined as matrix X, and the number of all
grid points is V. In actual sampling, one selects s (s < N) grid
points for RSSI sampling. The observation matrix denoted as
matrix B. Therefore, the matrix B is an incomplete matrix
with many grid points no-sampling. Then one can establish
the relationship between matrix B and matrix X, by using the
rank minimization theory of the affine matrix, as

i k(X
rr;}nmn( )

st.AX)=B ()

where A is the linear mapping from the matrix X to the
matrix B. If one grid point has been sampled, the correspond-
ing RSSI in matrix B is equal to the RSSI of this grid point in
matrix X. Conversely, if one grid point has not been sampled,
then the corresponding RSSI in matrix B is equal to zero. The
convex envelope of rank(X) on the set {Xe R™" : | X|| <1}
is the nuclear norm of matrix X [20], as

X1 =Y ox(X) )
k=1

where oy (X) is the k-th singular value matrix X. There-
fore, by substituting (2) into (1), the combinatorial opti-
mization has been transformed into a convex relaxation
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optimization, as

min ];ok(X)
s.t.AX) =B A3)

Thus, all elements (RSSI) of matrix B can be filled accurately
at a very high probability [20].

Then, one can decompose matrix X by using singular value
decomposition as

X=Uxv’l 4)

where, U is an orthogonal matrix of m x m, ¥ is a semi-
positive diagonal matrix of m x n, as

Y =diag(oy, ..., 0r) ®))

VT is the conjugate transpose matrix of matrix V, which is
an orthogonal matrix of n x n. Suppose L = UX!/? and
R = VX!/2 by substituting into (1), one can get

min rank(LRT)
s.t. A(LRT) =B (©)

Since there may have multiple solutions of matrix L and
matrix R, one can optimize them by minimizing the Frobenius
norm [21] as

min L] + [|IR|17
s.t.A(LR"Y=B 7

In addition, since the sampling RSSI data may contain errors
and the matrix in the location area may not fully be a low rank
matrix, the model constraint condition has been transformed
into a non-constrained model, as

) 5 2 T 2
min [LIF + IR} +o[ACRD) =8| ®)

where w is the weight matrix of the reconstruction error.

Finally, one can derive the matrix L and R through the
alternate iterative process as follows:

1) The least square method has been adopted to calculate
the initial value X¢ of matrix X and its corresponding possible
decomposition matrixes. Then one can select a set of decom-
position matrix of matrix X randomly as the initial value of
matrix L and matrix R.

2) Matrix L is fixed, and matrix R is calculated.

3) Matrix R is fixed, and matrix L is calculated.

4) Repeat step 2, 3 until the target function calculated by
formula (8) is convergent.

B. WEIGHT ASSIGNMENT OF NEW NO-OVERLAPPING
FILLED GRID POINTS

Once the grid points in geometric space have been filled, there
will be overlapping points between the signal feature point in
RSSI space and the new filled geometric feature points. For
one overlapping point, it has two RSSIs, the sampling RSSI

76119



IEEE Access

W. Xue et al.: New Algorithm for Indoor RSSI Radio Map Reconstruction

‘ Grid point in geometric space

Signal feature point in RSSI
space

Calculate new grid point
with the low rank matrix
v
Calculate differences and

corresponding weights
[

v

Signal feature point in RSSI space, grid point in geometric
space, weighted new grid point in geometric space

v
RSSI radio map has been reconstructed Based on TIN

FIGURE 2. The flowchart of the proposed algorithm.

and the filled RSSI. Thus, there is a RSSI difference between
the sampling RSSI and the filled RSSI, as

i=12,....M
C))

where RSSIlimmp lmfg is the sampling RSSI of the i-th overlap-
ping points, RSSE""* is the filled RSST of the i-th overlapping
points. It is assumed that there are M overlapping points.
The sampling RSSI has been used as its RSSI, while the
corresponding RSSI difference has been to assign weights of
the no-overlapping filled geometric feature points, by

1/ARSSI;
o = — LR (10)

M
1 / [ S (ARSSI;)?
i=1

After all the weights have been calculated, one can get the
Maximum. Taken the Maximum as the reference, weights
have been re-calculated as

ARSSI; = RSSIZ_S“mP”"g _ RSSI{illea’

oy

w; = — (11)
Wprax

where w},, is the Maximum of all weights.

C. RSSI RADIO MAP RECONSTRUCTION
Finally, the RSSI empirical model is reconstructed by the
signal feature points in RSSI space, the grid points in geo-
metric space and the weighted new grid points in geometric
space. The method is similar to the way to establish a DEM
(Digital Elevation Model), and one can just use RSSI data
to replace elevation data. Therefore, the reconstruction of
proposed empirical RSSI radio map adopts a fitting model
based on the integral interpolation of TIN (Triangular Irreg-
ular Network) in [22].

To sum up, the flowchart of the proposed clustering algo-
rithm is shown in Figure 2.

lll. EXPERIMENT AND ANALYSIS OF ITS RESULT
In order to evaluate the performance of the proposed algo-
rithm, experiments were conducted in fourth Building of
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FIGURE 3. The schematic diagram of experimental point distribution.

Wuhan University. Figure 3 shows the floor plan of the
room 101, where there are 63 points denoted by dot and 6 APs
denoted by triangle in the space of 5.2mx3.9m.

The space of interest in each room is divided into grids
whose dimensions are 0.65mx0.65m. The sampling rate
of 1 s was used to collect the RSSI. The RSSI data for
about five minutes at each point have been used as fin-
gerprint database. To ensure consistency, all the data are
collected using the same mobile phone. For convenience,
an independent coordinate system in each open area is estab-
lished for position determination purpose. The grid network
of 1.3mx 1.3 m has been taken as the fingerprint database of
the traditional fingerprint method.

A. RSSI RADIO MAP RECONSTRUCTION WITH THE
FEATURE POINTS IN RSSI SPACE

According to the Nyquist sampling theorem [19], the grid
network of 0.65m x0.65 m can be taken as the real RSSI radio
map of the fingerprint database with network of 1.3mx 1.3 m,
as shown in Figure 4. For convenience, we take AP1, AP2,
AP3 and AP4 as example in all the figures.

From Figure 4, we can see that each of the RSSI radio maps
contains mutation points. In other words, there may be coarse
error in our sampling data. Therefore, one needs to remove
these incorrect sampling points based on the experimental
environment firstly. In addition, the incorrect sampling point
mainly means the non-boundary point. Since the signal inten-
sity at the boundary is more likely caused by multipath.
The elimination of the incorrect sampling points is shown
in Table 1.

After removing the incorrect sampling points, the
RSSI signal distribution diagram is shown in Figure 5.
From Figure 5, we can see that the RSSI radio maps have
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FIGURE 4. The real RSSI radio map.
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FIGURE 5. The RSSI radio map after removing incorrect sampling points.
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FIGURE 6. Reconstructed RSSI radio map with the feature points in RSSI space.

TABLE 1. The elimination information of different AP.

AP1 AP2 AP3 AP4 AP5 AP6
Number 3 1 2 1 3 4
Rate (%) 4.76 1.59 3.17 1.59 4.76 6.35

been optimized after eliminating the incorrect sampling
points. Then, one can select the feature points in RSSI
space from Figure 5 according to the corresponding char-
acteristics of each AP RSSI radio map. The number of
the feature points in RSSI space may be different from
each AP. The number of the feature points in RSSI space
and the corresponding percentage of all points are shown
in Table 2.
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TABLE 2. The feature points selection information of different AP.

AP1 AP2 AP3 AP4 APS AP6
Number 16 19 17 22 17 13
Percentage (%)  25.40 30.16 26.98 34.92 26.98 20.63

Then, one utilizes these selected feature points to
re-construct the RSSI radio map, as shown in Figure 6.
From Figure 6, we can see that the RSSI radio map can be
outlined roughly with 13~22 feature points in RSSI space,
which is about a quarter of all the grid points in the grid
network 0.65m x 0.65 m. Considering that only part of the fea-
ture points in RSSI space have been used, the reconstructed
RSSIradio map cannot be consistent with the RSSI radio map
in Figure 5 completely.
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FIGURE 9. Reconstructed RSSI radio map with the theory of low rank matrix filling.

B. RSSI RADIO MAP RECONSTRUCTION WITH THE GRID
POINT IN GEOMETRIC SPACE
We use the grid points in 1.3mx1.3m grid network to
re-construct the RSSI radio map of the fingerprint, as shown
in Figure 7. From the comparison of Figure 7 and Figure 5,
it can be seen that the RSSI radio map reconstructed by
1.3mx1.3m grid is roughly the same as the real RSSI radio
map. But the detail of this RSSI radio map is not good, which
has a large difference with the sampling value of the real
RSSI radio map. Therefore, it is not ideal to reconstruct the
RSSI radio map only with the grid points in geometric space.
Ten grid points of the sampling RSSI have been randomly
chosen from the RSSI radio map of in 1.3mx1.3m grid
network, with ensuring that there have sampling RSSI in
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each row and in each column. Firstly, we use these sampling
grid points to re-construct the RSSI radio map, as shown
in Figure 8. Then, we re-construct the RSSI radio map
by using the low rank matrix filling theory, as shown
in Figure 9.

From the comparison of Figure 7 with Figure 9 and
Figure 8, it can be seen that similarity between Figure 9 and
Figure 7 is greater than similarity between Figure 8
and Figure 7. So the RSSI radio map constructed by the low
rank matrix filling theory is better than that that of the selected
sampling grid points. In addition, there is a mutation in the
RSSI radio map of some AP in Figure 10, which indicates
that the RSSI radio map constructed by the low rank matrix
filling theory relies on the selected sampling grid points.
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FIGURE 10. The original RSSI radio map with all the feature points.
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FIGURE 11. The RSSI radio map of the proposed RSSI empirical model.

TABLE 3. Number and proportion of feature points of different AP.

AP1 AP2 AP3 AP4 AP5 AP6

RSSI points 16 19 17 22 17 13
Grid points 10 10 10 10 10 10
All points 26 29 27 32 27 23

Percentage (%) 4127  46.03 42.86 50.79  42.86  36.51

Therefore, it is necessary to eliminate the mutation point and
to select the sampling grid points randomly.

C. RSSI RADIO MAP RECONSTRUCTION WITH THE
PROPOSED ALGORITHM

Table 3 shows the number and proportion of feature points in
each AP, and the original RSSI radio map of all the feature
points has been re-constructed with all these feature points
directly, as shown in Figure 10. Then, the RSSI empirical
radio map is reconstructed by combining the signal feature
point in RSSI space, the grid point in geometric space and
the weighted new grid point in geometric space, as shown
in Figure 11.

From the comparison of Figure 5, Figure 7,
Figure 10 and Figure 11, we can see that similarity
between Figure 11 and Figure 5 is greater than similarity
between Figure 10 and Figure 5, and significantly greater
than similarity between Figure 7 and Figure 5. Therefore,
the positioning accuracy of the RSSI empirical radio map is
better than that of the fingerprint algorithm.

VOLUME 6, 2018

Y (m)

AP 4

Y(m)

TABLE 4. Data sampling information of the two different algorithms.

Algorithm AP1 AP2 AP3 AP4 AP5 AP6 All
Proposed 26 29 27 32 27 23 164
Fingerprint 20 20 20 20 20 20 120
Workload 1.30 1.45 1.35 1.60 1.35 1.15 1.37

TABLE 5. Positioning accuracy of the two different algorithms.

CDF (%) 0.1(m) 02(m) 0.3(m)  0.5(m) 1(m) 2(m)
AP1 5.00 15.00 25.00 37.50 55.00 82.50
AP2 7.14 2143 26.19 45.24 64.29 80.95
AP3 2.44 14.63 29.27 46.34 73.17 100.00
F AP4 9.52 16.67 28.57 45.24 69.05 97.62
AP5 5.00 12.50 25.00 37.50 60.00 77.50
AP6 10.26 20.51 28.21 43.59 48.72 79.49
Mean 6.56 16.79 27.04 42.57 61.70 86.34
AP1 35.00 38.33 46.67 50.00 71.67 91.67
AP2 38.71 48.39 40.32 62.90 75.81 87.10
AP3 42.62 47.54 62.30 72.13 88.52 100.00
P AP4 40.32 45.16 54.84 67.74 82.26 100.00
AP5 40.00 45.00 48.33 63.33 75.00 91.67
AP6 35.59 40.68 42.37 47.46 59.32 77.97
Mean 38.71 44.18 49.14 60.59 7543 91.40
*Where, F represents the fingerprint algorithm and P represents the proposed
algerithm

Next, let us to exam the positioning error of the RSSI
empirical radio map. Table 4 shows the RSSI sampling infor-
mation of the fingerprint algorithm and the RSSI empir-
ical model. There are about 60 RSSI sampling points of
each AP after removing several mutations. The positioning
error is calculated based on the RSSI differences in meters
between the reconstructed RSSI and the real RSSI, as shown
in Table 5.
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From Table 4 and Table 5, it can be seen that the posi-
tioning accuracy of the proposed RSSI empirical model is
significantly higher than that of the location fingerprint with
a slightly bigger data sampling, especially within 0.5 meter.
Therefore, the RSSI empirical model for indoor location does
have research meaning and application value.

IV. CONCLUSION

This paper proposed a new algorithm for indoor RSSI radio
map reconstruction based on the signal feature point in
RSSI space and the low rank matrix filling theory. The signal
feature point in RSSI space is first proposed in this paper,
which is similar to the geomorphic feature point in a topo-
graphic map. The RSSI empirical model is reconstructed by
combining the signal feature points in RSSI space, the grid
points in geometric space and the weighted new grid points
in geometric space. The positioning accuracy of the proposed
algorithm was tested by experiments conducted within a
room, and the results indicate that the proposed RSSI empir-
ical model significantly outperforms the traditional grid net-
work algorithm.
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