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ABSTRACT Decomposition of the signal on the orthogonal or nonorthogonal basis of the signal space
is the traditional method for fault feature extraction in the field of inverter fault diagnosis. These signal
analysis methods make the result of signal decomposition not sparse and they are not self-adaptive. In recent
years, sparse representation has received considerable attention in signal processing because the method
can overcome the shortcomings of traditional methods by decomposing the signal on an over-complete
dictionary instead of on an orthogonal or nonorthogonal basis. This paper proposes a combination of sparse
representation and support vector machine (SVM) for the fault diagnosis of neutral point clamped (NPC)
three-level inverter. First, the three-phase phase voltage signals are sampled as the characteristic signals for
analysis. Then, the K-SVD algorithm is used as the fault feature extraction technology to obtain an over-
complete dictionary and the sparse representation coefficients of the characteristic signals. The latter are
used as the feature information for the characteristic signals. Finally, the SVM with powerful generalization
capability is used as the fault identification method to identify NPC three-level inverter fault types according
to the extracted feature information and analyze the fault diagnosis effect. Simulation experiments show that
the combination of sparse representation and the SVM for fault diagnosis of NPC three-level inverters has
the advantage of high diagnostic accuracy. The fault diagnosis method proposed in this paper is compared
with other methods to further verify its superiority in the fault diagnosis of NPC three-level inverters.

INDEX TERMS Neutral point clamped three-level inverter, fault diagnosis, feature extraction, fault
identification.

I. INTRODUCTION
In the field of distributed power generation (DG), inverter
is the key device that converts DC signals into AC signals.
Inverter can be divided into two groups: two-level inverter
and multilevel inverter. Multilevel inverter can be sub-
divided further into cascaded H-bridge (CHB) inverter,
flying capacitor (FC) inverter, neutral point clamped (NPC)
inverter [1]. The type of inverter studied in this paper is the
NPC three-level inverter. Compared to a two-level inverter,
the three-level inverter has the advantages of lower har-
monic distortion in the voltage output, lower voltage stress
in power switches, smaller capacity switches and higher
working efficiency [2], [3]. For these reasons, it has received
increasing attention from researchers. However, the three-
level inverter consists of more power switches than two-level
inverter, resulting in a more complex circuit structure and

lower reliability. Therefore, the possibility of faults in three-
level inverter is higher, and the types of faults are more
diverse [4]. If the three-level inverter occurs faults, it will
negatively affect the normal operation of the entire distributed
power generation system [5]. It is very important to accurately
locate and identify faults occurring in inverter, because the
diagnosis results can provide a basis for appropriate personnel
to repair, reducing the risks and economic losses caused by
inverter faults [6].

For the fault diagnosis of NPC three-level inverter, two
key problems need to be solved: the first is fault feature
extraction, which means that a certain method is used to
extract effective information about the different fault types
(feature extraction technology is the precondition for fault
diagnosis of the inverter); the second is fault identification,
which means that a certain method is used to accurately
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identify the fault types according to the extracted feature
information [7], [8].

There have been several studies of fault feature extraction.
The spectrum method for fault feature extraction is presented
in [9] and [10], the essence of spectrum method is Fourier
transform, which converts the signals from the time domain
to the frequency domain to obtain the frequency domain
information of the signals. However, the basis function of
the Fourier transform is infinite, so this analysis method will
lose all the time domain information of signals and does not
have time resolution. Spectrum method is suitable for ana-
lyzing stationary signals whose frequency does not change
over time, but its ability to analyze nonstationary signals
is poor, giving it limitations in the field of fault diagnosis.
The wavelet analysis method is proposed to extract the fault
signals feature information in [11]–[14]. This method is a
time-frequency analysis method, which can obtain both the
time domain information and frequency domain information
of the signals simultaneously. Thus this method can overcome
the defect of the spectrum method which will loss the time
domain information of analyzed signals. However, wavelet
analysis is hampered by the difficulty in selecting the wavelet
basis, and the method lacks adaptability. In [15], the method
of empirical mode decomposition (EMD) is introduced into
fault diagnosis to extract signals feature information. EMD
is also a time-frequency analysis method that decomposes
signals into a finite number of intrinsicmode functions (IMF).
The method breaks the limit of the uncertainty principle,
has good time-frequency focusing characteristics, and it can
adaptively decompose signals into finite IMF components
according to the characteristics of the signals itself. However,
themethod also have disadvantages, such asmodemixing and
end effects, which can affect the accuracy of fault diagnosis.
The principle component analysis (PCA) method for feature
extraction of signals is proposed in [10] and [16]–[17]. This
method is used to analyze the correlations between a large
number of data and to reduce their dimensions. The data
after dimension reduction are smaller but retain sufficient
information of the original data. PCA not only makes data
processing more convenient, but also avoids data redundancy.
However, the method must assume that the data follow the
Gaussian distribution and cannot directly deal with nonlin-
ear or multimodal problems.

In terms of fault identification, many neural network meth-
ods have been studied. For example, The back propagation
neural network (BPNN) identification method for fault diag-
nosis of inverter is proposed in [18]–[21]. BPNN has been
widely used in pattern recognition and classification because
of its strong learning ability and nonlinear approximation
ability. However, BPNN suffers from problems such as slow
convergence rate and local optimum.

In summary, the common fault feature extraction methods
and fault identification methods can solve some problems,
but have their own limitations. In order to improve the accu-
racy of inverter fault diagnosis, it is necessary to further
improve from the two aspects of fault feature extraction and

fault identification. A more effective fault feature extrac-
tion method needs to be proposed to accurately extract fault
feature information that can represent the essential charac-
teristics of the analyzed signals, and a more effective fault
identification method needs to be proposed to accurately
identify the different faults according to the extracted feature
information.

Traditional signal analysis methods, such as Fourier trans-
form, short-time Fourier transform, wavelet transform and
wavelet packet transform, generally decompose signals on an
orthogonal or nonorthogonal basis. In contrast, the method
of sparse representation decomposes signals on an over-
complete dictionary [22], [23]. The signals can be repre-
sented linearly by a small number of atoms that make up
the over-complete dictionary [24]. Sparse representation can
achieve a high degree of characterization and extraction of
the internal structure and morphological details of signals.
In addition, the method has the characteristics of flexibility
and adaptability [22], [25]. Because sparse representation has
many advantages, it is widely used in signal denoising, signal
compression, feature extraction, and in other fields [25].
For example, In [26]–[28], sparse representation method
is studied for fault feature extraction and the experimental
results show that the method can extract effective fault feature
information. In this paper, the K-SVD algorithm for sparse
representation of signal is used to extract feature information
of characteristic signals. This algorithm has two processes:
sparse coding and dictionary update. Through this algorithm,
an over-complete dictionary and a sparse representation coef-
ficient matrix of characteristic signals can be obtained. Each
column vector of the sparse representation coefficient matrix
is considered as the eigenvector of the corresponding signal.
The support vector machine (SVM) method is then used for
fault identification in this paper. SVM has unique advan-
tages in solving small-sample, nonlinear, and high-dimension
problems [29], [30]. A fault diagnosis method based on
PCA and SVM is proposed for three-phase rectifiers, and
fault types have been accurately identified by SVM [31].
A new method based on FFT-RPCA-SVM is proposed for
the cascaded H-bridge multilevel inverter, and the proposed
method has high accuracy and efficiency compared to other
fault diagnosis methods in [9].

The K-SVD and SVM will be used for fault diagnosis
of NPC three-level inverter in this paper, where K-SVD is
used for fault feature extraction and SVM is used for fault
identification. The effectiveness of combining K-SVD and
SVM will be verified by simulation experiments.

The remainder of this paper is divided into five parts:
Section II analyzes the topology structure and fault types of
the NPC three-level inverter; Section III analyzes the theory
of the K-SVD algorithm in signal sparse representation;
Section IV analyzes the theory of SVM; Section V carries on
the simulation experiments to verify the rationality of the fault
diagnosis method based on sparse representation and support
vector machines; and Section VI summarizes the findings of
this study.
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II. NPC THREE-LEVEL INVERTER FAULT ANALYSIS
The circuit topology of NPC three-level inverter [3] is shown
in Figure 1. The inverter consists of A, B, and C three-phase
bridge arms. Taking A-phase bridge arm as an example, this
consists of four power switches (sa1−sa4), four free-wheeling
diodes (VD11 − VD14), and two clamping diodes (D1 −D2).
Each free-wheeling diode is connected in antiparallel with the
power switch to provide a reverse conduction loop for the cur-
rent. The clamp diode is used to connect the power switches
and the midpoint of the DC side capacitor. The output three-
phase phase voltage signals of the inverter are filtered by
LC filter to supply power for the load. The three-phase bridge
arms are composed of 12 power switches. The state of each
power switch is controlled by the corresponding gate signal.
When the gate signal is 1(high level), the power switch is
turned on; when the gate signal is 0(low level), the power
switch is turned off. The switching mode of the inverter is
determined by the modulation strategy. Common modulation
strategies include pulse width modulation (PWM), sinusoidal
pulse width modulation (SPWM), and space vector pulse
width modulation (SVPWM), etc. Among them, SVPWM
modulation strategy has the advantages of small harmonic
components and high DC utilization, therefore SVPWM
modulation strategy is used to control the gate signals of the
power switches in this paper.

FIGURE 1. Circuit diagram of the NPC three-level inverter.

In the actual operation process, the NPC three-level
inverter is prone to faults under high-frequency switching of
power switches and complex environmental conditions. Most
of the faults in the inverter are related to faults in the power
switches, which include power switches open-circuit faults
and short-circuit faults [32]. In general, short-circuit faults
are avoided by the protection circuit. Once short-circuit faults
occur in the power switches, the protection circuit is quickly
disconnected, eventually converting the short-circuit faults
into open-circuit faults [10]. Because short-circuit faults have
a short time duration and are rapidly turned into open-circuit
faults, this paper focuses on the diagnosis of open-circuit
faults in NPC three-level inverter power switches only.

NPC three-level inverter power switches are consisted
of 12 insulated-gate bipolar transistor (IGBT) devices. Due to
the location and number of faulty power switches are random,
there can be many types of open-circuit faults. In general,
the possibility that three or more power switches all occur

open-circuit faults at the same time is very small. This paper
focuses on fault diagnosis in the case of open-circuit faults
in one power switch or in two power switches. Open-circuit
faults of power switches are divided into four categories:
(1) the power switches all operating normally, which is con-
sidered a special fault condition; (2) only one power switch
occurs open-circuit fault; (3) two power switches simulta-
neously occur open-circuit faults on a single-phase bridge
arm; and (4) two power switches simultaneously occur open-
circuit faults on two crossed arms. There are 73 fault types in
these four fault categories, all of which will be discussed in
this paper.

In normal operation, the three-phase phase voltage signals
at the output of the NPC three-level inverter are sinusoidal,
with a phase difference of 120◦. If the power switches occur
faults, the phase voltage signals at the output of the inverter
will be changed. Different types of faults will generate dif-
ferent phase voltage signals, as shown in Figure 2. The
three-phase phase voltage signals contain important infor-
mation that reflects the characteristics of the faults. We can
indirectly diagnose the faults by analyzing the three-phase
phase voltage signals. In this paper, the three-phase phase
voltage signals are used as the characteristic signals. The
K-SVD algorithm is used to extract the fault feature informa-
tion of three-phase phase voltage signals under different fault
types, and the SVM method is used for fault identification to
diagnose the faults in the inverter.

III. FEATURE EXTRACTION BASED ON SPARSE
REPRESENTATION
A. BASIC IDEA OF SPARSE REPRESENTATION
Let yi ∈ Rm be a measured signal. D =

[
d1, d2, . . . , dp

]
∈

Rm×p matrix is composed of a set of normalized vectors,
we call D as a dictionary, and each vector di is an atom in
dictionary D. If yi can be represented linearly by a small
number of atoms in D, there is a coefficient vector xi ∈ Rp

such that yi ≈ Dxi. The coefficient vector xi is also called
sparse code of the signal yi.

(yi) =
(
d1, d2, . . . , dp

)

xi [1]
xi [2]
...

xi [p]

 (1)

The objective function is:

min
D,X
‖Y − DX‖2F

subject to ‖xi‖0 ≤ S ∀i = 1, 2, · · · , n (2)

Where Y = [y1, y2, . . . , yi, . . . , yn] ∈ Rm×n is a series
of signals to be analyzed, D =

[
d1, d2, . . . , dp

]
∈ Rm×p is

an over-complete dictionary, X = [x1, x2, . . . , xi, . . . , xn] ∈
Rp×n is a sparse representation coefficient matrix of Y , and S
is the sparsity.

From the objective function, it can be shown that the sparse
representation of signal is required to solve two problems,
the learning of dictionary D and the solution of sparse
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FIGURE 2. Phase voltage waveforms in different faults.

representation coefficient matrix X . Dictionary D and the
sparse representation coefficient matrix X must satisfy two
requirements:DX needs to approximate the original signals Y
as much as possible, whereas the sparse representation coef-
ficient matrix X needs to satisfy sparsity constraint. In this
paper, the K-SVD algorithm is used to solve this problem.

B. K-SVD ALGORITHM
The K-SVD algorithm [33], [34] is an iterative algorithm
which is an extension of the k-means algorithm, and is gen-
erally used to solve the dictionary learning problem in sparse
representation of signal. Dictionary D in the K-SVD algo-
rithm is an over-complete dictionary, and original signals can
be approximate represented by a linear combination of atoms
in D. The K-SVD algorithm essentially embodies the idea of
data compression. The algorithm consists of two processes,
as shown in Figure 3, namely sparse coding process and
dictionary update process. The two processes are alternated
until the requirements of the target equation are met.

FIGURE 3. Flow chart of K-SVD algorithm.

1) SPARSE CODING PROCESS
The common algorithms of sparse coding include the base
pursuit (BP) algorithm [35], [36], the matching pursuit (MP)
algorithm [37], [38], and the orthogonal matching pursuit
(OMP) algorithm [39], etc. In sparse representation of signal,
the sparse coding problem is also to solve an optimization
problem. We can write the following objective function:

min
X∈Rp×n

‖Y − DX‖2F

subject to ‖xi‖0 ≤ S ∀i = 1, 2, · · · , n (3)

In the process of sparse coding, dictionary D is fixed, and
our aim is to find the best sparse representation coefficient
matrix X to represent original signals Y . The application
of the OMP algorithm in the sparse coding process will be
introduced as follows:
step 1. Initialize residual: r (residual)← yi, xi← 0.
step 2. ϒ = φ, t = 0.
step 3. Select an atom that has the largest correlation with

the residual:
∧

l ← argmax
∣∣∣dTi r∣∣∣

i = 1, 2, . . . , p

ϒ ← ϒ ∪

{
∧

l

}
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step 4. Update residuals and coefficients:

r ←
(
I − Dϒ

(
DTϒDϒ

)−1
DTϒ

)
r

xi

[
∧

l

]
← xi

[
∧

l

]
+

((
DTϒDϒ

)−1
DTϒ

)
r

t = t + 1

step 5. While t ≤ S, repeat steps 3 and 4.
step 6. yi = Dxi + r .
We know that the residual obtained by the OMP algorithm

is orthogonal to all the selected atoms. The atoms that have
participated in the iteration will not participate in the sub-
sequent iterations, that is, each atom only participates in
one iteration. Thus the number of iterations will be reduced
compared with the MP algorithm. The OMP algorithm will
be used to obtain the sparse representation coefficient matrix
of the signals instead of the MP algorithm.

In the sparse coding process of K-SVD algorithm, we can
obtain the sparse representation coefficient matrix X of the
signals Y on a given dictionary D.

2) DICTIONARY UPDATE PROCESS
In the K-SVD algorithm, the atoms of the dictionary are
updated column by column, that is, only one column in dic-
tionary D and the corresponding row in sparse representation
coefficient matrix X are updated and the other columns in D
and the corresponding rows in X are fixed at the same time.
When a column is updated, the other columns are updated
sequentially in the same way. After p iterations, a complete
update of dictionary D is completed. The objective function
is written as follows:

‖Y − DX‖2 =

∥∥∥∥∥∥Y −
p∑
j=1

dj gj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
Y −∑

j 6=k

dj gj

− dk gk
∥∥∥∥∥∥
2

= ‖Ek − dk gk‖2 (4)

Where dj is the jth column of dictionary D, gj is the jth
row of sparse representation coefficient matrix X , and Ek is
the error after removing the kth atom. The purpose of the
dictionary update is to find a new dk and a new gk to minimize
‖Ek − dkgk‖2. The SVD method can solve this problem.
DecomposingEk using SVD,we can getEk = U3V T , where
U and V are unitary matrices, and 3 is a diagonal matrix
with elements that are arranged in descending order. Take
the first column vector of U as a new dk , take the product
of the first column vector of V and the first element of 3
as a new gk . However, there is a problem with the above
process. The desired sparse representation coefficient matrix
is sparse, but the new gk may make the sparse representation
coefficient matrix unsparse. Therefore, the dictionary update
process needs further processing as follows:

‖Y − DX‖2=‖Ek − dkgk‖2=‖Ek (J)−dkgk (J)‖2+c (5)

Where gk (J) is the abbreviated matrix composed of
nonzero elements in gk , and Ek (J) is the abbreviated matrix
of Ek . The position of the gk nonzero element determines the
abbreviated matrix Ek (J) of Ek . Decomposing matrix Ek (J)
by SVD, we can gain a new dk and a new gk . We can replace
the previous dk with the new dk . Similarly, we can update
other atoms.

In this paper, the K-SVD algorithm is used for feature
extraction of signals, the four-step procedure for which is as
follows:

step 1. Collect the characteristic signals (three-phase phase
voltage signals) of different fault types as samples,
and divide the samples into training samples and
testing samples.

step 2. The K-SVD algorithm is used to obtain an over-
complete dictionary D as well as the correspond-
ing sparse representation coefficient matrix X_train
according to training samples.

step 3. The OMP algorithm is used to obtain the sparse
representation coefficientmatrixX_test of the testing
samples on the over-complete dictionary D.

step 4. X_train is regarded as the feature information of the
training samples and X_test is regarded as the feature
information of the testing samples.

The sparse representation coefficient matrix X is used as
the feature information of the signals Y . In this way, we can
complete the signals feature extraction task. Next we need to
study fault identification method to identify the fault based
on the extracted feature information.

IV. FAULT IDENTIFICATION BASED ON SUPPORT
VECTOR MACHINE
After extracting the feature information of the signals,
we need to accurately identify the fault types based on
the extracted feature information. Thus a fault identification
method is needed, which, for this paper, is SVM [40]. As a
machine learning algorithm, it comes from statistical learning
theory and structural risk minimization principles [30], [41].
SVM has been widely used in classification and regression
problems due to its robustness and good generalization capa-
bilities [42]. The basic idea of SVM for classification is to
construct a hyperplane as the decision surface, which max-
imizes the separation distance between two classes of data
samples [29], [41]. The following discussion will introduce
the basic principles of two-class classification and multiclass
classification problems.

A. TWO-CLASS CLASSIFICATION PROBLEM
Assume that there are two classes data samples (xi, yi), xi ∈
Rp, yi ∈ {+1,−1}, i = 1, 2, . . . , n.
The optimal hyperplane problem is an optimization

constraint problem, It can be achieved by solving the dual
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problems as follows:

max
α

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjK
(
xi, xj

)
subject to

n∑
i=1

αiyi = 0, C ≥ αi ≥ 0, i = 1, 2, . . . , n

(6)

Where C ≥ 0 is the penalty parameter of the error term,
K
(
xi, xj

)
is a polynomial kernel function that performs the

non-linear mapping into the feature space. By solving (6), we
can get the optimal solution α∗ =

[
α∗1 , α

∗

2 , . . . , α
∗
i , . . . , α

∗
n
]
.

Each α∗i in α
∗ is a nonzero vector, which is also called support

vector.
Correspondingly, the optimal decision function is:

f (x) = sgn

[
n∑
i=1

α∗i yiK (xi, x)+ b
∗

]
(7)

Where b∗ is the classification threshold, select a positive
component α∗j of α

∗, and b∗ can be solved by the
following equation:

b∗ = yj −
n∑
i=1

α∗i yiK
(
xi, xj

)
(8)

B. MULTICLASS CLASSIFICATION PROBLEM
SVM was originally designed to solve the two-class classi-
fication problem. When dealing with multiclass problems,
it is necessary to construct a multiclass classifier [43]–[45].
Combining several binary classifiers to construct a multiclass
classifier is a general approach to generalizing two-class
SVM to multiclass SVM. One-against-all, one-against-one
and directed acyclic graph SVM (DAGSVM) are common
multiclassmethods. In this paper, the one-against-onemethod
is used for multiclass fault identification.

The one-against-one method is used to design an SVM
between any two class samples, so K-class needs to design
K (K − 1)

/
2 subclassifier SVMs. When training class i and

class j subclassifier SVM_ij, the ith sample is used as a
positive sample and the jth sample is used as a negative
sample. For the testing sample x, if the subclassifier SVM_ij
considers it to be the ith class, the number of votes for the ith
class is increased by one, if the subclassifier SVM_ij con-

siders it to be the jth class, the number of votes for the
jth class is increased by one. After voting by K (K − 1)/2
subclassifiers, the testing sample belongs to the class with the
most votes. One-against-one method is shown in Figure 4.

After constructing multiclass classifiers, the multiclass
SVM can be used to identify fault types. The input of the
SVM is the eigenvector, that is, the sparse coding of the
original signal, and the output is the fault type label. First,
the data sets are divided into training samples and testing
samples. Then, training samples are used to train the SVM
to obtain the training model. Finally, testing samples are

FIGURE 4. Structure diagram of one-against-one multiclass method.

predicted by the model, the predicted labels are compared
with the actual labels to get the correct rate of fault diagnosis.

The steps for fault diagnosis of NPC three-level inverter
based on sparse representation and SVM are as follows:
(1) build an NPC three-level inverter simulation model to
simulate various fault types; (2) sample three-phase phase
voltage signals. The phase voltage signals have periodicity,
so each phase voltage signal is sampled ten times in one
period and three-phase phase voltages therefore comprise
30 points, which constitute the characteristic signals to be
analyzed; (3) the collected data are divided into training sam-
ples and testing samples, the training samples are processed
by the K-SVD algorithm to obtain an over-complete dictio-
nary D and sparse representation coefficient matrix X_train;
(4) the sparse representation coefficient matrix X_test of the
testing samples is obtained by the OMP algorithm; (5) train
SVM with training samples to obtain a multiclass SVM
model; (6) testing samples are used for prediction; and
(7) compare the actual outputs and predicted outputs of the
SVM to analyze the correct rate of fault diagnosis. The fault
diagnosis flow chart shown in Figure 5.

FIGURE 5. Flow chart of fault diagnosis.
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TABLE 1. Encoding and labeling of the faults in NPC three-level inverter.

V. SIMULATION EXPERIMENT ANALYSIS
BPNN and SVM classifiers are used for fault identifi-
cation in simulation experiments. Therefore, it is neces-
sary to clarify the input and output of the two classifiers.
According to the requirements of the comparison experiment,
the input of the each classifier is the fault feature information
extracted by different feature extraction methods, and the
output corresponds to the fault types. When using BPNN
for fault identification, the fault types are represented by the
12-bit binary code X12X11X10X9X8X7X6X5X4X3X2X1.
The 12-bit binary code corresponds to 12 power switches,
0 means normal and 1 means fault has occurred. For exam-
ple, 000000000000 indicates that the 12 power switches are
normal, 000000000001 indicates that Sa1 occurs open-circuit
fault, and 001000010000 indicates that Sb1 and Sc2 both occur
open-circuit faults. When using SVM for fault identifica-
tion, the fault types are represented by the labels Label 1,
Label 2, . . ., Label 73, which correspond to the 73 types
of fault. And the detailed representation is shown in
Table 1.

A. INFLUENCE OF K-SVD ALGORITHM PARAMETERS
SETTING ON RECONSTRUCTION ERROR
The K-SVD algorithm is used for fault feature extraction.
The signals Y can adaptively learn a dictionary D and a
sparse representation coefficient matrix X by the algorithm,
and Y can be approximated by DX , which is Y ≈ DX .
We call ‖Y − DX‖2F the reconstruction error. This experiment
will analyze the influence of the parameters of the K-SVD
algorithm on the reconstruction error.

Taking into account the effects of temperature, light
intensity,load, etc., the DC voltage at the inverter input

and the load at the inverter output can be changed to
obtain samples under different fault types. The three-
phase phase voltage signals Ua,Ub,Uc are sampled
under 450V/45kw, 450V/50kw, 450V/55kw, 500V/45kw,
500V/50kw, 500V/55kw. 550V/45kw, 550V/50kw, and
550V/55kw as samples. The total number of samples is 657.
The phase voltage signals have periodicity, and each phase
voltage is sampled ten times in one period, so three-phase
phase voltages comprise 30 points, which constitute the
characteristic signals to be analyzed. Finally, we get a
30 × 657 sample matrix, where 657 represents the number
of samples and 30 represents each sample dimension. We use
these samples to verify the influence of K-SVD algorithm
different parameters on the reconstruction error. In Figure 6,
(a) represents the reconstruction error at different iteration
times, where the number of atoms is 40, the sparsity is 4,
and the number of iteration times is 1–10; (b) represents
the reconstruction error at different dictionary atom num-
bers, where the sparsity is 4 and the number of atoms is
45–60; (c) represents the reconstruction error at different
values of sparsity, where the number of atoms is 40 and the
sparsity is 2–7. Experiment results show that the number of
iterations, the number of atoms in the dictionary, and the
sparsity all affect the reconstruction error of the signals. In
addition, the reconstruction error ‖Y − DX‖2F is related to the
sparse representation coefficient matrix X , that is, different
parameters will result in different sparse representation coef-
ficient matrix X . Each column vector of sparse representation
coefficient matrix X is considered as the eigenvector of the
corresponding signal, and the eigenvector is the basis of fault
diagnosis, thus the parameter setting will eventually affect the
accuracy of fault diagnosis.
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FIGURE 6. Reconstruction errors for different parameters.

B. COMBINATION OF SPARSE REPRESENTATION AND
SUPPORT VECTOR MACHINE
This experiment is used to verify the effect of the combination
of sparse representation of signal and SVM for NPC three-
level inverter fault diagnosis. The 657 data samples sampled
in Experiment A are used as training samples. The three-
phase phase voltage signals Ua,Ub,Uc are sampled under
520V45kw, 520V50kw and 520V55kw as testing samples.
The total number of testing samples is 219, making up a
30×219 testing sample matrix. From Experiment A, it can be
seen that different parameters of the K-SVD algorithm will
result in different sparse representation coefficient matrix X ,
and coefficient matrix X is used as the fault feature of the
characteristic signals, which has a direct impact on the effect
of fault diagnosis. Therefore, the parameters setting will
eventually affect the accuracy of fault diagnosis.

In this experiment, the number of iterations is set to 10, the
number of dictionary atoms is set to 40, and sparsity is set to 4,
which means that the maximum number of nonzero elements
in the each column vector of sparse coefficient matrix X is 4.
In Table 2, (6,1) 0.04657, (15,1) 0.42777, (30,1) 0.11003,
(35,1) 0.09975 means that the 6th, 15th, 30th, and 35th
atoms, respectively, in dictionaryD are activated and the other
atoms are not activated. The signal can be represented lin-
early by these four atoms, and the representation coefficients
are 0.04657, 0.42777, 0.11003, 0.09975, respectively. The
vector [0, · · · , 0.04657, · · · , 0.42777, · · · , 0.11003, · · · ,
0.09975, · · · 0] is a eigenvector of the corresponding signal.
Because the number of dictionary atoms is 40, the sparse
code of the signal consists of 40 elements, the number of
nonzero elements is 4, and the remaining 36 elements are
all 0. We can use the K-SVD algorithm to get the sparse
representation coefficient matrix X of the training samples
and testing samples. Then, the SVM method is used for
fault identification. Figure 7 shows the identification result of
the testing samples. Compared with the actual label and the
predicted label of the testing samples, only one sample was
misdiagnosed, the accuracy of fault diagnosis of the testing
sample reaches 99.54%. The simulation experiment shows
that the method used in this paper has the advantage of high
diagnostic accuracy and can be successfully used for the fault
diagnosis of NPC three-level inverter.

TABLE 2. Sparse results for different faults.

C. COMPARISON EXPERIMENT OF DIFFERENT METHODS
To further confirm the superiority of the combination of
sparse representation of signal and the SVM method, four
groups comparison experiments are carried out in this exper-
iment, including wavelet packet transform-BPNN, wavelet
packet transform-PCA-BPNN, sparse representation-BPNN,
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FIGURE 7. Identification result of testing sample.

and sparse representation-SVM. In the wavelet packet trans-
form, the number of decomposition layers is 3 and thewavelet
base function is db5. In the PCA, the cumulative principal
component contribution rate is η = 90%. In the BPNN, the
hidden layer function is logsig, the output layer function is
tansig, the training function is trainlm, and the mean squared
error (MSE) is 0.005. In the K-SVD algorithm, the sparsity
is 4, the dictionary size is 30×40, and the number of iterations
is 10. The parameters of the different diagnosis methods are
shown in Table 3.

TABLE 3. Parameter settings for different methods.

The diagnosis results of different fault diagnosis methods
are shown in Table 4. By comparing different methods, we
find that the combination of sparse representation and SVM
has the highest accuracy in fault diagnosis of NPC three-level
inverter. Therefore, the method proposed in this paper is the
most advantageous.

TABLE 4. Diagnosis results for different methods.

VI. CONCLUSION
This paper proposes a combining of sparse representa-
tion and SVM for the fault diagnosis of NPC three-level
inverter. We first briefly analyzes the circuit structure of NPC
three-level inverters and summarizes different fault types.
Three-phase phase voltage signals in different fault types are
sampled as the characteristic signals. The method of sparse
representation is introduced into the fault feature extrac-
tion. And the SVM method is used for fault identification.
We analyze the influence of K-SVD algorithm parameters
on reconstruction error and get a good fault diagnosis result
by reasonable parameters setting. Simulation experiments
show that the method used in this paper has good diagnostic
capability, and the diagnostic accuracy rate is 99.54%.

This paper combines sparse representation and SVM,
which are respectively used for fault feature extraction and
fault identification. The combination of the two methods can
overcome the shortcomings of a single method and better
solve the problem of fault diagnosis.

The method of sparse representation is not common for
inverter fault feature extraction. In this paper, we have made a
preliminary attempt to introduce the signal sparse representa-
tion into the fault diagnosis of three-level inverters. Compared
with the traditional wavelet transform or PCA, the fault fea-
ture information extracted by sparse representation method
is easier to identify and the fault diagnosis accuracy rate is
higher. Therefore the sparse representation method provides
a new idea for fault diagnosis of inverter.
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