
SPECIAL SECTION ON SUSTAINABLE INFRASTRUCTURES, PROTOCOLS, AND RESEARCH
CHALLENGES FOR FOG COMPUTING

Received October 23, 2018, accepted November 19, 2018, date of publication November 23, 2018,
date of current version December 27, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2883105

HEAP: An Efficient and Fault-Tolerant
Authentication and Key Exchange Protocol for
Hadoop-Assisted Big Data Platform
DURBADAL CHATTARAJ1, (Student Member, IEEE), MONALISA SARMA1,
ASHOK KUMAR DAS 2, (Senior Member, IEEE), NEERAJ KUMAR 3, (Senior Member, IEEE),
JOEL J. P. C. RODRIGUES 4,5,6, (Senior Member, IEEE),
AND YOUNGHO PARK 7, (Member, IEEE)
1Subir Chowdhury School of Quality and Reliability, IIT Kharagpur, Kharagpur 721 302, India
2Center for Security, Theory and Algorithmic Research, International Institute of Information Technology, Hyderabad 500 032, India
3Department of Computer Science and Engineering, Thapar University, Patiala 147 004, India
4National Institute of Telecommunications, Santa Rita do Sapucaí 37540-000, Brazil
5Instituto de Telecomunicações, 1049-001 Aveiro, Portugal
6University of Fortaleza, Fortaleza 60811-905, Brazil
7School of Electronics Engineering, Kyungpook National University, Daegu 41566, South Korea

Corresponding author: Youngho Park (parkyh@knu.ac.kr)

This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea funded by the
Ministry of Science, ICT & Future Planning under Grant 2017R1A2B1002147, in part by the BK21 Plus Project funded by the Ministry of
Education, South Korea, under Grant 21A20131600011, in part by Finep/Funttel through the Radiocommunication Reference Center
project of the National Institute of Telecommunications, Brazil, under Grant 01.14.0231.00, in part by the National Funding from the
Fundação para a Ciência e a Tecnologia under Project UID/EEA/500008/2013, and in part by the Brazilian National Council for Research
and Development (CNPq) under Grant 309335/2017-5. This work was also supported by the Ministry of Human Resource Development,
Government of India (to carry out this research work at the Subir Chowdhury School of Quality and Reliability, IIT Kharagpur), through
the Institute Fellowship.

ABSTRACT Hadoop framework has been evolved to manage big data in cloud. Hadoop distributed
file system and MapReduce, the vital components of this framework, provide scalable and fault-tolerant
big data storage and processing services at a lower cost. However, Hadoop does not provide any robust
authentication mechanism for principals’ authentication. In fact, the existing state-of-the-art authentication
protocols are vulnerable to various security threats, such as man-in-the-middle, replay, password guessing,
stolen-verifier, privileged-insider, identity compromization, impersonation, denial-of-service, online/off-line
dictionary, chosen plaintext, workstation compromization, and server-side compromisation attacks. Beside
these threats, the state-of-the-art mechanisms lack to address the server-side data integrity and confidentiality
issues. In addition to this, most of the existing authentication protocols follow a single-server-based user
authentication strategy, which, in fact, originates single point of failure and single point of vulnerability
issues. To address these limitations, in this paper, we propose a fault-tolerant authentication protocol suitable
for the Hadoop framework, which is called the efficient authentication protocol for Hadoop (HEAP). HEAP
alleviates the major issues of the existing state-of-the-art authentication mechanisms, namely operating-
system-based authentication, password-based approach, and delegated token-based schemes, respectively,
which are presently deployed in Hadoop. HEAP follows two-server-based authentication mechanism. HEAP
authenticates the principal based on digital signature generation and verification strategy utilizing both
advanced encryption standard and elliptic curve cryptography. The security analysis using both the formal
security using the broadly accepted real-or-random (ROR) model and the informal (non-mathematical)
security shows that HEAP protects several well-known attacks. In addition, the formal security verification
using the widely used automated validation of Internet security protocols and applications ensures that HEAP
is resilient against replay and man-in-the-middle attacks. Finally, the performance study contemplates that
the overheads incurred in HEAP is reasonable and is also comparable to that of other existing state-of-the-
art authentication protocols. High security along with comparable overheads makes HEAP to be robust and
practical for a secure access to the big data storage and processing services.

75342
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-5196-9589
https://orcid.org/0000-0002-3020-3947
https://orcid.org/0000-0001-8657-3800
https://orcid.org/0000-0002-0406-6547

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

INDEX TERMS Cloud computing, authentication, key agreement, big data security, hadoop, formal
security, AVISPA.

I. INTRODUCTION
The existence of the digital universe is expanding by a factor
of 300, from 130 exabytes to 40,000 exabytes, or 40 trillion
gigabytes (more than 5,200 gigabytes for every man, woman,
and child in 2020) from 2005 to 2020. From the recent time
until 2020, the digital universe will about double every two
years.1 This of course, drag the attention of many researchers
and practitioners in the field of Big Data storage and pro-
cessing issue. To deal with this, various distributed file sys-
tems’ namely Hadoop Distributed File System (HDFS) [1],
Google File System (GFS) [2],MooseFS,2 zFS [3], Ceph [4],
etc. have evolved. However, among these, due to popularity,
simplicity and easy availability (open source), HDFS (the
principal component of Hadoop framework 3) is widely used
in industries and became the de facto standard platform for
Big Data storage. HDFS has been evolved to provide the
storage service, where data is reliably kept in a distributed
fashion into different servers. In this connection, client stores
Big Data into the geographically dispersed remote third party
servers through an insecure channel. This excavates sev-
eral security concerns as the storage service access to be
made over an insecure communication channel. Towards the
solution, a robust authentication mechanism is the preferred
solution. In this synergy, different authentication protocols
have been proposed such as Kerberos,4 OAuth,5 OpenID
connect,6 SAML,7 etc. But for the sake of simplicity, scala-
bility and applicability, operating system based security (i.e.,
password-based approach), Kerberos authentication protocol
(i.e., password with possession-based approach) and del-
egated token based approaches are currently employed in
Hadoop for enhancing its security [5]–[9].

To access Big Data storage or processing services over the
Internet, it is necessary for an end user (or service server) to
initially enroll himself (or itself) with the Key Distribution
Center (KDC) or a Centralized Registration Authority (CRA)
offline. In centralized registration mechanism, it is difficult
to update secret credentials of user and Hadoop clusters vis-
a-vis service servers dynamically. After enrollment, the end
user can access Big Data storage or processing services from
the service server remotely over the Web. Usually, in such
a setting, the KDC (or CRA) stores the secret information
of all the principals’ in its database, where a single point
of vulnerability and single point of failure makes the whole
system jeopardized [10]. In order to address these issues,
many schemes have been reported in [5] and [11]–[30] that

1http://www.emc.com/leadership/digital-universe/2012iview/executive-
summary-a-universe-of.htm

2MooseFS: Can Petabyte Storage be super efficient. https://moosefs.com/
3Apache Hadoop: https://hadoop.apache.org/
4http://web.mit.edu/kerberos/
5http://www.oauth.net/
6http://openid.net/
7saml.xml.org/

are based on different techniques namely, smart card
based approaches [18], [20], [27]–[29], one-time padding
[13], [14], PKI (Public-Key Infrastructure) based approach
[24], [31], implementation of a Trusted Computing
Platform (TCP) [15], combination of both password and
possession based strategy [25], [26], [30], authorization del-
egation based approach [22], [32], combined public and
private key cryptography with random number generator
based scheme [12], utilizing basic geometry structure
based password storing [33] and Identity-Based Authen-
tication (IBA) scheme [23], respectively. However, these
explications are either expensive in terms of extra hard-
ware cost or computationally intensive. Further, the existing
approaches [24]–[26], [30] enrol an end user (or service
server) by asking his username and password (or service
server identity and secret key), where the username (or service
server identity) is used as the primary credential, which is
verified at the time of mutual authentication between user
and service server respectively. In fact, selecting a username
(or service server identity) is not enough to be considered as
a strong private identifier. As a result, an adversary can easily
incorporate different attacks, such as impersonation attacks
and identity compromisation attacks by sniffing the username
(or service server identity) from the insecure media [10].
Moreover, these approaches are not considered the user-side
and service server-side identity untraceability and anonymity
properties. In spite of this, the existing password-based
user enrollment strategy [30] which is currently incorporated
in Hadoop is vulnerable to password guessing, online or
offline dictionary and stolen-verifier attacks. Additionally,
the existing approach [30] derive client’s secret key as the
hash value of its password. Therefore, the key will remain
same until client changes the current password. However,
changing this password needs updating the enrolled data
maintained by the KDC (or CRA) and this, in fact, invites
many key rollover problems [10]. In addition to this, man-in-
the-middle, privileged-insider, denial-of-service, workstation
compromisation, chosen plaintext and replay attacks are the
key security threats that are not properly addressed in the
existing schemes [10].

In order to ensure mutual authentication and session key
distribution between end user and service server (Namenode
or JobTracker), in possession based (also called token based)
approach, a trusted server distributes a token with large num-
bers of authentication parameters, that is, more parameters
are included into the constitution of an Authentication Token
(AT) and authorization token (or Service Token (ST)). Hence,
AT and ST verification increases the overhead to the exist-
ing authorization server (or service server). In addition to
this, tokens and session keys are stored into user’s creden-
tial cache [24]–[26], [30] in the respective workstation, and
each token has its own lifetime. So, it leads to workstation
compromisation attack, disclosure of session key as well as

VOLUME 6, 2018 75343

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

misuse of tokens. Moreover, an end user blindly accepts the
authentication services, that is, he completely rely on the
trusted third party server (KDC’s AS) issued shared secret
session key without verifying the strong authenticity of the
AS. Therefore, if the AS is compromised by a malicious
insider, a byzantine attack can be induced into the system
which can falsify the primitive operations and it can also lead
to the wrong desires [10]. Nonetheless, some mutual authen-
tication schemes [24]–[26], [30] use time synchronization for
joint authentication between end user and the service servers.
More precisely, all principals in a realmmust be synchronized
with a centralized time server. In fact, this is an overhead for
the implementation of the protocol. In addition to this, clock
in a distributed system may not be always synchronized, so it
may cause a replay attack for both the end user and the service
server [34]. In spite of this, in the existing authentication
approaches [24]–[26], [30], a user blindly trusts the authen-
tication server (AS) without verifying any cross parameters
(e.g., message authentication codes, server-side generated
one-way hash chain based one-time identifiers [16], digital
signatures [10], etc.) after receiving the authentication token.
To the best of our knowledge, there is no solution to verify the
originality of AS except the timestamps and visualization of
password (or session key protected authentication or service
token) [10]. Hence, this shortcoming opens a possibility of
impersonation attacks [34], where a compromised principle
can falsify the basic operations of the authentication sys-
tem. In addition to this, in Hadoop, there is no provision to
verify the data integrity and confidentiality after archiving
end user’s or organization’s Big Data into HDFS. Since,
the raw data blocks (constructed from the Big Data) are
stored into various Datanodes as plaintext format, it is easy
for an adversary to modify the content of the data blocks
easily [5]–[9], [35]–[41]. Additionally, the result of the pro-
cessed Big Data utilizing MapReduce framework is stored
into end user’s local file system, so anybody can read this
content. To the best of our knowledge, there is no solution
exists to mitigate these issues.

A. MOTIVATION
To address the aforesaid issues and challenges of the existing
authentication schemes that assists security in Hadoop frame-
work, we set the following objectives in the proposed scheme:

1) The proposed protocol should have the capability
to enroll the Hadoop cluster’s service server online
(instead centralized deployment of service servers)
with the authentication service provider by advocating
the scalability issue.

2) The proposed protocol should prevent different
well-known attacks, such as man-in-the-middle,
replay, denial-of-service, privileged-insider, imper-
sonation, identity compromisation, ciphertext-only,
sever-spoofing and chosen plaintext attacks.

3) The proposed scheme should have a fault-tolerant and
dependable authentication architecture to address the
existing SOV and SOF issues.

4) In the proposed scheme, the authentication task for both
Big Data technology provider and user should be more
robust and user friendly advocating less usage of secu-
rity credentials and hardwares (smart card, biometric
scanner, smart mobile device, etc.).

5) The proposed protocol should disseminate securely the
session key between two communicating parties.

6) The proposed scheme should provide a mechanism to
read, write and process the user’s Big Data securely in
Hadoop cluster.

7) The proposed protocol should support user and service
server anonymity by hiding their original identities
from eavesdroppers and privileged-insiders.

8) The proposed scheme should have a provision to gen-
erate a fresh session key securely in each session to
mitigate the workstation compromisation attack.

9) The proposed protocol should have the capability
to store the dictionary of password securely at the
server-side to mitigate the offline dictionary, password
guessing and stolen-verifier attacks.

10) The proposed scheme should able to establish the ses-
sion key between two communicating parties without
timestamps utilization.

To fulfill the above objectives, a two-server based authen-
tication framework has been introduced. This framework is
structured in such a way that it mitigates the single point
of failure (SOF) and single point of vulnerability (SOV)
issues. Further, the proposed framework resists various well
known security threats, such as, man-in-the-middle, replay,
privileged-insider, Denial-of-Service (DoS), chosen plain-
text, password guessing, identity compromisation, imper-
sonation, stolen-verifier, server spoofing, offline dictionary
and workstation compromisation attacks. According to the
policy of the proposed framework a service provider can
enrol any number of Hadoop clusters vis-a-vis service servers
online with the KeyDistribution Center (KDC). In this frame-
work, the proposed KDC consists of three different servers.
Among them, two are public servers (one server interacts with
clients only and the other communicate with Big Data service
providers) and the other is private server. Initially, clients
and Big Data service providers enrol themselves offline with
the private server. After offline registration, both client and
service provider would eligible for online registration through
the respective KDC’s public server. As the private server
is hidden from universal access, it ensures the server-side
security. In the proposed framework, after online registration,
the service providers are able to enroll his service servers
(Namenode servers or Job Trackers) onlinewith theKDC. So,
the service server registration is simple and scalable in nature.
Mean while, the clients’ are able to communicate directly
with the service servers’ (Namenode Servers or Job Trackers)
in a Hadoop cluster after establishing a secret key with the
KDC’s public server followed by a two-server based mutual
authentication process (we call it as single sign-on). This sin-
gle sign-on facility provides the access to any number of ser-
vice servers by accomplishing only one time authentication

75344 VOLUME 6, 2018

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

with the KDC. As a solution to the server spoofing and
DoS attacks, we consider here a two-factor (password and
authorization token) based authentication strategy. To pre-
serve privacy, in our scheme, we make the original identity
of users and service servers fully anonymous. To enhance the
robustness and correctness of entity authentication, we pro-
pose a new digital signature based entity verification scheme
utilizing both symmetric and asymmetric key cryptography.
As a remedy of chosen plaintext attacks, we use stateless
Cipher Block Chaining (CBC)mode of symmetric encryption
and decryption strategy where a random nonce is utilized as
an Initial Vector (IV). To establish a secure session between
two communicating parties, we propose a new pair-wise ses-
sion key agreement policy using elliptic curve cryptography.
As a solution to the client-side workstation compromisation
attacks, we store client’s secret information indirectly into a
private place (server-side) and later on it can be fetched by
the legitimate user’s only. Moreover, to check the integrity
of data blocks which resides into various chunk servers or
Datanodes in HDFS, a Hash-based Message Authentication
Code (HMAC) based secure HDFS-read and HDFS-write
operations has been introduced.

B. RESEARCH CONTRIBUTIONS
The major research contributions devised in this paper are
listed below.
• We propose a new secure and scalable enrollment
methodology to register a cluster of service servers with
the trusted third party server by eliminating traditional
in-house (centralized) service server registration policy.

• We then introduce a new fault tolerant authentication
framework to provide dependable authentication ser-
vices for remote clients.

• Next, we propose a new digital signature based mutual
authentication policy, where each principal is able to
verify the legitimacy of other intended principals along
with the trusted third party on which both the principal
rely on.

• We also introduce a new approach for security creden-
tials distribution and replication policies in order to mit-
igate server-side single point of failure and single point
of vulnerability issues.

• To distribute the session key securely between two
intended principals, we then propose an elliptic curve
cryptography based session key distribution policy by
utilizing the concept of in-memory caching.

• In addition, we propose a mechanism to disseminate
the session key between two communicating entities
without compromising their identities.

• The extensive formal security inspection by utilizing de
facto Real-Or-Random (ROR) model and the informal
security analysis substantiate that the proposed protocol
can address various well-known attacks against active
and passive adversaries.

• The formal security verification using the widely-used
AVISPA tool has been carried out for the proposed

protocol, and the AVISPA simulation results assist that
the proposed scheme is secure against man-in-the-
middle and replay attacks.

• To enhance security, the proposed protocol has a facil-
ity to dynamically update user’s password and service
server’s secret credentials online with the help of the
authentication servers.

• Finally, the proposed scheme is user-friendly in nature
and the user needs to remember only his/her identity
and password to login into the proposed authentication
system.

C. ROAD MAP OF THE PAPER
The remainder of the paper is structured as follows. We dis-
cuss the network model of HDFS in Section II. Section III
presents the related work associated with the entity authen-
tication in Hadoop. The necessary related mathematical pre-
liminaries are discussed in Section IV, which are helpful for
describing and analyzing the proposed protocol. In Section V,
we demonstrate the proposed scheme. Section VI presents
both formal security analysis using the widely-accepted Real-
or-Random (ROR) model and informal security analysis of
the proposed protocol. In Section VII, we simulate the pro-
posed protocol under the broadly-used On-the-Fly Model
Checker (OFMC) and SAT-based Model Checker (SATMC)
backends by utilizing the AVISPA tool and summarize the
attack traces. Section VIII presents the performance analysis
of the proposed scheme. In Section IX, we elaborate few
appealing features as the realizations of the proposed scheme.
Finally, we conclude the paper in Section X.

II. NETWORK MODEL OF HDFS
Apache Hadoop8 is an open source and provides a new way
for storing and processing Big Data. It consists of two core
components. The former one is File Store (FS) and later one
is a Distributed Processing System (DPS). The FS is called
as HDFS9 and the DPS is termed as MapReduce.10 HDFS is
a distributed file system designed for storing very large files
with streaming data access patterns, running on clusters of
commodity hardware. Files are divided into blocks (default
block size is 64 MB) and blocks are replicated and stored at
different chunk servers (also called slave servers). The basic
architecture of HDFS is shown in Figure 1.

Note here, we have shown only two Namenode
servers (NSs) and one JobTracker (JT) in Figure 1, but in
practical HDFS federation architecture11 it cloud vary up to n
number of such servers. Intuitively, the three noteworthy clas-
sifications of machine roles in a single Hadoop Cluster (HC)
are client machine (i.e., HDFS Client), Master Node (MN)
(i.e., combination of Namenode and Job Tracker) and Slave
Nodes (SNs) (i.e., combination of Datanodes (DNs) and

8https://hadoop.apache.org/releases.html
9https://hortonworks.com/apache/hdfs/
10https://hortonworks.com/apache/mapreduce/
11https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-

hdfs/Federation.html

VOLUME 6, 2018 75345

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

FIGURE 1. System architecture of HDFS Federation (new release).

Task Trackers (TTs)) (see Figure 1). All these components
are connected through a communication network. In this
architecture, for a single Hadoop Cluster say HCj, the MN
regulates two useful functions i.e., reliable data storage
using HDFS and parallel computations utilizing MapRe-
duce framework. The Namenode manages and facilitates
distributed data storage services wherein the JT administers
the parallel processing of stored data utilizing MapReduce
(MR). Moreover, SNs are responsible for streamline data
blocks storing and running the parallel computations over
the stored data blocks. Each SN runs both Datanode and TT
daemon and receives instructions from their MN. The TT
daemon is a slave to the JT and the Datanode daemon acts as a
slave to the Namenode. Client machine has Hadoop installed
with all the cluster settings, however, it is neither a master nor
a slave. Rather, the role of the Client machine is to load data
into the cluster, submit MapReduce jobs portraying how that
data ought to be processed, and after that, retrieve or view the
results of the job when it’s completed.

III. RELATED WORK
Hadoop framework has been evolved to manage a mas-
sive volume of data in Cloud. However, Hadoop does not
provide any robust authentication mechanism for princi-
pals’ authentication [5]–[7], [30], [34]. Since very few lit-
erature is available in this domain, the related work that
is illustrated here is two fold: first, we discuss the state
of the art authentication protocols and its variant that are

actually studied in Hadoop (Big Data) platform and finally,
we present the recent development of Authenticated Key
Exchange (AKE) protocols in the domain of Cloud Comput-
ing platform as well as two-server based Password-assisted
Authenticated Key Exchange (PAKE) schemes.

A. STATE OF THE ART AKEs FOR HADOOP
(BIG DATA) PLATFORM
A limited number of authentication and key exchange
protocols [5], [11], [13]–[17], [22]–[24], [30], [32], [42] has
been found in this category.

Shen et al. [15] have proposed a theoretical prototype sys-
tem combined with trusted platform support service. In their
scheme, they have used a Trusted Computing Platform (TCP)
to resolve the process of authentication in Hadoop. In TCP,
the users identity is preserved and it is encrypted with users
personal key and this mechanism is integrated in the hardware
such as the BIOS and TPM. So it is very hard to decipher a
user identity. The TCP is based on the Trusted PlatformMod-
ule (TPM). The TPM is used to safeguard the system from
different kind of hardware and software attacks. Authors have
also pointed out the limitations in their scheme: (i) the stored
data in the Datanodes will be decrypted when being accessed
and will re-encrypted with different key after being accessed,
the performance of system will be reduced, (ii) in order to
make the authentication system trusted, some information
are need to be stored among Namenodes, Datanodes and
users, and finally (iii) TCB needs to fulfill many requirements

75346 VOLUME 6, 2018

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

of server-side and user-side, so it may be raised bottleneck
situation in the system.

Kohl and Neuman [30] proposed Kerberos authentication
protocol. In their proposed approach, a user first registers
with the system to avail the services. In this scheme, all the
messages (i.e., authentication messages, service messages)
are first encrypted using a shared secret key between two
parties, and then the two parties communicate with each other
with encrypted forms of messages. It may be noted that in the
Kerberos protocol, a password based approach with a token
based strategy needs to be followed for principal authenti-
cation. According to the current practice, a user makes an
authentication request to an authentication server (AS) by
means of a plain text containing ‘‘username’’ [34]. In this
context, an attacker can eavesdrop the ‘‘username’’ and later
expose himself to the AS as a legitimate user. In other word,
an attacker can easily determine from the transmitted mes-
sage that which users are currently online. In this situation,
an attacker has scope to make man-in-the-middle attacks and
replay attacks [10]. Further, an eavesdropper can make iden-
tity compromisation and impersonation attacks by stealing
the ‘‘username’’ if the channel is insecure [34], [43], [44].
Moreover, the AS issues an authentication ticket (AT) to
an end user after verifying only its ‘‘username’’ without
verifying user’s password or other security credentials [10].
However, as ‘‘username’’ is not a confidential credential,
there is an opportunity for an attacker to get multiple authen-
tication tickets by simply sending a ‘‘username’’ to the AS.
As a consequence, a cryptanalyst can decrypt the ciphertexts
(i.e., ATs) using some knowledge about underlying user’s
password. Thus, this scheme is vulnerable to Ciphertext-only
Attack (COA). To avert this challenges, a public key infras-
tructure based Kerberos namely PKINIT [24] is reported and
deployed in Hadoop. But, it is not properly addresses the
user and service server’s privacy issues and other security
threats [10].

Somu et al. [14] proposed an authentication scheme for
Hadoop and it is based on the encryption mechanism using
one-time pad key. A random key is used to encrypt the pass-
word for secure transmission between the two servers (Reg-
istration Server and Back-end Server). Authors has claimed
that their protocol makes the Hadoop environment more
secure as the new random key for encryption is generated for
each login. They also claimed that their scheme reduces the
possibility to decrypt the cipher stored into the server for an
adversary as it involves the knowledge about the valid random
key. Sarvabhatla et al. [13] illustrated that Nivethitha et al.’s
scheme is vulnerable to offline password guessing attack and
on success of it, an attacker can perform all major attacks
on HDFS. They proposed a new authentication service for
Hadoop framework which is light weight and resists all major
attacks as compared toNivethitha et al.’s scheme. The authors
also did a comparative analysis between their proposed user
authentication service versus Nivethitha et al. scheme and
found out that their scheme requires less number of hash
operations as compare to Nivethitha et al.’s scheme.

For users’ job authorization in Hadoop, an hash-based
(MD5 and SHA-1) delegated job token mechanism has
been reported in [5]. OAuth [22], OpenID connect [32] and
SAML [42] are the new evolving authorization delegation
based approach and it has been prioritize over traditional
Kerberos protocol for principals’ authorization and single
sign-on capability incorporated in Hadoop.

Rahul and GireeshKumar [12] proposed a novel authenti-
cation framework for Hadoop. Their framework uses cryp-
tographic functions such as public key cryptography, private
key cryptography, hash functions, and random number gen-
erator. In this framework, they define a new key for each
client and authenticate all clients and services using this key.
They claimed that their authentication framework offers user
data protection, a new way of privilege separations, and basic
security needs for data storing inside HDFS.

Sadasivam et al. [11] proposed a novel authentication pro-
tocol for Hadoop in cloud environment, where they have
used the basic properties of a triangle and modified two
server-based model to improve the security level of Hadoop
clusters. In their scheme, they have interpreted and alienated
the user given password using the authentication server and
stored in multiple back-end servers along with the corre-
sponding username.

Kang and Zhang [23] proposed an Identity-Based Authen-
tication (IBA) scheme which is of short key size, identity-
based, non-interactive. This scheme divides the sharing users
into the very same domain and in this domain relies on the
sharing global master key to exercise mutual authentication.
Their IBA scheme can be enabled by an emerging crypto-
graphic technique from the bilinear pairing (i.e., Weil and
Tate pairing [45] and its security can be assured by the Bilin-
ear Diffie-Hellman Problem (BDHP)). But the limitation of
this scheme is, if the global master key is leaked, then the total
system will be jeopardized.

Sharma and Navdeti [6] listed various security mecha-
nisms insideApacheHadoop Stack. According to the authors,
most of the cases, the Kerberos approach is preferably used
for delivering authentication services.

Srinivas et al. [17] proposed 2PBDC: a privacy-preserving
Big Data collection scheme in cloud environment utilizing
elliptic curve cryptography. The authors shows that 2PBDC
offers a better trade-off among the security and functionality
features, communication and computation overheads. Aujla
et al. [16] proposed SecSVA: Secure Storage, Verification,
and Auditing of Big Data in the Cloud Environment. The
authors presented an attribute-based secure data deduplica-
tion framework for data storage on the cloud, Kerberos-based
identity verification and authentication, and Merkle hash-
tree-based trusted third-party auditing on cloud.

B. STATE OF THE ART TWO-SERVER BASED PAKES AND
AKEs FOR CLOUD COMPUTING PLATFORM
Karla and Sood [46] proposed cookie-based authentication
and key exchange protocol for cloud and IoT environment.
Later, Kumari et al. [47] pointed out the security flaws

VOLUME 6, 2018 75347

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

of Karla and Sood scheme. Yang et al. [48] proposed an
authentication scheme in a cloud environment setting. How-
ever, Chen et al. [49] pointed out the security pitfalls in
Yang et al.’s scheme [48] that it is vulnerable to insider and
impersonation attacks. To withstand these security loopholes
in Yang et al.’s scheme, Chen et al. then designed a dynamic
ID-based authentication scheme for cloud computing envi-
ronment, which is based on the elliptic curve cryptography
(ECC). Wang et al. [50] reviewed Chen et al.’s scheme [49],
and proved that their scheme is vulnerable to offline pass-
word guessing as well as impersonation attacks. In addition,
it was found that Chen et al.’s scheme does not provide user
anonymity and it also has clock synchronization problem.

Later, Hao et al. [51] presented a time-bound ticket-
based mutual authentication scheme for cloud computing.
The purpose of using the time bound tickets is to reduce
the server’s processing overhead. Unfortunately, Jaidhar [52]
identified that Hao et al.’s scheme [51] is insecure against
denial-of-service attack during the password change phase.
Wazid et al. [20] also proposed a provably secure user
authentication and key agreement scheme for cloud comput-
ing environment. Their scheme withstands the weaknesses of
the existing schemes and it also supports extra functionality
features, such as user anonymity, and efficient password and
biometric update phase in multi-server environment.

Recently, Gope and Das [53] proposed an anonymous
mutual authentication scheme for ubiquitous mobile cloud
computing services, which allows a legitimate mobile cloud
user to enjoy n-times all the ubiquitous services in a secure
and efficient way, where the value of nmay differ based on the
principal he or she has paid for. In addition, Odelu et al. [21]
reviewed Tsai-Lo’s scheme [54] and pointed out that their
scheme does not provide the session-key security and also
strong user credentials’ privacy. To remove the security weak-
nesses found in Tsai-Lo’s scheme, Odelu et al. designed
a provably secure authentication scheme for distributed
mobile cloud computing services. In addition to this, vari-
ous biometric and smartcard based multi-factor authentica-
tion protocols [55]–[63] are found in the recent literature for
multi-server environment. In spite of these approaches, vari-
ous two-server based PAKE schemes [64]–[68] are evolved
to mitigate server-side dependability (by addressing single
point of failure and single point of vulnerability) and security
issues.

IV. MATHEMATICAL PRELIMINARIES
The proposed authentication protocol is based on both asym-
metric and symmetric key cryptography. In this context,
in this work, we use Elliptic Curve Cryptography (ECC) and
stateless CBC (cipher block chaining) mode of the Advanced
Encryption Standard (AES) for both public and private key
cryptography, respectively. The cryptographic hardness prop-
erty related to Elliptic Curve Decisional Diffie-Hellman
Problem (ECDDHP), Elliptic Curve Discrete Logarithm
Problem (ECDLP) and Indistinguishability of Encryption
scheme under Chosen Plaintext Attack (IND-CPA) are briefly

explained in the following subsections. The proposed scheme
also utilizes the collision-resistant cryptographic one-way
hash function. This section provides a brief discussion about
the aforesaid mathematical preliminaries as follows.

A. INDISTINGUISHABILITY OF ENCRYPTION
SCHEME UNDER CPA
The indistinguishability of encryption scheme under chosen
plaintext attack (IND-CPA) [61] is mathematically explained
as follow:
Definition 1 (IND-CPA Secure): Assume SGL or MEL

be the single or multiple eavesdropper/s respectively, and
OLEK1 ,OLEK2 , · · · ,OLEKM be M different independent
encryption oracles related to EK1,EK2, · · · ,EKM encryp-
tion keys, respectively. The advantage functions of SGL
and MEL respectively, are defined as AdvIND−CPAE,SGL (K) =
|2 · Prob[SGL ← OLEK1; (p0, p1 ←R SGL);
µ ←R {0, 1}; τ ←R OLEK1 (pµ) : SGL(τ) =

µ] − 1|, and AdvIND−CPAE,MEL (K) = |2 · Prob[MEL ←

OLEK1 ,OLEK2 , · · · ,OLEKM ; (p0, p1 ←R MEL); µ ←R
{0, 1}; τ1 ←R OLEK1 (pµ), τ2 ←R OLEK2 (pµ), · · · , τM ←R
OLEKM (ptµ) : MEL(τ1, τ2, · · · , τM) = µ] − 1|. We can
say a symmetric cipher E is IND-CPA secure for the single
or multiple eavesdropper/s setting if AdvIND−CPAE,SGL (K) (or
AdvIND−CPAE,MEL (K)) is negligible for the given security parame-
terK of any probabilistic and polynomial time adversary SGL
(or MEL).

From Definition 1, it is easy to proof that a determinis-
tic encryption scheme is not IND-CPA secure [61]. Further,
there exists five generic modes of symmetric encryption
scheme in the literature, namely Electronic Codebook (ECB),
Output Feedback (OFB), Cipher Block Chaining (CBC),
Cipher Feedback (CFB) and Counter (CTR) respectively.
From these aforesaid modes, both ECB and stateful CBC
modes are not IND-CPA secure, particularly in stateful CBC
mode the value of Initialization Vector (IV) remains con-
strained which is shared between the sender and receiver. But,
in stateless CBC mode, the IV value is chosen randomly
for each message block. Thus, we use AES with stateless
CBCmode of encryption or decryption policy throughout this
paper so that it becomes IND-CPA secure [61].

B. ONE-WAY HASH FUNCTION AND ITS PROPERTIES
A one-way hash function h: {0, 1}∗ → {0, 1}l takes a
binary string of variable length input, say x ∈ {0, 1}∗ and
results a binary string h(x) ∈ {0, 1}l as an output of fixed
length, say l bits. The formal definition of h(·) is provided as
follows [69] [10].
Definition 2 (Collision-Resistant One-Way Hash Func-

tion): If an adversary A’s advantage in finding collision
in hash outputs with the execution time t is denoted by
AdvHASHA (t), it is defined by AdvHASHA (t) = Pr[(x, y)←R A:
x 6= y and h(x) = h(y)], where Pr[E] is the probability of an
event E and (x, y) ←R A means the pair (x, y) is randomly
chosen byA. By an (η, t)-adversaryA attacking the collision

75348 VOLUME 6, 2018

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

resistance of h(·), it indicates that the execution time of A is
at most t and that AdvHASHA (t) ≤ η.

Examples of a one-way hash function include the Secure
Hash Standard (SHA-1) hashing algorithm and the stronger
SHA-256 hashing algorithm [70].

C. ELLIPTIC CURVE AND ITS PROPERTIES
Supposem, n ∈ Zp, where Zp = {0, 1, . . . , p−1} and p > 3 is
a prime [10]. A non-singular elliptic curve y2 = x3+mx+n
over the finite field Zp is the set Ep(m, n) of solutions (x, y)
∈ Zp × Zp to the congruence

y2 ≡ x3 + mx + n (mod p),

where m, n ∈ Zp such that 4m3
+ 27n2 6= 0 (mod p), and a

point at infinity or zero point O.
Note that 4m3

+ 27n2 6= 0 (mod p) is a necessary and
sufficient condition to ensure a non-singular solution for the
Eq. x3+mx + n = 0 [71]. 4m3

+ 27n2 = 0 (mod p) implies
the elliptic curve is singular. Let P = (xP, yP), Q = (xQ, yQ)
∈ Ep(m, n). Then xQ = xP and yQ = −yP when P+ Q = O.
Also, P + O = O + P = P, for all P ∈ Ep(m, n). Hasse’s
theorem states that the number of points on Ep(m, n), denoted
as #E , satisfies the following inequality [72]:

p+ 1− 2
√
p ≤ #E ≤ p+ 1+ 2

√
p.

In other words, there are about p points on an elliptic curve
Ep(m, n) over Zp. Also, Ep(m, n) forms a commutative or an
abelian group under addition modulo p operation.

• Elliptic curve point addition: Let P,Q ∈ Ep(m, n) be
two points on the elliptic curve. Then, R = (xR, yR) =
P+ Q is calculated as follows [72]:

xR = (λ2 − xP − xQ) (mod p),

yR = (λ(xP − xR)− yP) (mod p),

where λ =

yQ − yP
xQ − xP

(mod p), ifP 6= −Q

3xP2 + m
2yP

(mod p), ifP = Q.

• Elliptic curve point scalar multiplication: In ECC,
multiplication is done as repeated additions. For exam-
ple, 5P = P+ P+ P+ P+ P, where P ∈ Ep(m, n).

Definition 3 (ECDLP Assumption): Given an elliptic
curveEp(m, n) and two pointsR, S ∈ Ep(m, n), find an integer
x such that S = x · R.
Definition 4 (ECDDHP Assumption): Given a point R on

an elliptic curve Ep(m, n) and two other points x · R, y · R
∈ Ep(m, n), find (x · y) · R.

V. THE PROPOSED PROTOCOL
In this section, we discuss the proposed scheme in
detail. We call the proposed scheme as HEAP (Efficient
Authentication Protocol for Hadoop). The system architec-
ture of HEAP is shown in Figure 2.

A. SYSTEM MODEL
Six types of principals are involved in the proposed system
model: 1) client (C), 2) Big Data Service Provider (BDSP)
3) Namenode Server (NS) or Job Tracker (JT), 4) ClientMan-
agement Server (CMS), 5) Namenode Management Server
(NMS) and 6) Enrolment Server (ES). Both CMS and NMS
are the public servers in two-server model, whereas ES is
the private server. CMS is reachable to Ci utilizing a client
application instance say HCAj, where i ∈ {1, 2, 3, · · · , n}.
NMS is reachable to BDSPj’s administrator using a server
application instance say HSAk , where j ∈ {1, 2, 3, · · · ,m}.
Both CMS and NMS are reachable to adversaries but, ES
operates in the background and it is fully supervised inter-
nally by the respective system administrator only. Thus, ES
is fully trusted principal in the network. Tomake the proposed
system model fault-tolerant, we distribute Ci’s secret creden-
tials into two servers (NMS and ES) whereas disseminates
BDSP’s administrators and their deployable service server’s
(NS’s and JT ’s) private (secret) information into another pair
of servers (CMS and ES).

Initially, BDSP’s administrator needs to register all the
service servers (NS and JT) of his own Hadoop cluster with
ES online. To do this, BDSP’s administrator first enrol him-
self with ES and go through an authenticated key agreement
procedure utilizing both NMS and CMS server. C enrol him-
self with ES during registration phase, but the authenticated
session key agreement task will be held by both CMS and
NMS. To prove the legitimacy of clientC and BDSP’s admin-
istrator, both need to give responses about three different
challenges (specifically maintained by a two-step verification
process utilizing user identity, password and digital signa-
ture) assisted by both the servers (CMS and NMS). The
successful legitimacy checking provides a Big Data storage
or processing service server ticket to C and service server
enrolment access privilege to BDSP’s administrator. The pro-
vided service ticket will then give access to theNS or JT after
accomplishment of a mutual authentication and session key
establishment process. The application instance HCAj will
give access to the CMS for Ci including adversaries whereas
HSAk will provide access to NMS for BDSP’s administrator
including attackers. But, it is not possible for an adversary
to access both CMS and NMS together utilizing a single
application say HCAj or HSAk .

B. ADVERSARY MODEL
Presently, we have found three widely used threat mod-
els in the literature such as, Dolev-Yao threat model
(DY model) [73], Canetti and Krawczyk adversary model
(CK-adversary model) [74], and Extended Canetti and
Krawczyk threat model (eCK-adversary model) [75] to
model active and passive adversaries. However, we adopt
DY model and CK-adversary model to study the proposed
protocol.

Under DY model [73], an insecure channel between two
communicating parties has been modeled mathematically in

VOLUME 6, 2018 75349

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

FIGURE 2. System architecture of HEAP.

such a way that an adversary Adv can intercept, delete or
modify the exchanged messages. In addition to this, Adv
may insert a fake message into the communication media to
disgust the normal operations between two communicating
parties. In the CK-adversary model [74] (the super set of
DY model), the adversary Adv not only eavesdrop, delete or
modify the exchangedmessages between two communicating
parties but also having the access to the session keys (short-
term keys), long-term secret keys and session states of each
party involves into the key agreement process. This model
ensures the security of the authenticated key agreement proto-
col considering some sorts of security credentials (long-term
and short-term) leakage and its impact on the security of other
secret credentials.

We follow both DY and CK-adversary model in the pro-
posed protocol, where we assume HEAP-KDC is trusted
for both C and NS (or JT). Further, it is assumed that
CMS and NMS are semi-trusted, whereas ES is fully trusted
server. According to the policy of the DY model, any two
parties such as C and NS or C and JT , are not consid-
ered as trustworthy principals in the network. Therefore,
in this DY model, an adversary (active and passive) Adv
can then eavesdrop, modify or delete the exchanged mes-
sages between C and NS or C and JT during communi-
cation. We also assume that the information stored at the
C’s workstation (mobile device) can be stolen by Adv and
after obtaining the stolen information, Adv can perform
the stolen-verifier and privileged-insider attacks. In addition,

under the CK-adversary model, adversary Adv can have
access some form of secret credentials including session key
and session states between C and NS or C and JT . Under
this assumption, the proposed protocol needs to show less
security breech possibility of other entities’ (BDSP, CMS,
NMS and ES) secret credential due to the leakage of ‘‘session
ephemeral secrets’’ between C and NS or C and JT .

However, in this study, we inspect several known security
threats such as, chosen plain-text, denial-of-service, man-
in-the-middle, online password guessing, server compro-
misation, replay, privileged-insider, stolen-verifier, offline
password guessing, workstation compromisation, server
spoofing and identity compromisation attacks considering
both DY and CK-adversary model.

C. GENERAL OVERVIEW OF HEAP
HEAP goes through five basic operations: (i) HEAP-KDC
configuration, (ii) user enrollment, (iii) Big Data service
provider registration, (iv) Hadoop Cluster vis-a-vis service
server enrollment and (v) mutual authentication and session
key agreement between user and service server. Two security
application instances namely HCAj and HSAk are running
separately on user’s workstation and service provider work-
station to access a particular public server (CMS or NMS)
of the HEAP-KDC’s realm. More precisely, C accesses only
CMS through the application HCA and the service provider
accesses only NMS through the application HSA.

75350 VOLUME 6, 2018

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

Initially, a Big Data Service Provider (BDSP) (or
specifically the BDSP’s administrator (BA)) needs to reg-
ister himself with the ES through out-of-band channel (for
example, a postal network) with his identity proof docu-
ments, service level agreement, service server details, etc.
This entails to avail a one-time dummy identity, one-time
dummy password and a pass-phrase to the service provider.
After receiving these parameters offline, the service provider
enrolls himself online with the HEAP-KDC utilizing both
NMS and HSA. During online registration, the service
provider needs to provide both the dummy identity and the
dummy password to NMS through HSA. This entails to get
a user account creation permission from NMS. In such a
provision, the service provider sends his information namely,
masked identity, masked password, email identity and mobile
number, etc. to both CMS and ES servers utilizing NMS via a
secure channel (utilizing pass-phrase as a key). After sending
the service provider’s information to CMS and ES, NMS only
keeps the masked identity in its database. Similarly, an end
user C register himself with ES by taking the help of CMS
and HCA. During this operation, C sends his transformed
identities, masked password, email identity and mobile num-
ber securely to NMS and ES servers via CMS. In this way,
both user and service provider registration process has been
accomplished.

After accomplishment of registration task, the BDSP needs
to keep his original identity and password with himself.
These two secrets are utilized at the time of service provider
login phase. After successfully logged in into its worksta-
tion (locally) using HSA, the BDSP can register his Hadoop
Cluster vis-a-vis Big Data storage and processing service
servers (NSs’ and JT s’) with HEAP-KDC followed by a
mutual authentication and key agreement process utilizing
both NMS and CMS servers (two-server based authentica-
tion). This process is scalable in nature, where any Big
Data service providers can able to enroll his cluster’s ser-
vice servers’ online with HEAP-KDC. BDSP securely enrolls
each service server to both CMS and ES through NMS by
assigning a service server’s masked identity and a masked
password.

Similarly, after registration, C needs to keep his user iden-
tity and password secret with himself for logging in into its
workstation. At the time of login, C needs to authenticate
himself in its workstation locally utilizing HCA by providing
his identity and password. After that,C goes through amutual
authentication and key formation process utilizing both CMS
and NMS servers (dual server based authentication). This
entails a short-term key to C . Utilizing this short-term key, C
establishes a secure session with CMS. We call this process
as single sign-on of client C . After the single sign-on task,
CMS provides two encrypted tickets: (1) client ticket and
2) service server (either Big Data storage service server or
processing service server) ticket to C . Utilizing this two
tickets, C establishes a secret session with a service server
(either NS or JT) associated with a particular cluster.

During two-server based mutual authentication and key
agreement phase, the service provider (BA) enters his original
identity and password to HSA. HSA computes a masked
identity of the given identity. HSA then construct a digital
signature on themasked identity utilizing a random nonce and
BA’s chosen private key. After that, HSA sends the masked
identity and the digital signature to NMS. In the same way,
NMS construct a digital signature by signing its original
identity with its private key. NMS sends BA’s masked identity
andBA’s digital signature alongwithNMS’s encrypted digital
signature and NMS’s identity to CMS. After verifying the
identities of both BDSP and NMS, CMS decrypt NMS’s sig-
nature. Thereafter, CMS modifies both the digital signatures
utilizing the previously shared pass-phrases of both the par-
ties (BDSP and NMS) and CMS’s private key. CMS encrypts
the modified signatures using BDSP’s masked password and
NMS’s shared key. CMS then sends both the encrypted sig-
natures to NMS. NMS decrypts the respective signature and
verifies the legitimacy of both BDSP and CMS utilizing the
previously loaded security parameters and sends the other
signature to BDSP. After receiving the modified signature,
BDSP (or BA) checks the legitimacy of both NMS and CMS.
Finally, using the random nonces and ECC, both BDSP and
NMS establish a session key between themselves. In the same
way, at the time of single sign-on process, C establishes a
short-term key with CMS.

After establishment of a secure session with NS utilizing
HCA, C outsources its Big Data in terms of raw data blocks
and its replicas into several Datanodes or chunk servers under
the supervision of NS. In such a provision, HCA supplies
the session key to the corresponding HDFS Client (HDCL)
to achieve secure and integrity-assisted HDFS-read and
HDFS-write operations. Thus, it will protect the user’s confi-
dential Big Data from the third party interception.

To make the proposed authentication protocol fault tol-
erant in terms of security credentials’ replications, we keep
the service providers and service servers credentials (mainly
transformed identities and masked passwords) under CMS’s
custody whereas disseminate the C’s credentials to NMS.
Mean while, all the security credentials information are
replicated concurrently into ES server. In addition to this,
to transform the service provider’s identity and password, two
random secrets (one secret generated by NMS and other pro-
duced by the HSA) are embedded with the service provider’s
original user identity and password first, and afterwards a
cryptographic one-way hash function has been applied with
themselves. Similarly, C’s original user identity and pass-
word are encapsulated with CMS’s chosen secret and HCA’s
secret, respectively. Thus, the aforesaid mechanism leads to
create a strong password for both the parties (service provider
and C) as well as reduce the chance of both single point of
failure and single point of vulnerability issues.

To discuss HEAP methodology, we use various notations
throughout the paper. The notations and their descriptions
are listed in Table 1. In addition to this, we make certain

VOLUME 6, 2018 75351

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

TABLE 1. Notations and their meanings.

assumptions for HEAP. These assumptions are described as
follows:

1) Two security application instances say HCAi and
HSAk are running concurrently into two separate

workstations (user’s and service provider’s worksta-
tions) which enable to access the public servers (i.e.,
CMS and NMSs) in a HEAP-KDC realm.

2) An administrative application instances say, ‘‘h-admin’’
takes the responsibility of initial credentials’ (i.e.,
private keys, pass-phrases and public identities) con-
figuration in the key distribution center (HEAP-KDC)
(also see Figure 2).

3) A Trusted Central Certification Authority (TCCA)
chooses a generator G on the elliptic curve Ep(m, n) of
order q, and selects two cryptographic hash functions
say, H1(·) and H2(·). Further, the TCCA generates a
certificateCertE for an entity E . The entity E randomly
chooses sE ∈ Z∗q as private key and computes the
corresponding public key as QE = sE · G.

4) BDSP enrolls (i.e., online registration) himself with
CMS via NMS followed by an offline registration
with ES. After registration, BDSP needs to login into
the system. After login, BDSP registers his Hadoop
cluster vis-a-vis the service servers (NSs’ and JT ’s)
with HEAP-KDC. Note that at least one cluster needs
to be deployed with the KDC before initiating client
registration.

5) C enrolls (i.e., online registration) himself with NMS
via CMS followed by an offline registration with ES.
After registration, C needs to login into the system for
accessing the service servers (NS’s or JT ’s).

6) C and NS or C and JT are not considered as trusted
entity. They should mutually verify their legitimacy
with the help of bothCMS andNMS. After verification,
either C and NS or C and JT become trusted to each
other.

7) CMS keeps masked identities of Cs, RCMSCi s and all the
secret credentials related to the Hadoop cluster vis-a-
vis the service servers information whereasNMS stores
masked identities of BDSPs, RNMSBDSPs and all the secret
credentials of clients (Cs). ES is having all the secret
information of Cs’, BDSPs’ and service servers’. Note
here, it is not permissible for HEAP-KDC’s server
(CMS or NMS or ES) to store the secret credentials
(mainly identity, password) of any principals in a plain-
text format.

8) C or BDSP goes through a two-server based mutual
authentication to avail services from the service server
or deploy a new cluster with HEAP-KDC.

9) Finally, ES does not available to any other entities (Cs,
NSs and JT s) except NMS and CMS.

D. DETAILED DESCRIPTION OF HEAP
This section illustrates the detailed description of the pro-
posed protocol phases as follows.

1) HEAP-KDC CONFIGURATION
HEAP undergoes an initial configuration phase, where a
System Administrator (SA) frames the Key Distribution Cen-
ter (i.e., HEAP-KDC). In this phase, all public servers are

75352 VOLUME 6, 2018

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

TABLE 2. Summary of pre-loaded credentials into HEAP-KDC after the
execution of h-admin.

pre-loaded with secret credentials administered by the SA.
In this regard, an admin process, called h-admin, runs at the
time of HEAP-KDC configuration under the supervision of
the SA. This phase follows a public server registration process
to register both CMS and NMS with ES. In contrast, ES loads
the public identities of CMS and NMS namely CMSID and
NMSID in its database and share its public identity with both
the servers. In addition, the h-admin process assigns three
long-term shared secret symmetric keys between CMS and
ES,NMS andES, andCMS andNMS asK(CMS,ES),K(NMS,ES)
and K(CMS,NMS), respectively. Further, h-admin generates one
pass-phrase say SID(CMS,NMS). Finally, h-admin loads all
these security parameters into respective servers. After the
completion of h-admin process execution, the known security
parameters with the HEAP-KDC are summarized in Table 2.
Note that h-admin also assigns two public identities for

both client application (HCA) and service provider applica-
tion (HSA), say HCAID and HSAID, respectively. HCAID is
publicly available to CMS and HSAID is publicly available
to NMS. Similarly, the public identity of CMS is known to
HCA whereas the public identity of NMS are known to HSA.
These identities are also useful for the key agreement process
at the beginning of the client (or Big Data service provider)
registration and login phases, respectively.

2) BIG DATA SERVICE PROVIDER REGISTRATION
Suppose a Big Data Service Provider (BDSP) wants to deploy
a new Hadoop Cluster (HCj) for providing the data storage
and processing services via Internet. To enrol the HCj with
HEAP-KDC, BDSP’s Administrator (BA) needs to register
himself with ES offline (i.e., via the out-of-band channel
or postal network) by giving the detail about total num-
ber of service servers’, service types, Service Level Agree-
ments (SLAs), service servers’ location information, service
servers’ subscription, payment documents, etc. This entails
the BA to avail a synthetic identity (SBDSPID), a synthetic
password (SBDSPPWD) and a pass-phrase (KCMS,BDSP) respec-
tively, via the out-of-band channel to the BDSP’s physical
address. Before sending these three security credentials to
BA, ES securely sends SBDSPID and SBDSPPWD to the NMS for
creating a synthetic account of BA. ES also sends securely the
pass-phrase KCMS,BDSP to the CMS. Note that BA needs to
use SBDSPID , SBDSPPWD and KCMS,BDSP only for once to create
his own profile into CMS with the help of NMS. Although,
BA is permissible to use this pass-phrase KCMS,BDSP for his
password updation and service server registration process.

Figure 3 summarizes the BA’s registration phase, which con-
tains the following steps:

Step BDSPRG1: BA enters SBDSPID and SBDSPPWD into
HSA. HSA generates a random nonce say n′1. HSA
encrypts SBDSPID and n′1 using SBDSPPWD as BDSPDtl =

E(SBDSPPWD : [SBDSPID , n
′

1]). HSA sends the message
msgB1 = {NMSID, n′1, BDSPDtl} to the NMS.

Step BDSPRG2: After receiving msgB1, NMS decrypts
BDSPDtl and checks the availability of SBDSPID in its
database. If it exists then, BA is permissible to cre-
ate its own account into CMS and return msgB2 =
{NMSID,CMSID, n′1}, and goto Step BDSPRG3 else,
reject BA’s request.

Step BDSPRG3: BA enters its original identity as BDSPID
in HSA. HSA chooses a random secret d and trans-
forms the BDSPID as T U ′ = h(BDSPID|| d ||HSAID).
Using this transformed identity T U ′, both BA and NMS
establishes a shared secret key (SK(NMS,BDSP)) between
themselves followed by a mutual authentication process
utilizing the similar analogy say ‘‘Initial key establish-
ment between Ci and FEAS’’ reported in DPTSAP [10].

Step BDSPRG4: BA enters its new password as BDSPPWD
into HSA. HSA computes the masked password
BDSP∗PWD = h(h(d || BDSPPWD) ||RNMSBDSP). Note that
at the time of shared secret key establishment pro-
cess RNMSBDSP was generated by NMS and it has been
delivered securely using the key SK(NMS,BDSP). Further,
both BA’s request and NMS’s response messages using
DPTSAP [10] are represented as msgB3 and msgB4,
respectively in Figure 3.

Step BDSPRG5: HSA encrypts BDSP∗PWD using
K(CMS,BDSP) as BDSP ′Dtl = E(K(CMS,BDSP) :

[BDSP∗PWD, MT U ′]), where MT U ′ = h(BDSPID||
d || HSAID|| RNMSBDSP). HSA sends the message msgB5 =
{NMSID , n′2, BDSP ′Dtl} to the NMS.

Step BDSPRG6: After receiving msgB5, NMS broadcasts
bothMT U ′ and BDSP ′Dtl to both ES and CMS servers
(see msgB5.1). NMS keeps onlyMT U ′ and RNMSBDSP in its
database and deletes other informations, wherein, after
decrypting BDSP ′Dtl , both ES and CMS stores MT U ′
and BDSP∗PWD into their corresponding databases (see
msgB5.2). Finally,NMS sends a registration confirmation
message as msgB6 to BA through HSA and goto Step
BDSPRG7.

Step BDSPRG7: HSA computes d∗ = d⊕ h(BDSPID
||BDSPPWD), RNMS

∗

BDSP = RNMSBDSP ⊕h(d ||BDSPPWD),
FI = h(BDSPID|| BDSPPWD), K∗(CMS,BDSP) =
K(CMS,BDSP) ⊕h(BDSPPWD || RNMSBDSP) and BDPW =

h(BDSPID ||HSAID ||BDSPPWD|| RNMSBDSP ||d), and then
stores these information into HSA’s database. HSA will
use these information at the time of BA’s login, service
server registration and password updation phases.

Note that after accomplishment of the registration process,
BA needs to remember only two parameters BDSPID and
BDSPPWD to login into the system and then he can enrol any

VOLUME 6, 2018 75353

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

FIGURE 3. Summary of service provider registration.

number of Hadoop Clusters (HC) online with HEAP-KDC.
Thus, the proposed service provider registration scheme is
user friendly and scalable in nature. The online enrolment
process of the HC driven by the BA is presented as follows.

3) HADOOP CLUSTER REGISTRATION
Hadoop cluster registration vis-a-vis service servers enrol-
ment phase is proposed to carry out the different activities
starting from service provider login to online registration of
service servers (mainly, all Namenode servers and JobTrack-
ers belongs to a particular Hadoop cluster sayHCj, where j =
1, 2, · · · ,m). The proposed enrolment phase consists of three
activities: 1) service provider (BA) login, 2) mutual authenti-
cation and session key establishment between BA and NMS
and 3) service servers registration. The detail steps involved
in this process are discussed as follows. For simplicity, in this
study, we assume a particular cluster say HCj consists of a
single Namenode server (NSj) and a single Job Tracker server
(JTj), and NSj is responsible to provide the Big Data storage
services wherein JTj yields the Big Data processing services
to the remote user online.

a: SERVICE PROVIDER LOGIN AT WORKSTATION
After the completion of BA’s registration process, BA tries
to login into the system using the server application HSA.
Note here, before initiating service provider (BA) login into
BA’s workstation, HSA loads all BA’s transform identities

(that is, FI i, where i = 1, 2, · · · , k) into its browser cookie.
A diagram summarizing several communication message
exchanges between BA and NMS involved throughout the
service provider login, authenticated key establishment and
service server registration process are shown in Figure 9, and
it contains the following steps:

Step BDSPL1: BA enters his original identity BDSPID and
password BDSPPWD into HSA. HSA computes FI∗ =
h(BDSPID ||BDSPPWD) and checks this entry exists in its
cookie or not. If it exists then HSA loads the respective
d∗, RNMS

∗

BDSP , K
∗
CMS,BDSP and BDPW entries for the same

BA.
Step BDSPL2: HSA computes d = d∗⊕ h(BDSPID
||BDSPPWD), RNMSBDSP = RNMS

∗

BDSP⊕ h(d || BDSPPWD) and
K(CMS,BDSP) = K∗(CMS,BDSP) ⊕ h(RNMSBDSP || BDSPPWD),
and goto Step BDSPL3. Else, BA can repeat Step
BDSPL1 with another user identity and password.

Step BDSPL3: HSA computes BDPW ∗ = h(BDSPID ||
HSAID || BDSPPWD || d) and checks if the condition
BDPW ∗ = BDPW holds or not. If it holds, BA is treated
as an authentic service provider.

b: AUTHENTICATED KEY AGREEMENT PHASE
After successful logging in into the system, HSA initiate an
authenticated key formation process between BA/BDSP and
NMS. The detail steps involved in this process are shown
in Figure 9 and are discussed as follows.

75354 VOLUME 6, 2018

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

FIGURE 4. BDSP ’s signature generation process.

Step MASKA1: HSA computes BDSPi masked identity
MT U ′ = h(BDSPID||d || HSAID|| RNMSBDSP). Further,
HSA generates two pseudo-random numbers (λ1BDSP and
λ2BDSP) utilizing MT U ′ and different pre-loaded secu-
rity domain parameters as the input to a function say
bdspSignPairGen[](·) (see Figure 4).

Step MASKA2: HSA forms the message M1 = {MT U ′,
λ1BDSP, λ

2
BDSP, NMSID, CertBDSP} and sends it to NMS

via a public channel.
Step MASKA3: After receiving M1, NMS searches its

database to check the existence of MT U ′. If it finds
the same then NMS generates two pseudo-random num-
bers (µ1

NMS , µ
2
NMS) by taking NMSID and other domain

parameters as the input to a function say nmsSignPair-
Gen[](·) (see Figure 5).

Step MASKA4: NMS constructs a message M2 =

{NMSID, CMSID, λ2BDSP, E(KCMS,NMS : [MT U ′,
µ2
NMS])} and sends it to CMS via a public channel.

Step MASKA5: After receiving the message M2, CMS
searches bothMT U ′ and NMSID in its database. If both
are exists then CMS understands that both BDSP and
NMS are legitimate parties, and goto Step MASKA6;
otherwise, rejects NMS’s request.

Step MASKA6: CMS loads both BDSP’s pass-phrase
(KCMS,BDSP) and NMS’s secret identity (SIDCMS,NMS)
from its database. CMS modifies both BDSP’s and
NMS’s partial signatures (i.e., µ2

NMS and λ2BDSP) using
a function cmodifiedSignPairGen[](·) (see Figure 6) as
(1) µnewNMS

1
= µ2

NMS+ SCMS · H2 (H1(KCMS,BDSP))
(mod q) = RNMS ·H2(H1(NMSID))+ SNMS ·H2(µ1

NMS)+
SCMS ·H2 (H1(KCMS,BDSP)) (mod q) and (2) λnewBDSP

2
=

λ2BDSP + SCMS · H2(H1(SIDCMS,NMS)) (mod q) =
RBDSP ·H2(H1(MT U ′)+SBDSP ·H2(λ1BDSP)+SCMS ·H2
(H1(SIDCMS,NMS)) (mod q) and goto Step MASKA7.

Step MASKA7: CMS constructs a message M3 =

{CMSID, NMSID, CertCMS ,E(KCMS,NMS : [λnewBDSP]),

1Note: CMS digitally sign on the messages say µ2NMS , KCMS,NMS and
µ1NMS using CMS’s private key SCMS .

2Note:CMS digitally sign on the messages sayMT U ′, SIDCMS,NMS and
λ1BDSP using its private key SCMS .

FIGURE 5. NMS’s signature generation process.

FIGURE 6. Signature updation process into CMS.

E(BDSP∗PWD : [MT U ′, µnewNMS])} and sends the same
to NMS.

Step MASKA8: NMS verifies the legitimacy of both BDSP
and CMS utilizing the bcmsVerification(·) function
shown in Figure 7. If the function bcmsVerification(·)
returns ‘‘Accept’’, then NMS construct a session key
SK = RNMS · λ1BDSP = RNMS · RBDSP · G and a message
M4 = {MT U ′, NMSID, µ1

NMS , CertCMS , CertNMS ,
E(BDSP∗PWD : [MT U ′, µnewNMS]}. NMS sends M4 to
BDSP, and goto Step MASKA9; otherwise, it rejects
BDSP’s request.

Step MASKA9: After getting the message M4, BDSP
verifies both NMS and CMS utilizing the following
function ncmsVerification(·) (see Figure 8). If the func-
tion ncmsVerification(·) returns ‘‘Accept’’ then BSDP
receives NMS’s response and constructs a session key
SKBDSP,NMS = RBDSP · µ1

NMS = RBDSP · RNMS · G
otherwise; rejects NMS’s response.

Proof of Correctness: In order to verify the legitimacy
of both BDSP and CMS, NMS needs to check λnewBDSP ·

G = λ2BDSP · G + QCMS · H2(H1(SIDNMS,CMS)). To sat-
isfy the verification condition, it must holds λ2BDSP · G =
λ1BDSP · H2(H1(MT U ′)) +QBDSP · H2(λ1BDSP) = RBDSP ·
H2(H1(MT U ′)) · G +SBDSP · H2(λ1BDSP) · G and QCMS ·
H2(H1(SIDNMS,CMS)) = SCMS · H2(H1(SIDNMS,CMS)) · G.
Similarly, to verify the legitimacy of both NMS and CMS,

VOLUME 6, 2018 75355

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

FIGURE 7. BDSP and CMS verification process at NMS.

FIGURE 8. NMS and CMS verification process at BDSP .

BDSP needs to verify µnewNMS · G = Y1 · µ
1
NMS + Y2 · QNMS +

Y3 ·QCMS , where Y1 = H2(H1(NMSID)), Y2 = H2(µ1
NMS) and

Y3 = H2(H1(KCMS,BDSP)). To satisfy the condition, it must

satisfies Y1 ·µ1
NMS = Y1 ·RNMS ·G, Y2 ·QNMS = Y2 ·SNMS ·G

and Y3 · QCMS = Y3 · SCMS · G.

c: SERVICE SERVERS’ REGISTRATION PHASE
After establishment of SKBDSP,NMS between BA/BDSP and
NMS, HSA starts a new session with NMS. In this regards,
BDSP can securely enrol all the service servers mainly NSj
(responsible for Big Data storage services) and JTj (respon-
sible for Big Data processing services) with HEAP-KDC via
NMS. For simplicity, in this study, we assume that the BDSP
wants to configure a Hadoop Cluster HCj which consists of
only two service servers namely (1) NSj: responsible for con-
trolling both namespace management and Big Data storage
service activities and (2) JTj: responsible for both task assign-
ment and Big Data processing activities. To initiate a service
server registration process, BDSP sends an initial enrolment
request for bothNSj and JTj toNMS via secure channel (using
SKBDSP,NMS). In this regard, NMS asks CMS to provide two
shared symmetric keys for NSj and JTj. CMS sends the keys
in encrypted format as Kns,jt = E(KCMS,BDSP : [KCMS,NS
||KCMS,JT]). Thereafter, as a response to the BDSP’s request,
NMS sends two random numbers namely RNMSNSj and RNMSJTj
along with Kns,jt to BDSP. A diagram summarizing several
communication message exchanges between BDSP andNMS
involved throughout the service server registration process
are shown in Figure 10, and it contains the following steps:

Step SSRG1: BDSP enters the security credentials namely
the identity, symmetric key and synthetic password for
both the service servers (i.e., NSj and JTj) into HSA.
HSA computes the masked identities for NSj and JTj as
TNSID = h(NSID ||HSAID|| rss1) and TJTID = h(JTID
||HSAID|| rss2), and the masked password for the same
service servers as SIDjNS = h(NSPWD || rss1|| RNMSNSj) and

SIDjJT = h(JTPWD||rss2||RNMSJTj), respectively. Note that
rss1 and rss2 are two random numbers chosen by HSA.

Step SSRG2: HSA computes the masked identity of
BDSP as MT U ′ and construct a message M5 =

{MT U ′, NMSID, n3,E(K(CMS,BDSP) : [MT U ′, n3,
TNSID,KCMS,NS , SIDjNS , TJTID,KCMS,JT , SIDjJT]),
E(SKBDSP,NMS : [MT U ′, n3])} and sends the same to
NMS.

Step SSRG3: After receiving the messageM5,NMS checks
the presence of MT U ′ into Z5 = E(SKBDSP,NMS :
[MT U ′, n3]) after decrypting the Z5 using the key
SKBDSP,NMS . If MT U ′ exists in its database then
BDSP is treated as authentic service provider and
NMS broadcasts {MT U ′,E(K(CMS,BDSP) : [MT U ′, n3,
TNSID,KCMS,NS , SID

j
NS ,TJTID, KCMS,JT , SID

j
JT])} to

both CMS and ES. After receiving E(K(CMS,BDSP) :

[MT U ′, n3, TNSID,KCMS,NS , SIDjNS , TJTID,KCMS,JT ,
SIDjJT])}, bothCMS and ES decrypts it and updates their
service server databases (after finding out the availabil-
ity of masked server identity into their databases) and
sends their acknowledgements to NMS.

75356 VOLUME 6, 2018

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

FIGURE 9. Summary of authenticated key agreement process between BDSP/BA and NMS. Note: Here, T ′1 = {CertCMS ,CertNMS },
Z1 = E(KCMS,NMS : [MT U ′, µ2

NMS]), Z2 = E(KCMS,NMS : [λnew
BDSP]), Z3 = E(BDSP∗PWD : [MT U ′, µnew

NMS]), Operation1, Operation2, Operation3,
Operation4 and Operation5: signifies execution of the function bdspSignPairGen[](·), nmsSignPairGen[](·), cmodifiedSignPairGen[](·),
bcmsVerif(·) and ncmsVerif(·), respectively (refer Figure 4, Figure 5, Figure 6, Figure 7 and Figure 8) and OC1, OC2 and OC3: denotes outcome of
bdspSignPairGen[](·), nmsSignPairGen[](·) and cmodifiedSignPairGen[](·) functions respectively.

Step SSRG4: Upon getting the acknowledgements from
both the servers (CMS and ES), NMS checks n′3

?
= n3.

If the condition is satisfied then NMS constructs a ser-
vice servers’ (here, we consider two service servers
i.e., NS and JT in a particular cluster) registration
completion message as M6 = {NMSID,MT U ′,
n3,E(SKBDSP,NMS : [NMSID, n3])} and sends it to
BDSP.

Step SSRG5: Getting the message M6, BDSP decrypts
E(SKBDSP,NMS : [NMSID, n3]) and checks that n′3

?
= n3.

If the condition is satisfied then BDSP understand the
legitimacy of NMS and realized that the service servers
registration has been successfully accomplished with
HEAP-KDC.

Step SSRG6: HSA computes NS ′ID = NSID⊕ h(BDSPID
|| BDSPPWD), JT ′ID = JTID⊕ h(BDSPID ||BDSPPWD),
NSPWD

′

j =NSPWDj ⊕ h(BDSPID ||BDSPPWD), JT PWD
′

j =

JT PWDj ⊕ h(BDSPID || BDSPPWD), rss∗1 = rss1⊕
h(BDSPID ||BDSPPWD) and rss∗2 = rss2⊕ h(BDSPID
||BDSPPWD), respectively. HSA stores NS ′ID, JT ′ID,
NSPWD

′

j , JT PWD
′

j , rss∗1, rss∗2 and HC ID
j informa-

tion into its database for future use. Note that

HC ID
j signifies here as the pre-deployed Hadoop

cluster’s identity and HSA assigns a random value
for it.

After successful registration of the service servers, BDSP
configures the service servers and its client application
(HDCLj) for the cluster HCj. In this regard, BDSP stores the
secret credentials offline among the corresponding service
servers andHDCLj. More precisely NSj has TNSID = h(NSID
|| HSAID|| rss1), KCMS,NS and SIDjNS = h(NSPWD ||rss1||
RNMSNSj); JTj has TJTID = h(JTID ||HSAID ||rss2), KCMS,JT
and SIDjJT = h(JTPWD||rss2 || RNMSJTj), and HDCLj has both
TNSID = h(NSID || HSAID|| rss1) and TJTID = h(JTID
||HSAID ||rss2) information, respectively. Thus, completes
the HCj’s deployment process. Finally, BDSP make the HCj
online for providing the Big Data storage and processing
services to the end users’.
Remark 1: In the service server registration phase,

we present an enrolment strategy considering two service
servers (Namenode Server (NS) and Job Tracker (JT)) belong
to a particular Hadoop cluster (HCj). But, for simplicity and
better understanding, throughout this paper, we consider only
one service server to describe the other phases of the proposed

VOLUME 6, 2018 75357

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

FIGURE 10. Summary of service server registration process. Note: Here, Z4 = E(K(CMS,BDSP) : [MT U ′,n3, TNSID,SIDj
NS , TJTID,SIDj

JT]) and
Z5 = E(SKBDSP,NMS : [NMSID,MT U ′,n3]).

protocol. Note that NS is responsible for providing Big Data
storage services utilizing HDFS and JT is solely made for
providing Big Data processing services using MapReduce
to the end users’. Though, we restrict our discussion with
NS only, but one could simply apply the same proposed
mechanism for JT also.
Remark 2: According to the policy of the proposed

scheme, the online enrolment process of the service servers’
(NSs’ or JT s’ belongs to a particular cluster (HCj)) is simple,
flexible and scalable. Because, a service provider (BDSPj)
can add or remove any number of service servers’ (NSs’ or
JT s’) to or formHEAP-KDC. However, to do this, the service
provider needs to enroll himself with the HEAP-KDC once
and keep his user identity and password secret.

4) USER REGISTRATION
Initially, a user Ci needs to register himself with ES offline
(i.e., via the out-of-band channel or postal network) by giv-
ing his identity proof, address proof and service subscrip-
tion payment documents. This entails Ci to avail a dummy
user-id (DCID), dummy password (DPWD) and a one-time
key (K(NMS,C)) via the out-of-band channel to his physical
address. Before sending these three security credentials to
Ci, ES securely sends DCID and DPWD to CMS for creating
a dummy account of Ci. ES also sends securely the one-time
key K(NMS,C) to NMS. Note that Ci needs to use DCID , DPWD
and K(NMS,C) only for once to create his own user profile
into NMS with the help of CMS. But, Ci is permissible to
use the key K(NMS,C) (we also call it as pass-phrase) at the
time of session key formation and password updation tasks.
Figure 11 summarizes the user registration phase and contains
the following steps:

Step URG1: Ci enters DCID and DPWD into HCAj. HCAj
generates a random nonce say n1. HCAj encrypts DCID
and n1 using DPWD as UDtl = E(DPWD : [DCID , n1]).
HCAj sends the message msgC1 = {CMSID, n1,UDtl} to
the CMS.

Step URG2: After receiving msgC1, CMS decrypts UDtl
and checks the availability of DCID in its database. If it
exists then CMS acknowledge with a message msgC2 =
{NMSID,CMSID, n1} toCi andCi is permissible to create
his own profile into NMS, and goto Step URG3 else,
reject Ci’s request.

Step URG3: Ci enters a new user-id CID in HCAj. HCAj
chooses a random secret ri and transforms the CID as
T U = h(CID||ri ||HCAID). Using this transformed iden-
tity T U , both Ci and CMS establishes a shared secret
key say SK(CMS,C) between themselves using the similar
analogy proposed as ‘‘Initial key establishment between
Ci and FEAS’’ in DPTSAP [10]. It is worth noting that
HCAID is the public identity of client application and it
is known to HCAj.

Step URG4: Ci enters his password PWD intoHCAj.HCAj
computes the masked password PWD∗ = h(h(ri||
PWD)|| RCMSCi) and go to Step URG5. Here, RCMSCi was
generated by CMS and it has been delivered securely
using the key SK(CMS,C) at the time of ‘‘secret key estab-
lishment’’ process [10]. Further, both Ci’s request and
CMS’s response messages using DPTSAP [10] are rep-
resented as msgC3 and msgC4 respectively in Figure 11.

Step URG5: HCAj asks Ci to give his registered mobile
number (MBNOC) and a valid email id. (EIDC). After
taking MBNOC and EIDC from Ci, HCAj encrypts
MT U , PWD∗ MBNOC and EIDC using KNMS,C as

75358 VOLUME 6, 2018

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

FIGURE 11. Summary of user registration.

U ′Dtl = E(K(NMS,C) : [PWD∗,MT U ,MBNOC]), where
MT U = h(CID||ri ||HCAID|| RCMSCi). HCAj sends the
message msgC5 = {CMSID, MT U , n2, U ′Dtl} to the
CMS.

Step URG6: After receiving msgC5, CMS broadcasts both
MT U and U ′Dtl to both ES and NMS servers respec-
tively. CMS keeps onlyMT U and RCMSCi in its database
and deletes other information, wherein, after decrypting
U ′Dtl , both ES and NMS stores MT U , EIDC , MBNOC
and PWD∗ into their corresponding databases. Finally,
CMS sends a registration confirmation message to Ci
through HCAj and goto Step URG7.

Step URG7: HCAj computes r∗i = ri⊕ h(CID ||PWD),
RCMS

∗

Ci = RCMSCi ⊕h(ri ||PWD), EI = h(CID|| PWD),
K∗(NMS,C) = K(NMS,C) ⊕h(PWD || RCMSCi) and USPWi =

h(CID ||HCAID ||PWD ||ri), and then stores these infor-
mation into HCAj’s database. HCAj will use these infor-
mation at the time of user authentication and password
updation phases.

After successful registration of clientCi with HEAP-KDC,
Ci needs to remember only two parameters CID and PWD
to access the services from any on-demand service server
(either NSj or JTj) belongs to a particular Hadoop cluster
say HCj followed by a user login and authenticated key
agreement phases discussed in the following sections. Thus,
the proposed protocol is user friendly in nature.

5) USER LOGIN AT WORKSTATION
After the completion of user registration process, Ci tries
to login into the system using the client application HCAj.
Before initiating user login task into Ci’s workstation,
HCAj loads the user’s masked identities (EI i, where i =
1, 2, · · · , n) into browser cookies. The client-side login pro-
cess contains the following steps:

Step UL1: Ci enter his original identity CID and password
PWD into HCAj. HCAj computes EI∗ = h(CID||PWD)
and checks this entry exists in the cookies or not. If it
exists thenHCAj loads r∗i , R

CMS∗
Ci andUSPWi entries for

the same Ci. HCAj computes ri = r∗i ⊕ h(CID ||PWD)
and RCMSCi = RCMS

∗

Ci ⊕ h(ri ||PWD) and goto Step UL2.
Else, client can repeat Step UL1 with other user identity
and password.

Step UL2: HCAj computes USPW ∗i = h(CID || HCAID
|| PWD || ri) and checks if the condition USPW ∗i =
USPWi holds or not. If it holds, Ci is treated as authentic
user.

After logged in into the client system, Ci needs to select
the jth cluster say HCj from a list of Hadoop clusters
(HC1,HC2, · · · ,HCj, · · · ,HCn) for storing or processing
the Big Data. According to the selection, HCAj loads the
respective client application say HDCLj belongs to the HCj
into the client workstation. In order to store or process
Ci’s Big Data securely, HCAj initiate a single sign-on and

VOLUME 6, 2018 75359

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

FIGURE 12. Summary of mutual authentication and key establishment process between Ci and CMS. Note: T1 = {CertCMS ,CertNMS },
Z ′4 = E(PWD∗ : [MT U ||Vcnew]), Z ′5 = E(KCMS,NMS : [CMSID||π

2
CMS]), Z6 = E(KCMS,NMS : [CMSID||Vcmsnew]), Opi , where i = {1,2,3,4,5}:

signifies the execution of the function cSignPairGen[](·), cmsSignPairGen[](·), nmodifiedSignPairGen[](·), cnmsVerif(·) and cmnmVerif(·),
respectively (refer Figure 13, Figure 14, Figure 15, Figure 16 and Figure 17) and Oj , where j = {1,2,3}: denotes the outcome of cSignPairGen[](·),
cmsSignPairGen[](·) and nmodifiedSignPairGen[](·) functions.

session key establishment task between Ci and HEAP-KDC
as follows.

6) SINGLE SIGN-ON AND DYNAMIC KEY ESTABLISHMENT
A two-server based Single sign-on (SSO) and Dynamic
Key Agreement (DKA) process is proposed to access Big
Data storage services from a remote Namenode Server (NSj)
(or access Big Data processing services from a remote Job
Tracker (JTj)) of a specifiedHadoop cluster sayHCj. The pro-
posed two-server based SSO and dynamic key agreement pro-
cess establishes a dynamic key between Ci and HEAP-KDC
followed by a mutual authentication process. The detail steps
involved in this tasks are discussed as follows.

Note here, the proposed SSO and dynamic key establish-
ment between Ci and CMS are based on ECC and AES.
The known pre-deployed security domain parameters among
HCAi, CMS and NMS are G, q,H1(·) andH2(·), respectively.
Initially, HCAi selects a private key SC for client Ci and
computes the corresponding public key QC = SC · G. Sim-
ilarly, SCMS and SNMS are private keys for CMS and NMS
and the corresponding public keys are QCMS = SCMS · G and
QNMS = SNMS · G, respectively. Here, SC , SCMS and SNMS
are belongs to Zq∗. All these parties keep their private keys
(i.e., SC , SCMS and SNMS) secret, but disseminate the public

keys QC , QCMS and QNMS using CertE . The proposed key
agreement and mutual authentication task between Ci and
CMS are summarized in Figure 12.

The detail steps involved in this process are discussed as
follows.

Step DKA1: HCAj computes Ci masked identityMT U =
h(CID||ri ||HCAID|| RCMSCi). Further, HCAj generates
two pseudo-random numbers (ψ1

Ci and ψ
2
Ci) utilizing

MT U and other pre-loaded security domain parame-
ters as the input to a function say cSignPairGen[](·)
(see Figure 13).

Step DKA2: HCAj construct a message MC1 = {MT U ,
CMSID, ψ1

Ci , ψ
2
Ci , CertC } and sends it to CMS via a

public channel.
Step DKA3: After receiving MC1, CMS searches its

database to check the existence ofMT U . If it finds the
same then CMS generates two pseudo-random numbers
(π1

CMS and π2
CMS) by taking CMSID and other domain

parameters as the input to a function say cmsSignPair-
Gen[](·) (see Figure 14).

Step DKA4: CMS constructs a message MC2 = {CMSID,
NMSID,MT U , ψ2

Ci , E(KCMS,NMS : [CMSID|| π
2
CMS])}

and sends it to NMS via a public channel.

75360 VOLUME 6, 2018

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

FIGURE 13. Ci ’s signature generation process.

FIGURE 14. CMS’s signature generation process.

Step DKA5: After receiving the message MC2, NMS
searches bothMT U and CMSID in its database. If both
are exists then NMS understands that both Ci and CMS
are legitimate parties, and goto Step DKA6; otherwise,
rejects CMS’s request.

Step DKA6: NMS loads both Ci’s pass-phrase (KNMS,C)
and NMS’s secret identity (SIDCMS,NMS) from its
database. NMS modifies both Ci’s and CMS’s par-
tial signatures (i.e., π2

CMS and ψ2
Ci) using a func-

tion nmodifiedSignPairGen[](·) (see Figure 15) as (1)
Vcnew3 = π2

CMS+ SNMS · H2 (H1(KNMS,C)) (mod q) =
RCMS ·H2(H1(CMSID))+ SCMS ·H2(π1

CMS)+ SNMS ·H2
(H1(KNMS,C)) (mod q) and (2)Vcmsnew4 = ψ2

Ci+SNMS ·
H2(H1(SIDCMS,NMS)) (mod q) = RC · H2(H1(MT U)
+SC ·H2(ψ1

Ci)+SNMS ·H2 (H1(SIDCMS,NMS)) (mod q)
and goto Step DKA7.

Step DKA7: NMS constructs a message MC3 =

{NMSID,CMSID, E(KCMS,NMS : [CMSID|| Vcmsnew]),
MT U , E(PWD∗ : [MT U ||Vcnew]), CertNMS} and
sends the same to CMS.

Step DKA8: CMS verifies the legitimacy of both Ci
and NMS utilizing the cnmsVerif(·) function shown

3Note: NMS digitally sign on the messages say π2CMS , KNMS,C and π1CMS
using NMS’s private key SNMS .

4Note: NMS digitally sign on the messages sayMT U , SIDCMS,NMS and
ψ1
Ci

using its private key SNMS .

FIGURE 15. Signature updation process at NMS.

FIGURE 16. Ci and NMS verification process at CMS.

in Figure 16. If the function cnmsVerif(·) returns
‘‘Accept’’, thenCMS construct a session key SKC,CMS =
RCMS · ψ1

Ci = RCMS · RC · G and a message MC4 =

{MT U , CMSID, π1
CMS , E(PWD

∗
: [MT U ||Vcnew]),

CertNMS ,CertCMS}. CMS sends MC4 to Ci, and goto
Step DKA9; otherwise, it rejects Ci’s request.

Step DKA9: After getting the message MC4, Ci verifies
both NMS and CMS utilizing the function cmnmVerif(·)
(see Figure 17). If the function cmnmVerif(·) returns
‘‘Accept’’ then Ci constructs a session key SKC,CMS =
RC · π1

CMS = RCi · RCMS · G otherwise; rejects NMS’s
response.

VOLUME 6, 2018 75361

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

FIGURE 17. NMS and CMS verification process in Ci ’s workstation.

After establishment of the dynamic key SKC,CMS between
Ci and CMS, HCAj allows Ci to move further for requesting
service server ticket as follows.
Proof of Correctness: In order to verify the legitimacy of

both Ci and NMS, CMS needs to check Vcmsnew · G = ψ2
Ci ·

G +QNMS ·H2(H1(SIDNMS,CMS)). To satisfy the verification
condition, it must holdsψ2

Ci ·G = ψ
1
Ci ·H2(H1(MT U))+QC ·

H2(ψ1
Ci) = RC · H2(H1(MT U)) · G +SC · H2(ψ1

Ci) · G and
QNMS ·H2(H1(SIDNMS,CMS)) = SNMS ·H2(H1(SIDNMS,CMS))·
G. Similarly, to verify the legitimacy of both NMS and CMS,
Ci needs to verify Vcnew · G = Y11 · π1

CMS + Y22 · QCMS +
Y33 · QNMS . To satisfy the condition, it must satisfies Y11 ·
π1
CMS = Y11 · RCMS · G, Y22 · QCMS = Y22 · SCMS · G and
Y33 · QNMS = Y33 · SNMS · G.

7) BIG DATA STORAGE SERVICE SERVER TICKET GRANTING
In this process, Ci requests for a Big Data storage ser-
vice ticket from CMS. Before doing so, HCAj provides a
drop-down list from which Ci needs to select a particular
Hadoop cluster say HCj. After selecting the cluster, HCAj
automatically choose a Namenode Server (NSj) for client
Ci. Finally, HCAj initiates the service server ticket granting
process. A diagram summarizing the message exchanges
between Ci and CMS involved throughout the service ticket
granting process is shown in Figure 18, and it contains the
following steps:

Step SSTG1: HCAj constructs a message MC5 =

{MT U ,TNSID, E(SKC,CMS : [MT U , n4, ψ2
Ci])} into

Ci’s workstation. HCAj sends MC5 to CMS.
Step SSTG2: After getting MC5, CMS checks the pres-

ence of both MT U and ψ2
Ci in its system cache.

If both exists then CMS constructs two tokens (namely
Client Token (CT) and Namenode Server Token (NST))
namely CT = Ctoken = E(SK(C,CMS) : [CMSID,
TNSID,OTKCMS,C , n4]) and NST = NStoken =

E(KCMS,NS : [CMSID,MT U , OTKCMS,NS) and goto
Step SSTG3. CMS issues a random nonce namely
OTKCMS,C for NSj and encapsulate the same into
NST wherein CMS computes another random nonce
OTKCMS,C = h(OTKCMS,NS ||SID

j
NS) and enclose it into

CT .
Step SSTG3: CMS sends a message as MC6 =

{MT U ,TNSID,Ctoken,NStoken} toCi by acknowledging
Ci’s request message (MC5) via a public channel.

Step SSTG4: Upon receiving the message MC6, Ci checks
both nonces (that is n4 ∈ {Z7,Ctoken}) are equals or not
(see Figure 18). If both are equals thenCi acceptsCMS’s
response else, rejects CMS’s response.

Finally, after getting both the tokens (CT and NST) from
CMS,HCAj initiates a session key agreement process with the
Namenode Server (NSj) followed by a mutual authentication
process discussed below.

8) SESSION KEY AGREEMENT WITH SERVICE SERVER
After receiving the service server token (NStoken) from CMS,
HCAj initiate a session key agreement between Ci and
NSj. A diagram summarizing the communication message
exchanges between Ci and NSj involved throughout the ses-
sion key agreement process is shown in Figure 18, and it
contains the following steps:
Step SKABSSA1: HCAj decrypts the Ctoken and extracts

OTKCMS,C . HCAj computes a modified signature pair
as {ψ1

Ci ,Vcc} using cModifiedSignature(·) function,
where Vcc = RC · H2(H1 (MT U ||OTKCMS,C))
+SC · H2(ψ1

Ci) (mod q) (see Figure 19) and goto Step
SKABSSA2.

Step SKABSSA2: HCAj constructs a message MC7 =

{MT U , TNSID, ψ1
Ci , Vcc, NStoken,CertC } and send the

same to NSj via a public channel.
Step SKABSSA3: After gettingMC7, NSj decrypts NStoken

and check MT U ′ ?=MT U utilizing ccmsVerif(·)
function (see Figure 20). If it verifies successfully
then NSj understands the legitimacy of client Ci
and goto Step SKABSSA4; otherwise, reject Ci’s
request.

Step SKABSSA4: NSj computes OTKCMS,C =

h(OTKCMS,NS ||SID
j
NS) and verifies the legitimacy of

both Ci and CMS by checking the following condition:
Vcc · G = ψ1

Ci · H2(H1(MT U ||OTKCMS,C)) +QC ·
H2(ψ1

Ci) (see Figure 20). If the condition is satisfied then
NSj realizes the legitimacy of client Ci and computes

75362 VOLUME 6, 2018

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

FIGURE 18. Summary of service ticket granting and session key agreement.’’ Note: Here, Ctoken = E(SK(C,CMS) : [CMSID, TNSID,OTKCMS,C ,n4]),

Z7 = E(SKC,CMS : [MT U,n4, ψ
2
Ci

]), NStoken = E(KCMS,NS : [CMSID,MT U, OTKCMS,NS), OTKCMS,C = h(OTKCMS,NS || SIDj
NS), Operation6,

Operation7, Operation8, and Operation9: signifies the execution of the function cModifiedSignature(·), ccmsVerif(·), nsSigPairGen[](·) and
nscmsVerif(·) (refer Figure 19, Figure 20, Figure 21 and Figure 22), O4 and O5: denotes the outcome of cModifiedSignature(·) and nsSigPairGen[
](·) functions and OTKCMS,NS is a fresh nonce issued by CMS.

FIGURE 19. Signature updation process at Ci ’s workstation.

a session key SKC,NS = h(RNS · ψ1
Ci ||OTKCMS,C) =

h(RNS ·RC ·G||OTKCMS,C), and goto Step SKABSSA5,
else reject Ci’s request.

Step SKABSSA5: NSj computes a signature pair as
{Pns,Vns} using nsSigPairGen[](·) (see Figure 21). NSj
constructs a message MC8 = {TNSID,MT U , Pns,Vns,
CertNS} and goto Step SKABSSA6.

Step SKABSSA6: NSj sends MC8 to Ci via a public chan-
nel.

Step SKABSSA7: Upon receiving the message MC8, Ci
checks the legitimacy of both NSj and CMS by
substantiating the following condition: Vns · G =

Pns · H2(H1(TNSID ||OTKCMS,C)) +QNS · H2(Pns) (see
nscmsVerif(·) function in Figure 22). If the condition
is satisfied then Ci realizes the legitimacy of both ser-
vice server NSj and CMS, and computes a session key
SKC,NS = h(RC · Pns||OTKCMS,C) = h(RC · RNS ·
G||OTKCMS,C), and goto Step SKABSSA8, otherwise;
reject Ci’s request.

After establishment of the session key, HCAj redirects
client Ci to HDFS Client application instance say HDCLj to
store (fresh write operation) or append or read Big Data under
the supervision of NSj. By utilizing the aforesaid process, Ci
could establish a secure channel with JTj for processing Big
Data.
Proof of Correctness: In order to verify the legitimacy of

both Ci and CMS, NSj needs to check Vcc · G = ψ1
Ci ·

VOLUME 6, 2018 75363

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

FIGURE 20. Ci and CMS verification and key formation at NSj server.

FIGURE 21. Signature pair generation process at NSj ’s server.

FIGURE 22. NSj ’s signature verification and key formation at Ci ’s
workstation.

H2(H1(MT U ||OTKCMS,C))+ QC · H2(ψ1
Ci). To satisfy the

verification condition, it must holds ψ1
Ci = RC · G and

QC = SC · G. Similarly, to verify the legitimacy of both NSj

and CMS, Ci needs to verify Vns · G = Pns · H2(H1(TNSID||
OTKCMS,C))+QNS ·H2(Pns). To satisfy the condition, it must
satisfies Pns = RNS · G and QNS = SNS · G.

9) SECURE AND INTEGRITY-ASSISTED WRITE OR APPEND
OPERATION IN HDFS
Suppose Ci and NSj are having the session key SKC,NS
between themselves. Now, say for instance, Ci has four files
(say f1, f2, f3 and f4) and each file is having 250 GB (giga-
bytes) data. Ci wants to import these files from other external
sources into HDFS, and it needs to create a Big File say F1
with the file size of 1 TB (terabytes). According to the policy
of HDFS, the file F1 should go through the HDFS-Write task
(see the basic HDFS-Write operation in Figure 23).

In this regard, NSj assigns several chunk servers or Datan-
odes to HDFS Client (HDCLj) for data streaming via secure
channel. In such a provision, HDCLj divides the file F1 into
1024×1024 MB

64 MB = 16384 number of blocks and write these
blocks into several Datanodes along with the replicas (two
replicas for each block). Before writing each block (ith block)
including its replica into the chunk servers,HDCLj computes
HMAC i

BLID = h(KNMS,C)(CID||BL
i
ID ||h(BL

i
data)) of i

th block,
where BL iID represents the identity of ith block and BL idata
denotes the data content (64MB data) of the ith block.HDCLj
then stores both the ith block andHMAC i

BLID to the respective
chunk server for future activities (namely integrity-assisted
read and processing the Big Data).

If client Ci needs to append additional data in the existing
file F1 in the near future, he needs to follow the similar
strategy as write operation as discussed above.

10) SECURE INTEGRITY-ASSISTED READ IN HDFS
In this phase, Ci wants to read his previously archived Big
Data (here the file F1) from HDFS. The basic work-flow
of HDFS-Read operation is shown in Figure 24. According
to the policy of HDFS, after getting the block locations
from NSj via a secure channel followed by a session key
(SKC,NS) establishment process, Ci can directly read the
blocks from the chunk servers or Datanode servers through
HDCLj. Suppose Ci needs to read the ith block of the file F1.
In this connection, HDCLj loads the same block and com-
putes HMAC i′

BLID = h(KNMS,C)(CID||BL
i
ID ||h(BL

i′
data)). After

that, HDCLj verifies that HMAC i′
BLID

?
= HMAC i

BLID . If the
condition is satisfied then Ci realizes the data integrity of
ith block. Similarly, after verifying the data integrity of all
the blocks belongs to F1 (here, F1 consists of 16384 blocks),
Ci set a boolean variable as flag = ‘‘true’’ which indicates
that the file F1 is not being modified by any attackers or
insiders (more precisely, the data integrity of file F1 has been
preserved), otherwise; Ci set the flag = ‘‘false’’. If the flag
variable returns false for any jth block then Ci goes through
the service provider’s Service Level Agreement (SLA)
and takes proper action, else Ci outsources map-reduce
code [76] and flag to JTj for Big Data processing as
follows.

75364 VOLUME 6, 2018

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

FIGURE 23. Summary of HDFS-Write operation.

FIGURE 24. Summary of HDFS-Read operation.

11) SECURE BIG DATA PROCESSING USING MAPREDUCE
At the beginning of this phase, Ci establishes a session key
(say SKC,JT) with JTj followed by a mutual authentication

and key agreement process (see Sec. V-D.8). After the key
formation, Ci sends the map-reduce code [76] and the flag
to JTj via secure channel. After getting these information,

VOLUME 6, 2018 75365

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

JTj assigns different Task Trackers (TTs) or Datanodes to
execute the map-reduce code for different blocks of Ci’s file
(say F1). After successful execution of the code, JTj stores the
result into Ci’s local filesystem in encrypted format utilizing
the key SKC,JT .

12) PASSWORD CHANGE PHASE
This section discuss about the password updation process of
client Ci and BDSP’s administrator. Assume, the client Ci
needs to change his password for security reasons. To do
this, the following steps need to be executed. Note here,
after the execution of user login phase (refer Sec. V-D.5),
HCAj has the following information: RCMS

∗

Ci = RCMSCi ⊕h(ri
||PWD), MT U = h(CID||ri ||HCAID|| RCMSCi), r∗i = ri⊕
h(CID || PWD), K∗(NMS,C) = K(NMS,C) ⊕h(PWD || RCMSCi) and
USPWi = h(CID ||HCAID ||PWD ||ri).
Step PCP1: Ci enters his identity CID and old password

Pold into HCAj and goto Step PCP2.

Step PCP2: HCAj locally verifies the condition UPW ′i
?
=

USPWi, where UPW ′i = h(CID ||HCAID|| Pold ||ri) and
ri = r∗i ⊕ h(CID || PWDold). If the condition is satisfied
then HCAj asks Ci to enter his updated password and
goto Step PCP3, otherwise; re-enter the user id. and
password again in HCAj.

Step PCP3: Ci enters a new password Pnew into HCAj.
HCAj selects a random number rnewi and computes
Pnew

′

= h(h(rnewi ||Pnew)||RCMSCi), where RCMSCi = RCMS
∗

Ci
⊕h(ri ||PWD), and goto Step PCP4.

Step PCP4: HCAj computes U ′′Dtl = E(K(NMS,C) : [Pnew
′

,

MT U]) where K(NMS,C) = K∗(NMS,C) ⊕h(PWD ||
RCMSCi). HCAj select a random nonce n5 and constructs a
password update message as Pwd_chg_msg= {CMSID,
MT U , n5, U ′′Dtl} (it is similar as the message msgC5
shown in Figure 11) and goto Step PCP5.

Step PCP5: HCAj sends Pwd_chg_msg to CMS.
Step PCP6: After getting Pwd_chg_msg, CMS checks

MT U is an existing user or not. If user presents then
goto Step PCP7, otherwise; reject Ci’s password change
request.

Step PCP7: CMS broadcasts bothMT U and U ′′Dtl (similar
as the message msgC5.1 shown in Figure 11) to ES and
NMS. After decrypting U ′′Dtl , both ES and NMS updates
their user databases and broadcasts their acknowledge-
ment messages (same as the message msgC5.2 shown
in Figure 11) to CMS. Thereafter,CMS sends a response
message (similar as the message msgC6 shown in
Figure 11) to Ci about the confirmation of password
updation request.

Step PCP8: After getting the response message fromCMS,
HCAj computes rnew

∗

i = rnewi ⊕ h(CID ||P
new), K new∗

(NMS,C)
= K(NMS,C) ⊕h(Pnew || RCMSCi) and USPW new

i = h(CID
||HCAID ||Pnew ||rnewi), respectively and stores them in
its database for future use.

Note that using the aforesaidmechanism,BDSP’s administra-
tor (BA) can update its password for security reasons utilizing

bothNMS andES servers and the service provider application
HSAk .
Remark 3: In order to prevent replay attack between Ci

and NSj, NSj can temporarily keep ψ1
Ci and Vcc in its sys-

tem cache. The similar mechanism has been reported in [18]
and [10] can be applied for the replay attack protection. Sup-
pose a similar message MC ′7 = {MT U, TNSID, ψ1′

Ci , V
′
cc,

NStoken,CertC } has been received by NSj. NSj first checks
ψ1′
Ci = ψ1

Ci and V ′cc = Vcc. If both the conditions are
satisfied successfully then NSj treats the message MC ′7 as
replay message, otherwise; NSj treats the message MC ′7 is
fresh and NSj updates ψ1

Ci and Vcc with ψ1′
Ci and V

′
cc in its

system cache. In a similar way, the same procedure can be
applied for other phases to protect replay attack.
Remark 4: To proof the proposed HEAP-KDC is

fault-tolerant in terms of secret credentials storage, we dis-
tribute the credentials of clients (Ci), service provider (BDSP)
and service servers (NSj and JTj) among different servers in
the following settings:

1) CMS: It is permissible to store the masked iden-
tities (MT U ′s, TNSIDs and TJTIDs), masked pass-
words (SIDjNSs, SID

j
JT s and BDSP

∗
PWDs), pass-phrases

(KCMS,BDSPs) secret keys (KCMS,BDSPs, KCMS,NSs,
KCMS,JT s) of service providers and service servers,
the dictionary of password transformation parameters
of clients (RCMSCi s), and the masked identities of clients
(MT Us), respectively.

2) NMS: This server keeps the masked identities,
pass-phrases and passwords of clients (MT Us,
KNMS,Cs and PWD∗), and the dictionary of password
transformation parameters of both service providers
and service servers (RNMSBDSPs, R

NMS
NSj s and RNMSJTj), respec-

tively.
3) ES: It keeps all the secret credentials of both CMS and

NMS servers. In fact, at the time of online registration
process, both CMS and NMS send their principal’s
secret credentials to ES. Note here, ES is a fully trusted
server since it is not reachable online to any other prin-
cipals (except CMS and NMS) including adversaries at
the time of authentication process.

In such a settings, if CMS (or NMS) fails due to some hard-
ware failure and the server data is totally lost then it could be
rebuild from ES server. Similarly, if ES server fails then the
entire legacy data can be extracted from both CMS and NMS
servers to renovate a newES. Thus, we can remark that for the
current settings of HEAP-KDC, the proposed authentication
framework is more dependable and fault-tolerant.
Remark 5: At the time of mutual authentication and single

sign-on process between Ci and CMS, suppose any one of the
random nonce RC or RCMS is known to the adversary Adv.
In this connection it is obvious that Adv can compute RC ·
π1
CMS or RCMS ·ψ

1
Ci , respectively. In such a provision, to pro-

tect known session-specific temporary information attacks
from Adv both Ci and CMS can compute the session key as
SKC,CMS = h(RC · π1

CMS ||R
CMS
Ci) = h(RCMS · ψ1

Ci ||R
CMS
Ci).

75366 VOLUME 6, 2018

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

Therefore, the adversary Adv requires the knowledge of
RCMSCi to compute the actual session key betweenCi andCMS.
In the same way, BDSP and NMS can compute the sesseion
key SKBDSP,NMS utilizing RNMSBDSP.

VI. SECURITY ANALYSIS
To prove that the proposed protocol (HEAP) is provably
secure, we analyze the security of HEAP by utilizing both
formal and informal security analysis. Further, to pursue the
security analysis, we also use the proposed threat model as
discussed in Section V-B.

A. FORMAL SECURITY ANALYSIS USING ROR MODEL
In order to present formal security analysis of HEAP in detail,
we first discuss few terminologies of the widely-used Real-
Or-Random (ROR)model [77]. Thereafter, utilizing the same
model we substantiate that the proposed protocol (HEAP)
provides the session-key (SK) security against an adversary
Adv in Theorem 1.

1) ROR MODEL
In HEAP, we have four entities, namely, user Ci, CMS, NMS
and NSj (or Big Data processing service server JTj). The
following attributes are involved in the ROR model.

a: PARTICIPANTS
Suppose0sCi ,0

t
CMS ,0

u
NMS and0

v
NSj (or0

w
JTj) are the instances

s, t , u and v (or w) of the principals Ci, CMS, NMS and NSj
(or JTj), respectively. These instances are also coined as the
oracles.

b: ACCEPTED STATE
An instance, say 0s is said to be in accepted state, if it reaches
to an accept state after receiving the last protocol message.
The session identification (sid) is constructed by concate-
nating all the communicated messages (sent and received
messages) of the 0s for the current executing session.

c: PARTNERING
We say two instances 0s and 0t are partnered to each other if
the following three conditions are satisfied simultaneously:
1) both 0s and 0t are in accept state, 2) both 0s and 0t

mutually authenticate each other and also share the same sid ,
and 3) both 0s and 0t are mutual partners of each other.

d: FRESHNESS
If the established session key SK between Ci and NSj (or
between Ci and JTj) is not disclosed using the following
Reveal(0s) query, 0sCi or 0

v
NSj (or 0

w
JTj) is said to be fresh.

e: ADVERSARY
In ROR assumptions, all the message communications can
be supervised by Adv including eavesdropping, modifying,
deleting, and inserting transmitted messages. In addition,
Adv can have the access of the following queries [78]:

1) Execute(0s, 0v) – A passive attack is modeled utilizing
this query whereinAdv can have access to the transmit-
ted messages between two legitimate parties.

2) Send(0s,M) – This query is modeled as an active
attack, wherein a message, say M can be transmitted
to a participant instance, say 0s and also receives a
response message.

3) Reveal(0s) – An adversary Adv discloses the current
session key SK of 0s (and its partner) utilizing this
query.

4) CorruptSmartWorkstation(0sSWi
) – This query repre-

sents an active attack wherein HEAP-KDC’s authenti-
cation token (Z ′4) and Ci’s authorization tokens (Ctoken
and NStoken) are leaked to the adversary Adv by com-
promising Ci’s workstation. These information leak-
age is modeled using this query to check the secu-
rity of the proposed protocol. It is reported in [61]
that CorruptSmartWorkstation(·) query fortifies the
weak-corruption model, where the temporary keys and
internal credentials related to the participant instances
are not corrupted.

5) Test(0s) – Applying this query, the semantic security
of the session key SK is being modeled adopting the
indistinguishability in ROR [77]. Before starting the
experiment, an unbiased coin cn needs to be flipped and
its result is only known to Adv. This result decides the
output of the Test query. If Adv executes this query,
and also SK is fresh, 0s outputs SK when cn = 1 or
a random number in the same domain when cn = 0;
otherwise, it will produce the output as a null value (⊥).

f: SEMANTIC SECURITY OF SESSION KEY
Under the ROR assumptions, Adv needs to apprehend a
participant instance’s real session key from a random key.
To achieve this purpose,Adv can execute several Test queries
against either 0sCi or 0

v
NSj (or 0

w
JTj). At the end of this exper-

iment, Adv guesses a bit cn′, and he or she wins the game
if cn′ = cn. Assume S is an event that Adv can win the
game, Adv’s advantage in breaking the semantic security of
the proposed protocol (HEAP) is denoted and defined by
AdvAKEHEAP = |2 ·Pr[S]− 1|. If AdvAKEHEAP ≤ ε, for a sufficiently
small ε > 0, we say HEAP provides SK-security.

g: RANDOM ORACLE
Let us assume that the cryptographic one-way hash function
h(·) is available to all the entities including Adv. We model
h(·) by a random oracle, sayH [10], [78].

2) SECURITY PROOF
Theorem 1 substantiates the semantic security of the pro-
posed protocol (HEAP) under ROR model.
Theorem 1: Let Adv be an adversary running in poly-

nomial time t against the proposed authentication proto-
col, HEAP in the ROR model, and D, qh, qs, |H|, |D|,
AdvECDDHPAdv (t) and AdvIND−CPAE (k) denote the uniformly

VOLUME 6, 2018 75367

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

distributed password dictionary, the number of hash queries,
Send(·) queries, the range space of h(·), the length of D,
the advantage of Adv in breaking ECDDHP and the advan-
tage of Adv in breaking the IND-CPA secure symmet-
ric cipher E (provided in Definition 1), respectively, and
AdvIND−CPAE (K) = AdvIND−CPAE,SGL (K) or AdvIND−CPAE,MEL (K).
Then, Adv’s advantage in breaking the semantic security of
HEAP can be estimated as

AdvAKEHEAP ≤
q2h
|H|
+ 2

(qs
|D|
+ AdvECDDHPAdv (t)

+AdvIND−CPAE (K)
)
.

Proof: In order to proof the above theorem, we go
through a sequence of six games, say GMj (j =

0, 1, 2, 3, 4, 5) as in [19] and [78]. Let the initial game be
GM0 and the final game be GM5. Assume that Si represents
as an event wherein Adv can successfully guess the bit cn in
the Test(·) querywith respect to the gameGMj. All the games
are outlined as follows.

• GameGM0: This is the initial gamewhere the adversary
Adv incorporates a real attack against HEAP under ROR
model. Before starting of the game GM0, Adv chooses
a bit cn. Under the ROR assumptions, the initial game
GM0 and the actual protocol are identical to each other.
Hence, it follows that

AdvAKEHEAP = |2 · Pr[S0]− 1|. (1)

• Game GM1: In this game,Adv performs the eavesdrop-
ping attacks by running the Execute(·) query. Finally,
at the end of this game, Adv needs to call the Test(·)
query. The result of the Test(·) query determines whether
Adv obtains the real session key SK or a random num-
ber. In HEAP, the session key between Ci and NSj is
computed as SKC,NS = h(RC · Pns ||OTKCMS,C) =
h(RC · RNS · G ||OTKCMS,C). Therefore, to reveal the
session key SKC,NS , Adv needs the knowledge about
two random secrets RC and RNS . Since we encapsulated
these two secrets inside the exchanged messages (see
MC7 and MC8 in Section V-D.8) indirectly, eavesdrop-
ping attacks against these messages are not beneficial to
determine SKC,NS . Therefore, the probability of winning
GM1 by incorporating eavesdropping attacks byAdv is
negligible. As a result, we say that both the games GM0
and GM1 are indistinguishable. Thus, we infer that

Pr[S1] = Pr[S0]. (2)

• Game GM2: We include the simulation of both Send(·)
andH(·) queries into this game and transform the game
GM1 to the game GM2. This game is also modeled as
an active attack. In this game, Adv eavesdrops all the
exchanged messages (MC1,MC2, · · · ,MC8). Accord-
ing to the policy of HEAP, we appended a random nonce
with each communicating message (send and receive) so
that there will be no collision of hash outputs whenAdv

simulates it utilizing the Send(·) query. Thus, the birth-
day paradox results in the following inequality:

|Pr[S2]− Pr[S1]| ≤
q2h
2|H|

. (3)

• Game GM3: This game is modeled as an active attack
wherein Adv tries to compute the current session key
SKC,NS between Ci and NSj by obtaining the other
credentials (specifically, Vcnew and MT U) from the
guessed password (PWD) of Ci and the game GM2 is
transformed into the game GM3. Suppose Adv eaves-
drops all the exchanged messagesMCi (i = 1, 2, · · · , 8)
of the current session. We utilize Ci’s transformed pass-
word (PWD∗ = h(h(ri|| PWD)|| RCMSCi)) only in order
to encrypt the CMS’s identifier (i.e., Vcnew) during the
single sign-on and session key establishment process,
but Adv does not have any provisions to check the
transformed password of Ci directly on the server-sides
(both CMS and NSj). Therefore, even if Adv guesses
Ci’s password, but he or she has no scope to verify it on
the server-side. Moreover, to reveal the actual password
(PWD) of Ci correctly from client-end,Adv requires the
knowledge about RCMSCi and ri. In fact, if the authentica-
tion system has a provision to check the limited number
of incorrect passwords as inputs, we have the following
result:

|Pr[S3]− Pr[S2]| ≤
qs
|D|

. (4)

• Game GM4: This game is imitated as an active attack
and the game GM3 is transformed into the game GM4.
In this game, Adv tries to compute the session key
SKC,NS by utilizing both the public information (ψ1

Ci =

RC · G and Pns = RNS · G) of Ci and NSj and previously
eavesdropped messages from the aforesaid discussed
games. Since both Ci and NSj can compute the session
key as SKC,NS = h(RC ·Pns ||OTKCMS,C)= h(RC ·RNS ·G
||OTKCMS,C) by utilizing CMS server, it is obvious that
having the knowledge about ψ1

Ci and Pns, it is compu-
tationally hard to derive SKC,NS due to the difficulty of
solving ECDDHP (see Section IV). Therefore, it follows
that

|Pr[S4]− Pr[S3]| ≤ AdvECDDHPA (t). (5)

• Game GM5: This is the final game and it is modeled as
an active attack, and the game GM4 is transformed into
the final game GM5. In this game, Adv compromises
the Ci’s workstation and tries to compute the session
key SKC,NS by stealing the session temporal secrets,
such as OTKCMS,NS and OTKCMS,C = h(OTKCMS,NS ||
SIDjNS) from NStoken and Ctoken, respectively. But, in the
proposed protocol, for encryption or decryption we use
IND-CPA secure symmetric cipher, such as stateless
CBCmode of AES analogy. Therefore,Adv requires the
knowledge about SKC,CMS and SIDjNS to decrypt both

75368 VOLUME 6, 2018

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

NStoken and Ctoken to get the parameters OTKCMS,NS and
OTKCMS,C . Thus, it follows that

|Pr[S5]− Pr[S4]| ≤ Adv
IND−CPA
E (K). (6)

Since all the queries are successfully simulated in the
final game GM5, Adv is left with only guessing the bit
cn for winning the game after the Test(·) query. Then,
we have,

Pr[S5] =
1
2
. (7)

From Eqs. (1) and (2), we have,

1
2
· AdvAKEHEAP = |Pr[S0]−

1
2
|

= |Pr[S1]−
1
2
|. (8)

From Eqs. (7) and (8), we have,

1
2
· AdvAKEHEAP = |Pr[S1]− Pr[S5]|. (9)

According to the triangular inequality, we get the follow-
ing:
|Pr[S1] − Pr[S5]| ≤ |Pr[S1] − Pr[S2]| +|Pr[S2] −
Pr[S5]| ≤ |Pr[S1] − Pr[S2]| +|Pr[S2] − Pr[S3]|
+|Pr[S3]− Pr[S4]| +|Pr[S4]− Pr[S5]|.
Now from Eqs. (3), (4), (5) and (6), we get,

|Pr[S1]− Pr[S5]| ≤
q2h
2|H|

+
qs
|D|

+AdvECDDHPA (t)

+AdvIND−CPAE (K). (10)

Thus, Eqs. (9) and (10) produce the following result:

1
2
· AdvAKEHEAP = |Pr[S1]− Pr[S5]|

≤
q2h
2|H|

+
qs
|D|

+AdvECDDHPA (t)

+AdvIND−CPAE (K). (11)

Finally, after multiplying both sides of the above equa-
tion (Eq. 11) by a factor of 2, we get the required result
as follows:

AdvAKEHEAP ≤
q2h
|H|
+ 2

(qs
|D|
+ AdvECDDHPA (t)

+AdvIND−CPAE (K)
)
.

B. INFORMAL SECURITY ANALYSIS
This section presents an informal security inspection of the
proposed protocol (HEAP) and shows it is resilient against
various other well-known attacks. This discussion are repre-
sented in the following propositions.

Proposition 1: HEAP is resilient against the privileged-
insider attacks.

Proof: According to the policy of the proposed proto-
col, during user enrollment task HCAj asks Ci to give his
or her user identity CID and password PWD. After getting
these parameters, HCAj transforms Ci’s identity and pass-
word as MT U = h(CID||ri ||HCAID|| RCMSCi) and PWD∗ =
h(h(PWD|| ri)||RCMSCi).HCAj encrypts both these transformed
parameters and construct a message as msgC5 = {CMSID,
MT U , n2, E(K(NMS,C) : [PWD∗,MT U ,MBNOC])}. HCAj
then sends the message to the CMS.

Let a privileged-insider user of the CMS, being an adver-
saryAdv, receives the message msgC5 and tries to extract the
original identity of Ci from MT U . Even if Adv is having
the knowledge about RCMSCi and HCAID, but it is still not
sufficient forAdv to trace Ci’s actual identity without having
the value of ri. CMS can not decrypt the masked password
PWD∗ = h(h(PWD|| ri)||RCMSCi) because it does not have the
key KNMS,C . Further, suppose a privileged-insider user of the
NMS or ES, being an adversary Adv, gets the transformed
identity and the password of Ci and tries to extract the actual
identity and password of Ci. But, the adversary Adv can
not disclose the original identity of Ci due to the lack of
knowledge about RCMSCi and ri. In the same way, Adv can not
extract Ci’s original password. Thus, the proposed protocol
HEAP can protect the privileged-insider attacks.
Proposition 2: HEAP protects Ci’s private information

against workstation compromise attacks.
Proof: Let an adversary Adv controls Ci’s worksta-

tion after successful accomplishment of Ci’s t th session
say St . In such a provision, Adv captures MT U , Ctoken,
NStoken, ψ1

Ci , ψ
2
Ci , Vcc, Pns, Vns, Z

′

4 and TNSID parame-
ters from workstation credential cache. After gaining the
knowledge about these parameters, Adv can not derive the
future session key between Ci and NSj say SKC,NS =
h(RnewC · Pnewns ||OTK

new
CMS,C) = h(RnewNS · ψ

1new
Ci ||OTK

new
CMS,C).

Because, for the future session say St+1, Ci chooses a fresh
pseudo-random number say RnewC 6= RC and NSj selects a
fresh pseudo-random number say RnewNS 6= RNS , and CMS
chooses a fresh nonce say OTK new

CMS,C 6= OTK old
CMS,C to con-

struct Cnew
token 6= Cold

token. Since the adversaryAdv does not have
any knowledge about RnewC , RnewNS and OTK new

CMS,C parameters
for the session say St+1 then it is hard to compute the future
session key.

Additionally, some information related to Ci namely EI,
ri, KNMS,C and RCMSCi are stored into the workstation for ver-
ifying Ci’s legitimacy at the time of user login and password
change phase. This parameters are stored either in encrypted
format or in a transformed manner using one way hash func-
tion. Therefore, without having the knowledge about the keys
and breaking the hardness property of cryptographic one-way
hash function, it is impossible to get the parameters. Thus,
we can remark that the proposed protocol protects disclosure
ofCi’s confidential information throughworkstation compro-
mise attacks.

VOLUME 6, 2018 75369

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

Proposition 3: HEAP is resilient against denial-of-service
attacks.

Proof: In order to achieve user (or service provider)
login, HEAP utilizes workstation-based authenticationmech-
anism without involving the HEAP-KDC. In this connection,
Ci enters his identity (CID) and password (PWD) to HCAj.
To verify the current user Ci, HCAj computes EI ′ = h(CID||
PWD) and check it with EI in its cookie. If both matches
then HCAj load r∗i = ri⊕ h(CID ||PWD), RCMS

∗

Ci = RCMSCi
⊕h(ri ||PWD) and USPWi = h(CID ||HCAID ||PWD ||ri)
from its database into Ci’s workstation. HCAj then computes
RCMSCi = RCMS

∗

Ci ⊕ ⊕h(ri ||PWD), ri = r∗i ⊕ h(CID ||PWD)
and USPW ∗i = h(CID ||HCAID ||PWD ||ri). After that,

HCAj verifies the condition USPW ∗i
?
=USPWi. If it holds

then HCAj accepts Ci; otherwise, HSAj treats Ci as illegit-
imate user. As the first step verification has done only on
the client-side and HEAP-KDC does not involve into this
process then we say that HEAP can resists server-side denial-
of-service attacks.
Proposition 4: HEAP provides privacy preserving data

integrity in Hadoop.
Proof: Form Proposition 8 and Assrt. 9, it is obvious

that both Ci and NSj (or JTj) preserve their identities during
session key establishment and Big Data service access task.
Further, from Section V-D.9 and Section V-D.10, it could also
be observe that HEAP stores (writes or appends) Ci’s raw
datablocks into several chunk servers (HDFS). During this
process, HEAP computes a hashed MAC (HMAC) of each
datablock and stores the HMAC along with the raw datablock
into Datanode servers.

Suppose an adversary Adv or a malicious insiders change
the content of the raw datablock. In such a provision, if Ci
processes his Big Data (basically the intercepted and mod-
ified data content) utilizing MapReduce framework then he
will not get the desired result. To overcome this problem,
in our proposed protocol, at the time of auditing or reading
the datablock, Ci would be able to check the integrity of each
datablock utilizing his secret key (KNMS,C) and HMAC. After
checking the integrity of each datablocks, Ci is permissible to
process the Big Data utilizing JTj and it will lead Ci to get the
desired output.
Proposition 5: HEAP is resilient against known session-

specific temporary information attacks.
Proof: During the session key establishment process

between Ci and NSj (or JTj), suppose any one of the ran-
dom nonce RC or RNS (or RJT) is known to the adversary
Adv. Therefore it is obvious that Adv can compute RC ·
Pns or RNS · ψ1

Ci , respectively. But, it is not sufficient for
the adversary Adv to compute the session key SKC,NS =
h(RC · Pns||OTKCMS,C) = h(RNS · ψ1

Ci ||OTKCMS,C) without
having the knowledge about OTKCMS,C . Further to com-
pute OTKCMS,C = h(OTKCMS,NS || SID

j
NS), the adversary

Adv also requires the knowledge of SIDjNS and OTKCMS,NS
parameters. Moreover, Adv is unable to extract these
parameters from OTKCMS,C due to the one-way property

of cryptographic hash function and cryptographic hard-
ness property associated with the stateless CBC mode of
AES encryption/decryption policy. It is also observed from
Remark 5 that the proposed protocol alleviate the known
session-specific temporary information attacks.
Proposition 6: HEAP protects man-in-the-middle attacks.
Proof: Suppose during session key establishment pro-

cess, an adversaryAdv tries to impersonate a legitimate client
Ci or service server NSj by eavesdropping the exchanged
messages say MC7 and MC8. However, in the proposed
protocol, Ci authenticates both CMS and NSj by verify-
ing two conditions as (1) Vcc · G = ψ1

Ci · H2(H1(MT U
||OTKCMS,C))+ QC · H2(ψ1

Ci) and (2) OTKCMS,C =

h(OTKCMS,NS ||SID
j
NS), respectively utilizing both Ctoken and

message MC8. Similarly, NSj verifies the legitimacy of both
CMS and Ci by checking two conditions as (i) Vns · G =
Pns · H2(H1(TNSID|| OTKCMS,C)) +QNS · H2(Pns) and (ii)
OTKCMS,C = h(OTKCMS,NS ||SID

j
NS), respectively using

NStoken and messageMC7. After validating the aforesaid con-
ditions successfully, Ci (or NSj) establishes the session key
SKC,NS between themselves, otherwise; terminate the pro-
cess. Since, the adversary Adv does not have the knowledge
about RC , RNS , OTKCMS,C , OTKCMS,NS , SID

j
NS and KCMS,NS

so, it is impossible to impersonate either Ci or NSj.
In addition to this, the simulation result of AVISPA based

formal verification (see Section VII) is also substantiates that
the other phases of the proposed protocol is robust against
man-in-the-middle attacks. Thus, we remark that the pro-
posed protocol is resilient against man-in-the-middle attacks.
Proposition 7: HEAP is resilient against identity compro-

mise attacks.
Proof: In this attack, to protect both Ci’s and NSj’s (or

JTj) original identities (CID and TNSID (or TJTID)) from an
adversary say Adv who controls either CMS or NMS or
ES, in the proposed scheme, the identities are stored in a
transformed manner into those servers. For example, Ci’s
original identity are stored as MT U = h(CID||ri ||HCAID||
RCMSCi) whereas NSj’s (or JTj) identity are stored as TNSID =
h(NSID ||HSAID|| rss1) (or TJTID = h(JTID ||HSAID|| rss2)).
Since, the adversaryAdv does not have the knowledge about
ri, RCMSCi , rss1 and rss2, so he cannot retrieve the original
identities CID, NSID (or JTID) from MT U and TNSID (or
TJTID), respectively. In a similar way, to protect BDSP/BA’s
identity, it is also stored asMT U ′ = h(BDSPID|| d ||HSAID||
RNMSBDSP) into those servers. Thus completes the proof.
Proposition 8: HEAP supports user and Big Data service

servers anonymity.
Proof: During user and service server registration pro-

cess both Ci and NSj (or JTj) are enroled themselves with
HEAP-KDC utilizing their masked identities namely MT U
and TNSID (or TJTID). At the time of session key establish-
ment task,Ci computes its digital signature usingCi’s masked
identity (MT U) and an application generated pseudo ran-
dom number (RC). The same way, NSj (or JTj) encapsulates
TNSID and RNS to construct its digital signature. Thereafter,

75370 VOLUME 6, 2018

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

the digital signature exchanges between Ci and NSj (or JTj)
via a public channel lead to establish the session key between
themselves. Due to the encapsulation of the pseudo random
number, these digital signatures vis-a-vis the identities of both
Ci and NSj (or JTj) are used to be dynamic and it will change
in every sessions. Thus, the proposed scheme provides user
and Big Data service server anonymity.
Proposition 9: HEAP assists untraceability of user and

Big Data service servers.
Proof: Suppose an adversary Adv eavesdrops the mes-

sage set {MC7,MC8} and tries to extract the original identities
of Ci and NSj (or JTj). In this connection, Adv extracts
MT U = h(CID||ri ||HCAID|| RCMSCi), TNSID = h(NSID
||HSAID|| rss1) (or TJTID = h(JTID ||HSAID|| rss2)), Vcc =
RC · H2(H1 (MT U ||OTKCMS,C)) +SC · H2(ψ1

Ci) (mod q)
and Vns = RNS ·H2(H1(TNSID ||OTKCMS,C))+ SNS ·H2(Pns)
(mod q) parameters. Note here, these four parameters are
implicitly derived from the original identity of either user
Ci or service server NSj (or JTj), respectively. The adversary
Adv can not trace the actual identities of Ci and NSj (or JTj)
due to the adoption of collision-resistant cryptographic one
way hash function towards the identity transformation. Thus,
the proposed scheme satisfies the untraceability property.
Proposition 10: HEAP is resilient against offline dictio-

nary attacks.
Proof: To make the proposed protocol resilient against

offline dictionary attacks, Ci transforms his actual password
PWD using a system generated random secret ri, a server
generated random nonce RCMSCi and two hash functions (h(·))
as PWD∗ = h(h(ri|| PWD)|| RCMSCi), and later store this
masked password (PWD∗) into NMS and ES servers.
Suppose a privileged insider acting as an adversary Adv

compromises the dictionary of passwords from NMS (or ES)
and tries to reveal the actual password of Ci incorporating
offline password guessing attacks. But, Adv can not extract
Ci’s actual password due to lack of knowledge about ri and
RCMSCi parameters and usage of the collision-resistant cryp-
tographic one way hash function towards password transfor-
mation. The same technique has been followed to protect
BDSP’s original password from the offline password guess-
ing attacks.
Proposition 11: HEAP is robust against ciphertext-only

attacks (COA) on Ci’s or BDSP/BA’s password.
Proof: Suppose during the single sign-on process, a pas-

sive adversary Adv listening the communication channel
between Ci and CMS for a particular session say St , and
eavesdrops the exchanged messages say MC1, MC2, MC3,
MC4. Adv repeats this process for multiple sessions say
St , S(t+1), S(t+2), · · · , S(t+n) and collects a set of messages
say {
←−−
MC1,

←−−
MC2,

←−−
MC3,

←−−
MC4}. Form these set of messages,

A picks
←−−
MC4 and extracts

←−
Z ′4 . Note here,

←−
Z ′4 is a set of

ciphertexts that are directly associated with Ci’s password.
Now, from

←−
Z ′4 the adversary Adv tries to find out the actual

password of Ci. Since, Adv does not have any knowledge
about RCMSCi and ri, so it is hard to guess the password from

the ciphertexts set. In the similar way, HEAP is also robust
against COA on BDSP/BA’s password. Thus, completes the
proof.
Proposition 12: HEAP is robust against stolen-verifier

attacks.
Proof: Suppose a privileged insider acting as an adver-

sary Adv steals Ci’s masked identity and Ci’s transformed
password (i.e., MT U = h(CID||ri ||HCAID|| RCMSCi),
PWD∗ = h(h(ri|| PWD)||RCMSCi) from NMS’s (or ES’s)
database and tries to login into a workstation using HCAj.
In this regard, HCAj computes EI ′ = h(MT U || PWD∗)
and search the same into the workstation’s cookies. Since,
HCAj does not find such an entry into the cookies, it is
obvious that HCAj rejects Adv’s request. In order to satisfy
the aforesaid search condition successfully, Adv needs the
knowledge about the original user identity (CID) and pass-
word (PWD) of Ci instead the masked identity and masked
password of Ci. In the same way, the proposed scheme does
not allow an adversary Adv to login into the system by
stealingBDSP/BA’s credentials from the server (NMS orES).
Hence, we can conclude that, the proposed scheme protects
stolen-verifier attacks.
Proposition 13: HEAP is resilient against impersonation

attacks.
Proof: In order to access the Big Data storage and pro-

cessing services from the remote service server (NSj or JTj),
an adversary Adv initially requires the actual identity and
password of Ci for sign in into the local workstation. In a
similar way, to enrol the service servers of a Hadoop cluster,
Adv needs the original identity and password ofBDSP. Since,
Adv does not have these parameters so it is computationally
intractable to make a valid sign in request through HCAj or
HSAk .
Further, during session key establishment, Adv does not

have any means to steal the Ci’s (or NSj’s) information
to achieve mutual authentication in the presence of CMS.
Because, retrieval of OTKCMS,C from Ctoken is computation-
ally hard. Moreover, during this mutual authentication taskCi
verifies bothCMS andNSj whereasNSj checks the legitimacy
of both CMS and Ci seperately before establishment of the
session key between themselves using the proposed digital
signature based verification strategy. Since, the adversary
Adv does not have OTKCMS,C , OTKCMS,NS , SIDjNS , SC , SNS ,
RC and RNS parameters he would not be able to generate a
valid digital signature. Thus, we remark that the proposed
protocol has ability to protect user and service server imper-
sonation attacks.
Proposition 14: Heap protects replay attacks.
Proof: To resist replay attacks during mutual authen-

tication and single sign-on task, CMS can keep ψ1
Ci and

ψ2
Ci in its system cache memory temporarily. CMS initially

verifies if ψ1∗
Ci = ψ1

Ci and ψ
2∗
Ci = ψ2

Ci . If both of these
conditions are valid then Ci’s request message is treated as
replay message, otherwise; CMS updates ψ1

Ci and ψ
2
Ci with

ψ1∗
Ci and ψ

2∗
Ci in its system cache memory. Further, in order to

VOLUME 6, 2018 75371

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

protect the replay attacks during mutual authentication and
cluster registration (service servers registration) phase, NMS
can store λ1Ci and λ

2
Ci into its cache memory temporarily. In a

similar way, we can alleviate the replay attacks during session
key formation task between Ci and NSj (or JTj) (also see
Remark 3) and the other phases of the proposed protocol.
Proposition 15: HEAP is resilient against server spoofing

attacks.
Proof: To impersonate both the server i.e., CMS and

NMS to the end user Ci, an adversary Adv needs to generate
the valid Vcnew = π2

CMS+ SNMS · H2(H1(KNMS,C)) (mod q)
for the message MC4 to satisfy the verification condition at
user-side (Ci) as Temp1C = Temp2C . It is obvious that the
adversary Adv cannot achieved without having the knowl-
edge of SCMS , SNMS and KC,CMS parameters. In a similar
way, it is computationally intractable to impersonate both the
servers i.e., NMS and CMS to the Big Data service provider
BDSP. Further, to impersonate the serverNSj toCi, the adver-
sary Adv needs the knowledge about SNS , OTKCMS,NS and
SIDjNS parameters to generate the valid Vns. Thus, we can
remark that HEAP can resists server spoofing attacks.
Proposition 16: HEAP protects server-side Single point

Of Failure (SOF) and Single point Of Vulnerability (SOV)
issues.

Proof: According to the proposed HEAP-KDC archi-
tecture, CMS interfaces with the clients whereas NMS inter-
acts with the service providers and ES is reachable offline
to both client and service provider at the time of principal
registration process. Under the basic assumption of HEAP
as discussed in Section V-C, the CMS server: which is the
front server to the client (Ci): keeps the transformed identi-
ties (MT Us) of clients, the dictionary of RCMSCi , the secert

credentials (SIDjNS , SID
j
JT , KCMS,BDSP and BDSP∗PWD) of

service providers (BDSPs) and service servers (NSj or JTjs),
wherein the NMS server: which is the front-end server to
the service providers (BDSPs): stores the client (Ci) secret
credentials (PWD∗s, KNMS,C), the dictionary of RNMSBDSP and
the transformed identities (MT U ′s) of service providers.
In addition, ES keeps all the credentials of CMS and NMS
servers in its custody for future use. In such a settings, two
servers (CMS and NMS) are actively involved (two-server
based handshaking) to achieve authentication ofCi (orBDSP)
at the time of single-sign on (or service server registration)
process. Since, the secret credentials of Ci (or BDSP) is
distributed into two different servers, therefore it is resilient
against SOV issue. Further, from Remark 4, we can observe
that the proposed authentication framework resists SOF issue.
Thus, completes the proof.
Proposition 17: HEAP provides both forward and back-

ward secrecy.
Proof: To measure the forward and backward secrecy of

the proposed protocol, we consider the simultaneous leakage
of Ci’s primary secret namely password PWD in the form
of Ctoken and its impact on the past and future session key
security.

Suppose in a particular session, to establish a session key
betweenCi andNSj (or JTj), a pseudo random number say RC
is chosen by Ci whereas another pseudo random number say
RNS (or RJT) is selected by NSj. Although, both ψ1

Ci = RC ·G
and Pns = RNS · G are exchanged between Ci and NSj via
a public channel, it is computationally hard to reveal RC or
RNS (or RJT) from ψ1

Ci or Pns (or Pjt), respectively due to the
intractability of ECDLP (see Section IV). Further, it is also
impossible to compute RC ·RNS ·G or RNS ·RC ·G after getting
Pns = RNS · G or ψ1

Ci = RC · G via a public channel due to
the intractability of ECDDHP (refer Section IV). However,
the session key SKC,NS = h(RC ·Pns|| OTKCMS,C) = h(RNS ·
ψ1
Ci || OTKCMS,C) between Ci and NSj has derived from RC ,

RNS , ψ1
Ci , Pns and OTKCMS,C parameters and Ci’s password

PWD has nothing to do with this computation. Thus, our pro-
posed protocol achieves both forward and backward secrecy.
Proposition 18: HEAP provides mutual authentication.
Proof: During single sign-on process, Ci checks the

legitimacy of both CMS and NMS, and vice versa by
verifying the following three conditions: (i) MT U∗ =
MT U && CMS ′ID = CMSID, (ii) Temp1C = Temp2C and
(iii) Temp1CMS = Temp2CMS as discussed in Step DKA6, Step
DKA8 and Step DKA9, respectively (refer Section V-D.6).
Further, at the time of session key establishment between
Ci and NSj, both of them verify their legitimacy along with
CMS’s legitimacy utilizing the following two conditions: (a)
MT U ′ =MT U && TempNS1 = TempNS2 and (b) TempC

′

1 =

TempC
′

2 as elaborated in Step SKABSSA4 and Step SKAB-
SSA7, respectively (see Section V-D.8. Thus, we can say that
the proposed protocol achieves mutual authentication.
Proposition 19: HEAP provides dependable authentica-

tion services.
Proof: FromProposition 16, we can observe that the pro-

posed authentication framework resolves the SOF and SOV
issues of the key distribution center (HEAP-KDC). In such a
setting, the failure or compromise of a server (CMS or NMS
or ES) can not increase the downtime of the authentication
system at mission critical situations.

According to the proposed authentication architecture,
CMS has all the security credentials related to service
providers, Hadoop cluster vis-a-vis service servers informa-
tion and masked identities of users. NMS has all the security
credentials related to Ci, service providers masked identities
and service servers masked identities. ES is having all the
secret credentials of each principals which is the union of
both CMS and NMS. Now, say for instance, if the active
CMS suddenly fails and all its security credentials are lost
due to some hardware related issues then a stand-by CMS
will be restored the whole system by configuring it from
the back-up server say ES via a secure channel. In a similar
way, the failure of an active NMS can be restored by a
stand-by NMS. Further, if the trusted server say ES fails then
the maintenance engineer and system administrator easily
rebuild it from both active CMS and active NMS servers.
Note here, a trusted server ES (operates in an offline mode)

75372 VOLUME 6, 2018

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

is currently having all the secret credentials related to each
principal of the system including the master CMS and NMS.
It may also be noted that, we consider here only one server
(CMS or NMS or ES) can fail at a particular point of time.
Therefore, from the above discussion, we can remark that
bothmaintenance engineer and system administrator operates
under HEAP-KDC would be able to restore the whole KDC
in no time. Thus, the proposed protocol provides dependable
authentication services.
Proposition 20: HEAP provides single sign-on facility.
Proof: According to the proposed protocol policy, Ci

can access any service servers (that belongs to a particular
Hadoop cluster) after authenticating himself utilizing both
CMS and NMS servers (two-server based authentication).
This authentication process is a one time task. After that, Ci
can make any numbers of service server request from CMS
throughout the session.

VII. FORMAL SECURITY ANALYSIS USING AVISPA
In HEAP, we have two mutual authentication and session
key agreement tasks: 1) to register the service servers vis-
a-vis the Hadoop cluster with HEAP-KDC online, service
provider’s administrator (BA) needs to authenticate himself
to HEAP-KDC (utilizing both NMS and CMS servers) and
vice versa, and 2) to access the service server NSj or JTj
from a distinct cluster, the end user Ci needs to authenticate
himself utilizing both CMS and NMS servers and vice versa.
To achieve this two cases, we proposed two different authen-
tication strategies as discussed above. In order to validate
these two proposed authentication protocols, we utilize a
well-known and widely used Internet security protocol verifi-
cation tool, called AVISPA (Automated Validation of Internet
Security Protocols and Applications) [79]–[81]. This tool is
used to test whether a security protocol is safe against an
active or passive adversary, such as man-in-the-middle and
replay attacks.

Currently, AVISPA tool version 1.112 is equipped with
four implicit back-end model checkers, namely i) On-the-
fly Model-Checker (OFMC), ii) Constraint Logic based
Attack Searcher (CL-AtSe), iii) SAT-based Model-Checker
(SATMC) and iv) Tree Automata based on Automatic
Approximations for the Analysis of Security Protocols
(TA4SP). Further, each model checker is also equipped with
different state-of-the-art automatic analysis algorithms. The
internal hierarchy of AVISPA tool and its modules are shown
in Figure 25. The following steps are needed to simulate a
security protocol in this tool:

Step 1: The proposed protocol needs to be codified
into HLPSL (High Level Protocols Specification
Language) [81], where HLPSL is the de facto language
according to the specification of AVISPA.

Step 2: Save the designed code into a file with hlpsl exten-
sion. For example, we save two of our proposed codes

12AVISPA Project: http://www.avispa-project.org/

(two authentication strategies) into two distinct files as
Heap_BNMSfinal.hlpsl and SK_CNS.hlpsl.

Step 3: After creating the file, we only need to execute the
command called ‘‘avispa <space> <Filename.hlpsl>
<space> −− <model checker name>’’. For example,
in our case we execute the following commands in
Ubuntu 14.04 LTS platform:

1) durbadal@durbadal-rec: /Desktop/HEAP_CODE
$ avispa Heap_BNMSfinal.hlpsl −− satmc

2) durbadal@durbadal-rec: /Desktop/HEAP_CODE
$ avispa SK_CNS.hlpsl −− ofmc

Step 4: During the execution of the above command say
‘‘avispa <space> <Filename.hlpsl> <space> −−
<model checker name>’’, the AVISPA tool implicitly
translate the ‘‘XYZ.hlpsl’’ file into another file format
called Intermediate Format (IF) using the HLPSL2IF
translator (see Figure 25).

Step 5: Eventually, the IF file is given to each model
checker and the model checker test the proposed pro-
tocol is safe or unsafe or inconclusive. The IF file is the
required input file format of each aforementioned model
checker to test the designed protocol.

We have implemented the codes for two proposed proto-
cols in HLPSL and save them into two different files namely
Heap_BNMSfinal.hlpsl and SK_CNS.hlpsl. The detailed
description on HLPSL and various protocols implementa-
tions in AVISPA are available in [80] and [81]. Under
Heap_BNMSfinal.hlpsl file, initially we specify basic roles
of all the participants (BDSP, NMS and CMS) and then make
composite role for representing different cases or scenarios
derived from the basic roles. Similarly, under SK_CNS.hlpsl,
we present the basic roles for Ci, CMS, NMS and NSj and
construct the composite role (or session) involving all the
participants.

We simulate both the files using AVISPA under the
widely-used OFMC and SATMC back-ends and summarized
the simulation results in Figure 26 and 27. The simulation
results show that the proposed two protocols in HEAP are
safe from man-in-the-middle and replay attacks.

VIII. PERFORMANCE ANALYSIS
This section analyzes the performance of HEAP. Currently,
HEAP protocol consists of two modules: (1) Big Data service
provider module and (2) client module. We evaluate the
performance of HEAP based on these module and present
them in Table 4 and Table 5. During the performance analysis,
we consider four different metrics as follows:

1) CPU usage or Computation Time (CT) in terms of sec-
onds – It tells about the execution time or CPU usage
(in terms of seconds) of different cryptographic oper-
ations that we have used throughout the proposed
protocol. For example, a cryptographic one-way hash
function (SHA-1), modular exponentiation, ECC scalar
multiplication, AES-128 bits stateless CBC mode of
encryption or decryption. An approximate CT for the

VOLUME 6, 2018 75373

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

FIGURE 25. Building blocks of AVISPA (Source: [79]).

FIGURE 26. Analysis of results under the OFMC backend.

aforesaid operations are taken form [63] and it is sum-
marized in Table 3. In the proposed protocol phases,
we use logical XOR operation but it is not depicted
in Table 3. Because, this operation takes a negligible
amount of time say, Txor = 10−9 seconds as compare
to the other as mentioned in Table 3. Therefore, we do
not consider Txor for CT computation for both service
provider and client modules (refer Table 4 and Table 5).

2) Communication Overhead (CO) in terms of bits – Sup-
pose an entity say Ci sends a message Mi to another
entity say CMS and |Mi| represents the bit length
of the message Mi by summing up the bit length of

TABLE 3. Rough estimation of computation time reported in [63].

its individual component. More precisely, if Mi =

{c1, · · · , cn} then |Mi| = {|c1| + · · · + |cn|} or
|Mi| =

∑n
j=1(cj). For example, in single sign-on and

dynamic key establishment phase, Ci sends MC1 =

{MT U ,CMSID, ψ1
Ci , ψ

2
Ci ,CertC }. Here, |MT U | =

160 bits, |CMSID| = 32 bits, |ψ1
Ci | = 160 bits,

|ψ2
Ci | = 160 bits and |CertC | = 160 bits. So, |MC1| =

(160 + 32 + 160 + 160 + 160) = 672 bits. There-
fore, the communication overhead of message MC1 is
672 bits. Similarly, we calculate the CO for all the
other messages and are depicted in Table 4 and Table 5.
Note here, for ease of CO calculation, we assume here:
(i) the bit length of each certificate is equal to the
bit length of the public-key (i.e., 160 bits ECC key),
(ii) the bit length of the masked identity is 160 bits,
(iii) |nonce| = 32 bits, (iv) the bit length of the server’s
original identity is 32 bits and (v) the bit length of
cipher-text or plain-text block is 128 bits (using AES-
128 bit encryption/decryption policy).

3) Storage Cost (SC) in terms of bits – To achieve a
particular task (namely user registration, user login,
etc.) in the proposed protocol, few security credentials
are need to be stored previously either in client-side

75374 VOLUME 6, 2018

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

FIGURE 27. Analysis of results under the SATMC backend.

or server-side or both. The storage cost tells about
this pre-loaded credentials in terms of bits. For exam-
ple, to achieve user login, HCAi needs to load r∗i
and USPWi (total |r∗i | + |USPW | = 320 bits) cre-
dentials into Ci’s workstation. Similarly, to accom-
plish the service provider login, HSAj needs to load
d∗ and BDPW (total |d∗| + |BDPW | = 320 bits)
into BDSP’s workstation. We highlights the SC for
each phase of the proposed protocol in Table 4 and
Table 5. Note here, to achieve a successful user reg-
istration and single sign-on task, NMS needs to keep
(|KNMS,C |+ |DCID |+ |DPWD|), a total of (64+64+64)
bits = 192 bits, and both NMS and CMS need to store
(|MT U |+ |PWD∗|+ |RCMSCi |+ |KNMS,C |), a total of
(160+160+32+64) bits= 416 bits, respectively. Fur-
ther, to make a Big Data storage or processing service
server ticket request, the proposed protocol needs to
store the masked identity of either NSj or JTj (160 bits)
into HCAi.

4) Communication Rounds (CR) – A single communica-
tion round represents a one-way message transmission.
In this regards, we compute CR for each phases of
the proposed protocol and it is shown in Table 4 and
Table 5.

Tables 4 and 5 show that the proposed protocol is quite
efficient in terms of communication, storage and computation
cost considering all the participants. Consider Ci with HCAi,
for instance; it needs 0.00128 seconds and 0.17588 seconds,
a total of 0.17716 seconds ≈ 177 milliseconds (ms) (refer
Scenario2 from Table 5) to login into the system and validate
the legitimacy of HEAP-KDC, respectively. After Ci’s single
sign-on (or establishment of the session key with CMS),
the Ci needs approximately 0.10072 seconds (1TE + 1TD +
4Tecsm + 1Tmod + 6Thash) ≈ 101 ms to access a particular
service server (i.e., either NSj or JTj) from any Hadoop
cluster (which is registered with the HEAP-KDC) followed
by a mutual authentication and session key agreement phase.
According to the computational cost analysis of the proposed
protocol, service provider enrollment and password updation
tasks will take ≈ 188 ms and ≈ 18.08 ms and with the
same cost, user achieves his registration and password change
phases. In addition to this, a service provider can seamlessly
enroll his own Hadoop cluster with the HEAP-KDC by com-
promising only 33.6 ms (here, we assume that the Hadoop
cluster consists of a single storage service server and a single
processing server). In spite of this, we compare our scheme
with the existing state of the art authentication protocols as
follows.

VOLUME 6, 2018 75375

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

TABLE 4. Performance of HEAP considering only Big Data service provider module.

TABLE 5. Performance of HEAP considering only Client module.

A. COMPARATIVE ANALYSIS
This section compares the proposed protocol HEAP
with other state of the art authentication strategies. For

comparison, we consider only login and authentication
phases of the proposed protocol. Further, we consider
three crucial performance metrics namely communication

75376 VOLUME 6, 2018

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

TABLE 6. Summary of computation cost analysis.

TABLE 7. Summary of communication overhead analysis.

overhead, CPU usage (or computation time) and storage cost
as compared with other schemes. The detail comparative
analysis is discussed as follows:

1) COMPARISON OF COMPUTATION COSTS
In order to perform the computational cost analy-
sis, we consider various schemes related to Big Data,
Cloud and Internet of Thing (IoT) platforms, and are
available in recent literature [17], [46], [47], [55]–[63].
Further, we consider various two-server based PAKE
protocols [64]–[68] for the analysis. Since its inception,
the schemes [17], [46], [47], [55]–[63] follow single server
based authentication strategy whereas others [64]–[68]
follow two-server based analogy. From Table 6, we can
observe that our proposed scheme is better than that of
existing two-server based approaches [64]–[68]. Mean while,

TABLE 8. Summary of storage cost analysis.

the proposed scheme is also quite comparable with the tradi-
tional single server based authentication approaches.

2) COMPARISON OF COMMUNICATION OVERHEADS
In communication overhead analysis, we compare the pro-
posed protocol with the aforesaid schemes and summarize it
in Table 7. It is easy to say that our scheme is efficient (only
3520 bits need to be transferred between Ci and HEAP-KDC
for first time authentication or single-sign on and for future
single-sign on only 2880 bits are required) as compare
to the two-server based authentication schemes [65]–[68]
(needs 4480, 3840, 4480 and 4000 bits). Further, we can
observe that our scheme has the same CO compared with
Kumari et al. [62]. In fact, our scheme is quite admirable in

VOLUME 6, 2018 75377

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

TABLE 9. Summary of comparison in terms of security and functionality features.

terms of the CO as compare with the single server based
strategy. The proposed scheme’s communication overhead is
equal to the CO of He and Wang’s scheme [59].

3) COMPARISON OF STORAGE COSTS
The memory usage (or pre-deployed secrets storage cost)
is involved to smooth execution of the proposed scheme as
compare to the aforementioned schemes are shown in Table 8.
We can see that, our scheme is efficient in terms of memory
usage (client’s workstation as well as server-side) than both
Karla and Sood and Kumari et al. schemes. Although, our
scheme is lagging in terms of storage overhead as com-
pare with the existing state of the art two-server based
authentication strategies. The remaining schemes (shown
in Table 8) are not explicitly analyzed the storage overhead
in their works. So, we represent it as N/A in Table 8.

Besides all the above cost factors, the proposed scheme
supports several security and functional features (SFFs) as

compare to the other schemes. This SFFs are discussed as
follows.

4) COMPARISON OF SECURITY AND FUNCTIONAL
FEATURES
In this section, we discuss several Security and Functional
Features (SFFS) of the proposed protocol and compare it with
other existing state of the art schemes. We summarize this
discussion in Table 9. Form Table 9, it has been observed
that the proposed scheme HEAP fulfills various security and
functional features as compare with different state of the art
schemes.

IX. DISCUSSIONS
This section summarizes the major potentials of the pro-
posed scheme. In this regard, various appealing features of
the proposed user identity and password-assisted two-server
authentication and key exchange framework are highlighted
as follows:

75378 VOLUME 6, 2018

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

1) With the proposed enrolment strategy, a Big Data
service provider’s administrator can securely deploy
his cluster vis-a-vis service servers online with
authentication service provider (HEAP-KDC). In order
to achieve this, the administrator needs to login into
the system using his identity and password only. Thus,
the cluster enrollment policy is scalable and user
friendly in nature.

2) The proposed HEAP-KDC is robust against sin-
gle point of failure and single point of vulnera-
bility. Further, it could tolerate various well-known
attacks. Hence, HEAP can able to provide depend-
able and secure authentication service 24×7 to the
customers.

3) With the proposed two-server based single sign-on
scheme, the client can access any number of Namenode
servers (NSjs) or JobTrackers (JTjs) from a Hadoop
cluster by logging in into the system only once. During
single sign-on process, a secure mutual authentication
process takes place which ensures the legitimacy of
both Ci and the dual-server (CMS and NMS).

4) The adoptation of two-factor authentication (password
and delegated token) and dual-server based session
key establishment strategy makes the proposed authen-
tication system more robust, cost effective and user
friendly.

5) The key rollover problem is a crucial issue for tradi-
tional user registration policy, where during session key
establishment, a long-term secret key password) is used
to build a secret channel between user and Registration
Authority (RA). With this settings, it is very difficult
for a user to change or update his long-term credential
i.e., password into RA (a centralized server) for security
reasons. Since, the proposed protocol has a provision
to update user’s password online and has an ability to
recover the password utilizing a out-of-band channel
(i.e., postal network) or a valid email id (or registered
mobile number), it is obvious that the current settings
of the proposed approach mitigates the key rollover
problem.

6) The utilization of 160 bits public/private key (ECC)
and 128 bits symmetric key (AES) as compared to
4096 bits key-size reported in [64]–[68] needs lesser
memory space (storage in terms of bits) and reduce
communication overheads.

7) The proposed two-server based authentication and
key exchange protocol does not have any com-
patibility hurdle with the traditional single-server
based approaches [17], [46], [47], [62], but yields bet-
ter dependability (fault-tolerant in terms of secret
credentials distribution and replication) and security
(resists more well-known attacks). The utilization
of two separate application instances say HCA and
HSA divide the users domain into two distinct cate-
gories, hence maintenance of both client and service
provider is easy. Further, HEAP-KDC encloses a less

number of verification parameters (i.e., masked iden-
tity, pass-phrase and digital signature) inside CT and
NST , that decreases the verification cost for Ci and NSj
(or JTj), respectively

8) The proposed protocol preserves both user and service
server (NS or JT) identities from external as well as
internal adversaries (malicious insider control HEAP-
KDC’s server). In such a provision, it is very difficult to
trace the on-going activities among end users’, HEAP-
KDC’s servers and service servers’.

X. CONCLUSION
In this paper, we proposed a new fault tolerant two-server
authentication and key agreement protocol (HEAP) for
Hadoop framework to access secure and privacy preserved
Big Data storage and processing services. To achieve this
objective, initially, Ci needs to login into its workstation
using his identity and password. Then, the single sign-on
mechanism vis-a-vis the session key formation task has been
carried out in which an end userCi andCMS server establish a
session secret key SKC,CMS between themselves with the help
of NMS server, followed by a mutual authentication process.
With this session secret key SKC,CMS , Ci can make a service
server (Big Data storage or Big Data processing service
server) requests to CMS server through a secure channel.
In the next-level, CMS responses Ci with two tokens (Ctoken
and NStoken or JTtoken). Utilizing these two tokens, both Ci
and NSj (or JTj) are mutually authenticate themselves and
establish the session key for secure future communication.

In this work, we proposed a new key distribution center
(HEAP-KDC), where we can distribute and replicate the
security credentials of each principal in such a way that it
makes the overall authentication systemmore dependable and
fault-tolerant.

The rigorous security analysis of HEAP under de facto
ROR simulation (formal analysis) and informal inspection
shows that the proposed scheme is provably secure. More-
over, the security of the proposed protocol (HEAP) is also
verified utilizing the widely-used AVISPA protocol simulator
tool. All these security analysis outputs shows that HEAP
is robust against active and passive adversary. In addition,
the performance analysis evident that the proposed proto-
col (HEAP) is effective in terms of computation, communi-
cation and storage costs, and comparable with the existing
state-of-art schemes.

In the future, we plan to integrate HEAP with a real-world
large scale cluster setting (or real-time Hadoop cluster) and
try to re-calibrate it further to enhance the security and per-
formance with the real-world deployment.

ACKNOWLEDGMENTS
The authors also thank the anonymous reviewers for their
valuable feedback on the paper which helped us to improve
its quality and presentation.

VOLUME 6, 2018 75379

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

REFERENCES
[1] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, ‘‘The Hadoop dis-

tributed file system,’’ in Proc. 26th Symp. Mass Storage Syst. Technol.
(MSST), May 2010, pp. 1–10.

[2] S. Ghemawat, H. Gobioff, and S. Leung, ‘‘The Google file system,’’ ACM
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 29–43, 2003.

[3] O. Rodeh and A. Teperman, ‘‘zFS—A scalable distributed file system
using object disks,’’ in Proc. 20th IEEE/11th NASA Goddard Conf. Mass
Storage Syst. Technol. (MSST), Apr. 2003, pp. 207–218.

[4] S. A.Weil, S. A. Brandt, E. L.Miller, D. D. Long, and C.Maltzahn, ‘‘Ceph:
A scalable, high-performance distributed file system,’’ in Proc. 7th Symp.
Oper. Syst. Design Implement., 2006, pp. 307–320.

[5] O. O’Malley, ‘‘Integrating kerberos into apache Hadoop,’’ in Proc. Ker-
beros Conf., 2010, pp. 26–27.

[6] P. P. Sharma and C. P. Navdeti, ‘‘Securing big data Hadoop: A review of
security issues, threats and solution,’’ Int. J. Comput. Sci. Inf. Technol.,
vol. 5, no. 2, pp. 2126–2131, 2014.

[7] S. Jin, S. Yang, X. Zhu, and H. Yin, ‘‘Design of a trusted file system
based onHadoop,’’ inProc. Int. Conf. Trustworthy Comput. Services, 2012,
pp. 673–680.

[8] H. Zhou and Q. Wen, ‘‘A new solution of data security accessing for
Hadoop based on CP-ABE,’’ in Proc. 5th Int. Conf. Softw. Eng. Service
Sci. (ICSESS), Jun. 2014, pp. 525–528.

[9] F. A. H. Jing, S. B. L. Renfa, and T. C. T. Zhuo, ‘‘The research of the data
security for cloud disk based on the Hadoop framework,’’ in Proc. 4th Int.
Conf. Intell. Control Inf. Process. (ICICIP), Jun. 2013, pp. 293–298.

[10] D. Chattaraj, M. Sarma, and A. K. Das, ‘‘A new two-server authentication
and key agreement protocol for accessing secure cloud services,’’ Comput.
Netw., vol. 131, pp. 144–164, Feb. 2018.

[11] G. S. Sadasivam, K. A. Kumari, and S. Rubika, ‘‘A novel authentication
service for Hadoop in cloud environment,’’ in Proc. Int. Conf. Cloud
Comput. Emerg. Markets (CCEM), 2012, pp. 1–6.

[12] P. Rahul and T. GireeshKumar, ‘‘A novel authentication framework
for Hadoop,’’ in Proc. Artif. Intell. Evol. Algorithms Eng. Syst., 2015,
pp. 333–340.

[13] M. Sarvabhatla, M. C. M. Reddy, and C. S. Vorugunti, ‘‘A secure and light
weight authentication service in Hadoop using one time pad,’’ Procedia
Comput. Sci., vol. 50, pp. 81–86, Mar. 2015.

[14] N. Somu, A. Gangaa, and V. S. S. Sriram, ‘‘Authentication service in
Hadoop using one time pad,’’ Indian J. Sci. Technol., vol. 7, pp. 56–62,
Apr. 2014.

[15] Z. Shen, L. Li, F. Yan, and X. Wu, ‘‘Cloud computing system based on
trusted computing platform,’’ in Proc. Int. Conf. Intell. Comput. Technol.
Automat. (ICICTA), vol. 1, 2010, pp. 942–945.

[16] G. S. Aujla, R. Chaudhary, N. Kumar, A. K. Das, and J. J. P. C. Rodrigues,
‘‘SecSVA: Secure storage, verification, and auditing of big data in the cloud
environment,’’ IEEE Commun. Mag., vol. 56, no. 1, pp. 78–85, Jan. 2018.

[17] J. Srinivas, A. K. Das, and J. J. P. C. Rodrigues, ‘‘2PBDC: Privacy-
preserving bigdata collection in cloud environment,’’ J. Supercomput.,
pp. 1–30, Sep. 2018, doi: 10.1007/s11227-018-2605-1.

[18] A. K. Das, ‘‘Analysis and improvement on an efficient biometric-based
remote user authentication scheme using smart cards,’’ IET Inf. Secur.,
vol. 5, no. 3, pp. 145–151, Sep. 2011.

[19] S. Chatterjee, S. Roy, A. K. Das, S. Chattopadhyay, N. Kumar, and
A. V. Vasilakos, ‘‘Secure biometric-based authentication scheme using
chebyshev chaotic map for multi-server environment,’’ IEEE Trans.
Dependable Secure Comput., vol. 15, no. 5, pp. 824–839, Sep./Oct. 2018.

[20] M. Wazid, A. K. Das, S. Kumari, X. Li, and F. Wu, ‘‘Provably secure
biometric-based user authentication and key agreement scheme in cloud
computing,’’ Secur. Commun. Netw., vol. 9, no. 17, pp. 4103–4119, 2016.

[21] V. Odelu, A. K. Das, S. Kumari, X. Huang, and M. Wazid, ‘‘Provably
secure authenticated key agreement scheme for distributed mobile cloud
computing services,’’ Future Gener. Comput. Syst., vol. 68, pp. 74–88,
Mar. 2017.

[22] V. U. Srinivasan, R. Angal, and A. Sondhi, ‘‘OAuth framework,’’
U.S. Patent 8 935 757, Jan. 13, 2015.

[23] L. Kang and X. Zhang, ‘‘Identity-based authentication in cloud storage
sharing,’’ in Proc. Int. Conf. Multimedia Inf. Netw. Secur. (MINES), 2010,
pp. 851–855.

[24] L. Zhu and B. Tung, Public Key Cryptography for Initial Authentication in
Kerberos (PKINIT), document RFC-4556, 2006. Accessed: Feb. 10, 2017.
[Online]. Available: https://tools.ietf.org/pdf/rfc4556.pdf

[25] G. Wettstein, J. Grosen, and E. Rodriquez, ‘‘IDfusion an open-architecture
for Kerberos based authorization,’’ in Proc. AFS Kerberos Best Practices
Workshop, Michigan, MI, USA, 2006, pp. 1–22.

[26] J. Astorga, E. Jacob, M. Huarte, and M. Higuero, ‘‘Ladon1: End-to-end
authorisation support for resource-deprived environments,’’ IET Inf. Secur.,
vol. 6, no. 2, pp. 93–101, Jun. 2012.

[27] N. Itoi and P. Honeyman, ‘‘Smartcard integration with kerberos V5,’’ in
Proc. USENIX Workshop Smartcard Technol., 1999, pp. 1–12.

[28] H.-Y. Chien, J.-K. Jan, and Y.-M. Tseng, ‘‘An efficient and practical
solution to remote authentication: Smart card,’’ Comput. Secur., vol. 21,
no. 4, pp. 372–375, 2002.

[29] X. Li, J. Niu, M. K. Khan, and J. Liao, ‘‘An enhanced smart card based
remote user password authentication scheme,’’ J. Netw. Comput. Appl.,
vol. 36, no. 5, pp. 1365–1371, 2013.

[30] J. Kohl and C. Neuman, The Kerberos Network Authentication Service
(V5), document RFC 1510, 1993. Accessed: Feb. 10, 2017. [Online].
Available: https://tools.ietf.org/pdf/rfc1510.pdf

[31] I. Downnard, ‘‘Public-key cryptography extensions into kerberos,’’ IEEE
Potentials, vol. 21, no. 5, pp. 30–34, Dec. 2002.

[32] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and
C. Mortimore, ‘‘OpenID Connect Core 1.0 incorporating errata set 1,’’
OpenID Foundation, Tech. Rep., Nov. 2014. [Online]. Available:
https://openid.net/specs/openid-connect-core-1_0.html

[33] G. S. Sadasivam, K. A. Kumari, and S. Rubika, ‘‘A novel authentication
service for Hadoop in cloud environment,’’ in Proc. Int. Conf. Cloud
Comput. Emerg. Markets (CCEM), 2012, pp. 1–6.

[34] S. M. Bellovin and M. Merritt, ‘‘Limitations of the Kerberos authentica-
tion system,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 20, no. 5,
pp. 119–132, 1990.

[35] Z. Xu and K. M. Martin, ‘‘A practical deployment framework for use of
attribute-based encryption in data protection,’’ inProc. 10th Int. Conf. High
Perform. Comput. Commun., 2013, pp. 1593–1598.

[36] J. C. Cohen and S. Acharya, ‘‘Incorporating hardware trust mechanisms
in Apache Hadoop: To improve the integrity and confidentiality of data
in a distributed Apache Hadoop file system: An information technology
infrastructure and software approach,’’ in Proc. Globecom Workshops,
Dec. 2012, pp. 769–774.

[37] B. R. Chang, H. F. Tsai, Z.-Y. Lin, and C.-M. Chen, ‘‘Access security on
cloud computing implemented in Hadoop system,’’ in Proc. 5th Int. Conf.
Genet. Evol. Comput. (ICGEC), 2011, pp. 77–80.

[38] K. Hwang and D. Li, ‘‘Trusted cloud computing with secure resources
and data coloring,’’ IEEE Internet Comput., vol. 14, no. 5, pp. 14–22,
Sep./Oct. 2010.

[39] D. Yuefa, W. Bo, G. Yaqiang, Z. Quan, and T. Chaojing, ‘‘Data security
model for cloud computing,’’ in Proc. Int. Workshop Inf. Secur. Appl.
(IWISA), 2009, pp. 141–144.

[40] V. N. Inukollu, S. Arsi, and S. R. Ravuri, ‘‘Security issues associated with
big data in cloud computing,’’ Int. J. Netw. Secur. Appl., vol. 6, no. 3,
pp. 45–56, 2014.

[41] M. R. Jam, L. M. Khanli, M. S. Javan, and M. K. Akbari, ‘‘A survey
on security of Hadoop,’’ in Proc. 4th Int. Conf. Comput. Knowl. Eng.
(ICCKE), Oct. 2014, pp. 716–721.

[42] B. Campbell, C. Mortimore, and M. Jones, Security Assertion Markup
Language (SAML) 2.0 Profile for OAuth 2.0 Client Authentication
and Authorization Grants, document RFC 7522, 2015, Accessed:
Feb. 10, 2017.

[43] Y. Kirsal and O. Gemikonakli, ‘‘Further improvements to the kerberos
timed authentication protocol,’’ in Proc. Novel Algorithms Techn. Telecom-
mun., Automat. Ind. Electron., 2008, pp. 550–554.

[44] N. T. Abdelmajid, M. A. Hossain, S. Shepherd, and K. Mahmoud,
‘‘Location-based kerberos authentication protocol,’’ in Proc. 2nd Int. Conf.
Social Comput. (SocialCom), 2010, pp. 1099–1104.

[45] A. Joux, ‘‘The weil and tate pairings as building blocks for public key
cryptosystems,’’ in Proc. Int. Algorithmic Number Theory Symp., 2002,
pp. 20–32.

[46] S. Kalra and S. K. Sood, ‘‘Secure authentication scheme for IoT and cloud
servers,’’ Pervasive Mobile Comput., vol. 24, pp. 210–223, Dec. 2015.

[47] S. Kumari, M. Karuppiah, A. K. Das, X. Li, F. Wu, and N. Kumar,
‘‘A secure authentication scheme based on elliptic curve cryptogra-
phy for IoT and cloud servers,’’ J. Supercomput., pp. 1–26, 2017, doi:
10.1007/s11227-017-2048-0.

[48] J. H. Yang and P. Y. Lin, ‘‘An ID-based user authentication scheme for
cloud computing,’’ in Proc. 10th Int. Conf. Intell. Inf. Hiding Multimedia
Signal Process. (IIH-MSP), 2014, pp. 98–101.

75380 VOLUME 6, 2018

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

[49] T.-H. Chen, H.-L. Yeh, and W.-K. Shih, ‘‘An advanced ECC dynamic
ID-based remote mutual authentication scheme for cloud computing,’’ in
Proc. 5th FTRA Int. Conf. Multimedia Ubiquitous Eng. (MUE), Jun. 2011,
pp. 155–159.

[50] D. Wang, Y. Mei, C.-G. Ma, and Z.-S. Cui, ‘‘Comments on an advanced
dynamic ID-based authentication scheme for cloud computing,’’ in Proc.
Int. Conf. Web Inf. Syst. Mining, 2012, pp. 246–253.

[51] Z. Hao, S. Zhong, and N. Yu, ‘‘A time-bound ticket-based mutual authen-
tication scheme for cloud computing,’’ Int. J. Comput., Commun. Control,
vol. 6, no. 2, pp. 227–235, 2011.

[52] C. D. Jaidhar, ‘‘Enhanced mutual authentication scheme for cloud archi-
tecture,’’ in Proc. 3rd Int. Adv. Comput. Conf. (IACC), 2013, pp. 70–75.

[53] P. Gope and A. K. Das, ‘‘Robust anonymous mutual authentication scheme
forn-times ubiquitous mobile cloud computing services,’’ IEEE Internet
Things J., vol. 4, no. 5, pp. 1764–1772, Oct. 2017.

[54] J.-L. Tsai and N.-W. Lo, ‘‘A privacy-aware authentication scheme for
distributed mobile cloud computing services,’’ IEEE Syst. J., vol. 9, no. 3,
pp. 805–815, Sep. 2015.

[55] E.-J. Yoon and K.-Y. Yoo, ‘‘Robust biometrics-based multi-server authen-
tication with key agreement scheme for smart cards on elliptic curve
cryptosystem,’’ J. Supercomput., vol. 63, no. 1, pp. 235–255, 2013.

[56] D. Mishra, A. K. Das, and S. Mukhopadhyay, ‘‘A secure user anonymity-
preserving biometric-based multi-server authenticated key agreement
scheme using smart cards,’’ Expert Syst. Appl., vol. 41, no. 18,
pp. 8129–8143, 2014.

[57] H. Shen, C. Gao, D. He, and L.Wu, ‘‘New biometrics-based authentication
scheme formulti-server environment in critical systems,’’ J. Ambient Intell.
Humanized Comput., vol. 6, no. 6, pp. 825–834, 2015.

[58] F. Wu, L. Xu, S. Kumari, and X. Li, ‘‘A novel and provably secure
biometrics-based three-factor remote authentication scheme for mobile
client–server networks,’’ Comput. Electr. Eng., vol. 45, pp. 274–285,
Jul. 2015.

[59] D. He and D. Wang, ‘‘Robust biometrics-based authentication scheme
for multiserver environment,’’ IEEE Syst. J., vol. 9, no. 3, pp. 816–823,
Sep. 2015.

[60] V. Odelu, A. K. Das, and A. Goswami, ‘‘A secure biometrics-based multi-
server authentication protocol using smart cards,’’ IEEE Trans. Inf. Foren-
sics Security, vol. 10, no. 9, pp. 1953–1966, Sep. 2015.

[61] M. Wazid, A. K. Das, V. Odelu, N. Kumar, and W. Susilo, ‘‘Secure
remote user authenticated key establishment protocol for smart home
environment,’’ IEEE Trans. Dependable Secure Comput., Oct. 2017,
doi: 10.1109/TDSC.2017.2764083.

[62] S. Kumari, X. Li, F. Wu, A. K. Das, K.-K. R. Choo, and J. Shen, ‘‘Design
of a provably secure biometrics-based multi-cloud-server authentication
scheme,’’ Future Gener. Comput. Syst., vol. 68, pp. 320–330, Mar. 2017.

[63] J. Srinivas, A. K. Das, M. Wazid, and N. Kumar, ‘‘Anonymous lightweight
chaotic map-based authenticated key agreement protocol for industrial
Internet of Things,’’ IEEE Trans. Dependable Secure Comput., Jul. 2018,
doi: 10.1109/TDSC.2018.2857811.

[64] Y. Yang, R. H. Deng, and F. Bao, ‘‘A practical password-based two-server
authentication and key exchange system,’’ IEEE Trans. Dependable Secure
Comput., vol. 3, no. 2, pp. 105–114, Apr. 2006.

[65] H. Jin, D. S. Wong, and Y. Xu, ‘‘An efficient password-only two-server
authenticated key exchange system,’’ in Proc. Int. Conf. Inf. Commun.
Secur., 2007, pp. 44–56.

[66] J. Katz, P. MacKenzie, G. Taban, and V. Gligor, ‘‘Two-server password-
only authenticated key exchange,’’ Comput. Syst. Sci., vol. 78, no. 2,
pp. 651–669, 2012.

[67] X. Yi, S. Ling, and H. Wang, ‘‘Efficient two-server password-only authen-
ticated key exchange,’’ IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 9,
pp. 1773–1782, Sep. 2013.

[68] X. Yi, F. Hao, and E. Bertino, ‘‘Id-based two-server password-
authenticated key exchange,’’ in Proc. Eur. Symp. Res. Comput. Secur.,
2014, pp. 257–276.

[69] P. Sarkar, ‘‘A simple and generic construction of authenticated encryption
with associated data,’’ ACM Trans. Inf. Syst. Secur., vol. 13, no. 4, 2010,
Art. no. 33.

[70] Federal Information Processing Standards Publication: Secure Hash Stan-
dard, Standard FIPS PUB 180-1, National Institute Standards Technology,
U.S. Department Commerce, Apr. 1995. Accessed: Sep. 2017. [Online].
Available: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

[71] R.W. D. Nickalls, ‘‘A new approach to solving the cubic: Cardan’s solution
revealed,’’Math. Gazette, vol. 77, no. 480, pp. 354–359, 1993.

[72] N. Koblitz, ‘‘Elliptic curve cryptosystems,’’ Math. Comput., vol. 48,
no. 177, pp. 203–209, 1987.

[73] D. Dolev and A. C. Yao, ‘‘On the security of public key protocols,’’ IEEE
Trans. Inf. Theory, vol. 29, no. 2, pp. 198–208, Mar. 1983.

[74] R. Canetti and H. Krawczyk, ‘‘Analysis of key-exchange protocols and
their use for building secure channels,’’ in Proc. Int. Conf. Theory Appl.
Cryptograph. Techn., 2001, pp. 453–474.

[75] C. J. F. Cremers, ‘‘Formally and practically relating the CK, CK-HMQV,
and eCK security models for authenticated key exchange,’’ IACR Cryptol.
ePrint Arch., Tech. Rep. 2009/253, 2009.

[76] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data processing on
large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[77] M. Abdalla, P. Fouque, and D. Pointcheval, ‘‘Password-based authenti-
cated key exchange in the three-party setting,’’ in Proc. 8th Int. Workshop
Theory Pract. Public Key Cryptogr. (PKC), in Lecture Notes in Computer
Science, vol. 3386. Berlin, Germany: Springer, 2005, pp. 65–84.

[78] C.-C. Chang and H.-D. Le, ‘‘A provably secure, efficient, and flexible
authentication scheme for ad hoc wireless sensor networks,’’ IEEE Trans.
Wireless Commun., vol. 15, no. 1, pp. 357–366, Jan. 2016.

[79] A. Armando et al., ‘‘The AVISPA tool for the automated validation of
Internet security protocols and applications,’’ in Proc. Int. Conf. Comput.
Aided Verification, 2005, pp. 281–285.

[80] L. Viganò, ‘‘Automated security protocol analysis with the AVISPA tool,’’
Electron. Notes Theor. Comput. Sci., vol. 155, pp. 61–86, May 2006, doi:
10.1016/j.entcs.2005.11.052.

[81] D. von Oheimb, ‘‘The high-level protocol specification language HLPSL
developed in the EU project AVISPA,’’ in Proc. APPSEMWorkshop, 2005,
pp. 1–17.

DURBADAL CHATTARAJ (S’17) received the
B.Tech. and M.Tech. degrees in computer science
and engineering from the West Bengal Univer-
sity of Technology. He is currently pursuing the
Ph.D. degree with the Subir Chowdhury School
of Quality and Reliability, IIT Kharagpur, Kharag-
pur, India. His current research interests include
cloud data security and reliability, cryptography,
cloud computing, big data analytics, informa-
tion security, and dependable computing. He has

authored seven papers in international journals and conferences in the
above-mentioned areas.

MONALISA SARMA received the B.Tech. degree
from the North Eastern Regional Institute of Sci-
ence and Technology, Itanagar, in 1994, and the
M.S. and Ph.D. degrees from IIT Kharagpur,
Kharagpur, in 2003 and 2008, respectively, in com-
puter science and engineering. She is currently
an Assistant Professor with the Subir Chowdhury
School of Quality and Reliability, IIT Kharagpur,
India. She has about five years of teaching experi-
ence and four years of industrial experience (two

years in Oil India Ltd. and two years in Siemens Corporate Technology,
India). Her areas of interest and research include biometric security, cloud
computing security, and dependability analysis.

VOLUME 6, 2018 75381

D. Chattaraj et al.: HEAP: Efficient and Fault-Tolerant Authentication and Key Exchange Protocol

ASHOK KUMAR DAS (M’17–SM’18) received
the Ph.D. degree in computer science and engi-
neering, the M.Tech. degree in computer science
and data processing, and the M.Sc. degree in
mathematics from IIT Kharagpur, India. He is
currently an Associate Professor with the Center
for Security, Theory and Algorithmic Research,
International Institute of Information Technology,
Hyderabad, India. His current research interests
include cryptography, wireless sensor network

security, hierarchical access control, security in vehicular ad hoc networks,
smart grid, Internet of Things (IoT), cyber-physical systems, and cloud
computing, and remote user authentication. He has authored over 175 papers
in international journals and conferences in the above areas, including over
150 reputed journal papers. Some of his research findings are published in
top cited journals, such as the IEEE TRANSACTIONS ON INFORMATION FORENSICS

AND SECURITY, the IEEE TRANSACTIONSONDEPENDABLEAND SECURECOMPUTING,
the IEEE TRANSACTIONSON SMARTGRID, the IEEE INTERNETOF THINGS JOURNAL,
the IEEE TRANSACTIONSON INDUSTRIAL INFORMATICS, the IEEE TRANSACTIONSON

VEHICULAR TECHNOLOGY, the IEEE TRANSACTIONS ON CONSUMER ELECTRONICS,
the IEEE JOURNALOF BIOMEDICAL ANDHEALTH INFORMATICS (formerly the IEEE
TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE), the IEEE Con-
sumer Electronics Magazine, the IEEE ACCESS, the IEEE Communications
Magazine, Future Generation Computer Systems, Computers & Electrical
Engineering, Computer Methods and Programs in Biomedicine, Computer
Standards & Interfaces, Computer Networks, Expert Systems with Applica-
tions, and the Journal of Network and Computer Applications. He has served
as a Program CommitteeMember in many international conferences. He was
a recipient of the Institute SilverMedal from IIT Kharagpur. He is on the Edi-
torial Board of the KSII Transactions on Internet and Information Systems,
the International Journal of Internet Technology and Secured Transactions
(Inderscience), and Recent Advances in Communications and Networking
Technology and is a Guest Editor of Computers & Electrical Engineering
(Elsevier) for the special issue on big data and IoT in e-healthcare.

NEERAJ KUMAR (M’16–SM’17) received the
Ph.D. degree in computer science and engineering
from Shri Mata Vaishno Devi University, Katra,
India, in 2009. He was a Post-Doctoral Research
Fellow with Coventry University, Coventry, U.K.
He is currently an Associate Professor with the
Department of Computer Science and Engineer-
ing, Thapar University, Patiala, India. He has
authored more than 200 technical research papers
published in leading journals and conferences

from the IEEE, Elsevier, Springer, and John Wiley. Some of his research
findings are published in top cited journals, such as the IEEETRANSACTIONSON

INDUSTRIAL ELECTRONICS, the IEEE TRANSACTIONS ON DEPENDABLE AND SECURE

COMPUTING, the IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,
the IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, the IEEE Network,
the IEEE Communications, the IEEE WIRELESS COMMUNICATIONS, the IEEE
INTERNET OF THINGS JOURNAL, and the IEEE SYSTEMS JOURNAL. He has guided
many research scholars leading to Ph.D. and M.E./M.Tech. He is on the
Editorial Board of the IEEE Communications Magazine, the Journal of Net-
work and Computer Applications (Elsevier), and the International Journal
of Communication Systems (Wiley).

JOEL J. P. C. RODRIGUES (S’01–M’06–SM’06)
received the five-year B.Sc. degree (licentiate) in
informatics engineering from the University of
Coimbra, Portugal, the M.Sc. degree and the Ph.D.
degree in informatics engineering from UBI, Por-
tugal, and the Habilitation degree in computer
science and engineering from the University of
Haute Alsace, France. He has been a Professor at
UBI and a Visiting Professor at UNIFOR. He is
currently a Professor with the National Institute

of Telecommunications, Brazil, and a Senior Researcher at the Instituto de
Telecomunicações, Portugal. He has authored or co-authored over 650 papers
in refereed international journals and conferences and three books. He holds
two patents. He is a member of the Internet Society, an IARIA Fellow, and
a Senior Member of ACM. He received the Academic Title of Aggregated
Professor in informatics engineering from UBI. He is the Leader of the Net-
GNAResearch Group, the President of the Scientific Council at ParkUrbis—
Covilhã Science and Technology Park, the Past Chair of the IEEE ComSoc
TCs on eHealth and onCommunications Software, and a Steering Committee
member of the IEEE Life Sciences Technical Community. He is the Editor-
in-Chief of the International Journal on E-Health and Medical Communica-
tions and an Editorial Board Member of several journals.

YOUNGHO PARK (M’17) received the B.S.,
M.S., and Ph.D degrees in electronic engineering,
Kyungpook National University, Daegu, South
Korea, in 1989,1991, and 1995, respectively. From
1996 to 2008, he was a Professor with the School
of Electronics and Electrical Engineering, Sangju
National University, South Korea. From 2003 to
2004, he was a Visiting Scholar with the School
of Electrical Engineering and Computer Science,
Oregon State University, USA. He is currently a

Professor with the School of Electronics Engineering, Kyungpook National
University. His research interests include computer networks, multimedia,
and information security.

75382 VOLUME 6, 2018

	INTRODUCTION
	MOTIVATION
	RESEARCH CONTRIBUTIONS
	ROAD MAP OF THE PAPER

	NETWORK MODEL OF HDFS
	RELATED WORK
	STATE OF THE ART AKEs FOR HADOOP (BIG DATA) PLATFORM
	STATE OF THE ART TWO-SERVER BASED PAKES AND AKEs FOR CLOUD COMPUTING PLATFORM

	MATHEMATICAL PRELIMINARIES
	INDISTINGUISHABILITY OF ENCRYPTION SCHEME UNDER CPA
	ONE-WAY HASH FUNCTION AND ITS PROPERTIES
	ELLIPTIC CURVE AND ITS PROPERTIES

	THE PROPOSED PROTOCOL
	SYSTEM MODEL
	ADVERSARY MODEL
	GENERAL OVERVIEW OF HEAP
	DETAILED DESCRIPTION OF HEAP
	HEAP-KDC CONFIGURATION
	BIG DATA SERVICE PROVIDER REGISTRATION
	HADOOP CLUSTER REGISTRATION
	USER REGISTRATION
	USER LOGIN AT WORKSTATION
	SINGLE SIGN-ON AND DYNAMIC KEY ESTABLISHMENT
	BIG DATA STORAGE SERVICE SERVER TICKET GRANTING
	SESSION KEY AGREEMENT WITH SERVICE SERVER
	SECURE AND INTEGRITY-ASSISTED WRITE OR APPEND OPERATION IN HDFS
	SECURE INTEGRITY-ASSISTED READ IN HDFS
	SECURE BIG DATA PROCESSING USING MAPREDUCE
	PASSWORD CHANGE PHASE

	SECURITY ANALYSIS
	FORMAL SECURITY ANALYSIS USING ROR MODEL
	ROR MODEL
	SECURITY PROOF

	INFORMAL SECURITY ANALYSIS

	FORMAL SECURITY ANALYSIS USING AVISPA
	PERFORMANCE ANALYSIS
	COMPARATIVE ANALYSIS
	COMPARISON OF COMPUTATION COSTS
	COMPARISON OF COMMUNICATION OVERHEADS
	COMPARISON OF STORAGE COSTS
	COMPARISON OF SECURITY AND FUNCTIONAL FEATURES

	DISCUSSIONS
	CONCLUSION
	REFERENCES
	Biographies
	DURBADAL CHATTARAJ
	MONALISA SARMA
	ASHOK KUMAR DAS
	NEERAJ KUMAR
	JOEL J. P. C. RODRIGUES
	YOUNGHO PARK

