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ABSTRACT Non-rigid 3-D model retrieval is a challenging problem in 3-D shape analysis. Recently, deep
learning-based 3-D feature extraction methods have been studied and have achieved better performance than
the previous state-of-the-art methods. Inspired by the quadruplet neural networks proposed for learning local
image feature descriptors, we propose a novel non-rigid 3-D model retrieval method based on quadruplet
convolutional neural networks. For training the proposed networks, the quadruplet samples are first selected
using the online sampling method. For each 3-D model, the wave kernel signature descriptor of each vertex
is computed, and its corresponding multi-energy shape distribution matrix is constructed as the input of the
network. Then, the quadruplet convolutional neural networks are trained using our improved quadruplet loss
function, which not only preserves the advantages of existing quadruplet loss functions but also decreases
the risk of underfitting. For the query sample, the 3-D shape features are computed using one branch of the
trained quadruplet networks. Finally, the retrieval results are obtained by the L2 distance measure. Extensive
experimental results have validated the effectiveness of the proposed method.

INDEX TERMS Non-rigid 3Dmodel retrieval, convolutional neural network, quadruplet loss function, wave
kernel signature, multi-energy shape distribution.

I. INTRODUCTION
As the fourth generation of multimedia data type following
audio, image and video, the 3D model plays an increasingly
important role in many fields, such as biometrics, virtual
reality, medical diagnosis, self-driving cars, and intelligent
robots. Currently, the explosive growth of the number of 3D
models has led to an urgent need for efficient 3D model
retrieval. Generally, the 3D model includes rigid 3D mod-
els and non-rigid 3D models. As the non-rigid 3D models
have many kinds of different deformations, how to analyze
the non-rigid 3D model effectively is a challenging problem
to be solved. Non-rigid 3D model retrieval has become an
important research topic in the field of computer vision and
multimedia information processing [1].

Recently, extensive efforts have been dedicated to
non-rigid 3D model retrieval. Existing non-rigid 3D model
retrieval methods can be divided into two categories: multi-
view-based methods and local feature-based methods [2].
The multi-view-based methods first describe the 3D model
by a collection of 2D projective images and then it compares

the similarity of the images for retrieval. Although this kind of
method can convert the non-rigid 3Dmodel retrieval problem
into multiple image-based retrieval problems, it needs to
transform the non-rigid 3D model into the canonical form.
The local feature-based method does not need the above
transformation step and has better robustness to occlusions
and mesh resolution. Therefore, in recently, local feature-
based non-rigid 3D model retrieval methods have attracted
increasing attention from researchers. The typical algorithm
flowfirst computes the local descriptors, and then encodes the
local descriptors to obtain the global shape representation of
the non-rigid 3Dmodel. Finally, the similarity of the encoded
global shape features is computed for retrieval.

The 3D local descriptor is used for characterizing local
surfaces effectively, and it can directly influence the per-
formance of the 3D model retrieval system. Recently, many
kinds of 3D local descriptors have been proposed, such as
spin images [3], [4], 3D shape context [5], rotational pro-
jection statistics [6], local surface patches [7], [8], point
feature histograms [9], fast point feature histograms [10],
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and signature histograms of orientations [11], [12]. Although
the above descriptors have achieved good retrieval results,
most of them are not invariant to non-rigid 3D deforma-
tions and are not suitable for non-rigid 3D model retrieval.
To solve this problem, Sun et al. [13] proposed heat kernel
signatures (HKS) to describe non-rigid 3D local surfaces,
which are based on diffusion scale-space analysis and defined
as an exponentially weighted combination of the Laplace-
Beltrami (LB) eigenfunctions. It is invariant to isometric
deformations and robust to small non-isometric deforma-
tions, but it is sensitive to the scale changes of the 3D model.
Bronstein and Kokkinos [14] proposed scale-invariant heat
kernel signatures (SI-HKS), which satisfies both the mer-
its of the HKS descriptor and scale invariance. Similar to
the HKS descriptor, the SI-HKS descriptor includes low-
frequency information describing the global structure of the
shape. Aubry et al. [15] proposed the wave kernel signature
(WKS), which describes the average probability of quantum
mechanics at a specific location on the surface. The WKS is
invariant to non-rigid transformations and clearly separates
the influence of different frequencies, which allows access
to both low-frequency information and high-frequency infor-
mation. As the WKS descriptor is appropriately parameter-
ized by a theoretical stability analysis, it is not only highly
informative but also robust to non-isometric perturbations
of the shape. Therefore, in this paper, we adopt the WKS
descriptor to describe the local surfaces of the non-rigid
3D models.

Generally, the global feature of the non-rigid 3Dmodel can
be obtained by encoding the 3D local descriptors. Similar to
the field of image retrieval, the earliest widely used encoding
method was the bag of features (BoF) model-based meth-
ods. Then, researchers proposed several improved models
based on the framework of the BoF model, for example,
the spatially sensitive bag of words (SS-BoW) [16], bag of
feature graphs (BoFG) [17], bag of phrases (BoP) [18], and
weighted bag of phrases (W-BoP) [19]. Tabia et al. [20] used
the covariance matrices of the local descriptors and the gener-
alized BOF paradigm to represent the 3Dmodel. Lavoué [21]
proposed a bag of words (BoW)-based 3D shape retrieval
algorithm, which uses a uniform sampling of feature points
associated with a new local Fourier descriptor. EINaghy
proposed a non-rigid 3D model retrieval method based on
the bag of compact HKS-based feature descriptors [22],
which includes five steps: HKS computation, feature point
detection, feature point description, bag of features and
the matching phase. Lian et al. [22] used the Fisher vector
encoding method to describe the global shape for 3D model
retrieval. Litman et al. [23] used the sparse coding method
to learn encoded representation coefficients for retrieval.
Agathos et al. [24] proposed a graph-based representation
for 3D object retrieval, which uses an attributed relational
graph to obtain the structural description of the 3D object.
Papadakis et al. [25] proposed a 3D object retrieval method
using an efficient and compact hybrid shape descriptor, which
is composed of 2D features based on depth buffers and 3D

features based on spherical harmonics. Tabia et al. [26] used
the vector of locally aggregated tensors (VLAT) technique to
aggregate the local descriptors of object depth maps. Then,
they reduced their size using principal component analy-
sis (PCA) on VLAT vectors.

Recently, as the deep learning technique has achieved supe-
rior performance in the field of image retrieval, researchers
have begun to investigate the application of the deep learn-
ing technique in 3D model retrieval. Bu et al. [27] propose
a multilevel 3D shape feature extraction framework using
deep learning techniques. The 3D local descriptors are first
encoded into a geometric BoW, and then the shape features
are learned via deep belief networks for shape classification
and retrieval. Dai et al. [28] used the locality-constrained lin-
ear coding (LLC) algorithm to encode the SI-HKS descriptor
of each vertex to form the global shape representation. Then,
a discriminative shape descriptor was learned for retrieval
via a many-to-one encoder. Xie et al. [29] proposed a deep
unsupervised shape descriptor using a supervised progressive
shape distribution encoder (SPSDE). First, they developed a
shape distribution representation based on the HKS descrip-
tor. Then, multiple SPSDEs are stacked to characterize the
intrinsic structures of 3D shapes. Finally, all neurons in the
middle hidden layers of the network are concatenated to
form a shape descriptor for 3D model retrieval. After that,
they proposed the discriminative autoencoder-based shape
descriptor (DASD) to extract high-level shape features more
efficiently [30]. It uses amultiscale shape distribution as input
to the autoencoder and imposes the Fisher discrimination
criterion on the neurons in the hidden layers.

Motivated by the fact that the deep neural network-based
3D shape feature learning methods have achieved better per-
formance, this paper introduces a novel non-rigid 3D model
retrieval method based on the quadruplet convolutional neu-
ral networks (QCNNs), which is inspired by the quadruplet
networks proposed in [31] for learning local image feature
descriptors. The proposed networks include four branches,
and each branch is a convolutional neural network (CNN).
The differences between our proposed networks and the net-
works proposed in [31] are the structure of the CNN and the
quadruplet loss function. To summarize, the contributions of
this paper are listed as follows. (1) We propose the WKS
descriptor-based multi-energy shape distribution construc-
tion method, which can be used as the input of the CNN.
(2)We design the structure of the CNN referring to VGG [32]
and ResNet [33], which has better efficiency for 3D shape
feature learning. (3) We propose an improved quadruplet
loss function, which can minimize the intraclass distances
and increase the interclass distances so that they are greater
than a given threshold. Compared with existing quadruplet
loss functions, our proposed quadruplet loss function can
effectively reduce the dependence on training samples and
decrease the risk of overfitting and underfitting. Our exper-
imental results show that the proposed non-rigid 3D model
retrieval method has better performance than the state-of-the-
art methods.
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The rest of the paper is organized as follows. In Section II,
we briefly introduce the wave kernel signature descriptor
and the deep quadruplet network. In Section III, we present
the proposed non-rigid 3D model retrieval method, including
multi-energy shape distribution and the quadruplet convolu-
tional neural networks. Section IV performs extensive exper-
iments, and Section V concludes this paper.

II. BACKGROUND
A. WAVE KERNEL SIGNATURE
The WKS is a kind of non-rigid 3D local shape descriptor
derived from the framework of quantum mechanics, which is
represented by the average probabilities of quantum particles
of different levels [15]. The evolution of a quantum particle
on the surface is defined by its wave function ψ(x, t), which
can be computed from the following Schrödinger equation:

∂ψ

∂t
(x, t) = i1ψ(x, t) (1)

where1 is the LB operator of the 3D shape, t is time, and i is
the energy-related angular quantum number. Then, the wave
function of the particle can be expressed using the solution of
the Schrödinger equation:

ψE (x, t) =
∞∑
k=0

eiEk tφk (x)fE (Ek ) (2)

where φk (x) is the eigenvector of the LB operator 1, and
fE (Ek ) is the energy probability density function with expec-
tation energy value Ek . As the probability of the particle at
the point x at time t is |ψE (x, t)|2, the WKS can be defined
as the average probability over time:

WKS(E, x)= lim
T→∞

1
T

∫ T

0
|ψE (x, t)|2 =

∞∑
k=0

φk (x)2fE (Ek )2

(3)

Then, the WKS descriptor at a point x on the surface can be
computed based on the logarithmic energy scale e = log(E)
using the following real-valued function:
WKS(x, ·) : R→ R

WKS(x, ·) =

(∑
k

e
−(e−logEk )

2

2σ2

)−1∑
k

φ2(x)e
−(e−logEk )

2

2σ2

(4)

From Equation (4) we can see that the WKS descriptor is
a function of the energy levels. Large energies are mostly
influenced by the local shape structure, and the small energies
are mostly influenced by the global shape structure. There-
fore, compared with the more widely used HKS descriptor,
the WKS descriptor not only remains robust to non-rigid
deformations but also captures more information about the
shape differences at finer scales. It can clearly separate the
influences of different frequencies and treat all frequencies
equally. Furthermore, it does not require shape alignment
and builds local coordinates in the application of 3D model

retrieval. Therefore, in this paper, we adopt theWKS descrip-
tor to compute the local descriptor of each vertex of the
non-rigid 3D model. Figure 1 shows the WKS descriptors of
the non-rigid 3D models from two classes: human and ant.
The color maps are projected according to the value of one
dimension of the WKS descriptors. From Figure 1, we can
see that the WKS descriptors can describe different shape
structures for different classes, and they have good robustness
to non-rigid transformations.

FIGURE 1. Examples of the WKS descriptors of four non-rigid 3D models
from two classes. (a) human1. (b) human2. (c) ant1. (d) ant2.

B. DEEP QUADRUPLET NETWORK
Although existing deep learning-based 3D model retrieval
methods have achieved better performance than previous
state-of-the-art methods, both loss function and network
structure are still worth exploring for further improvement.
Recently, the deep triplet networks and the deep quadruplet
networks have been proposed for image feature extraction
or ranking tasks, such as learning local feature descriptors,
face recognition, and person reidentification [34], [35]. Com-
pared with the one-branch deep network, the multibranch
deep network can make full use of the relations between the
samples, which are less prone to overfitting and have better
training efficiency. The non-rigid 3D model retrieval can be
considered a ranking problem; thus, we investigate how to
design the multibranch deep network for non-rigid 3D model
retrieval.

Balntas et al. [36] proposed a conjoined triple deep net-
work for learning local image descriptors. The network has
three parallel inputs, where two of the inputs are positive
patches, and the third input is a negative patch. The loss func-
tion is defined using three distances from the three training
patches, which can exploit the relations within the triplets.
Kumar et al. [37] proposed a triplet convolutional network
with a global loss that can minimize the overall classification
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FIGURE 2. The flowchart of the proposed non-rigid 3D model retrieval method.

error and improve the generalization capability of the model.
Because the triplet network is excessively dependent on the
‘‘anchor’’ samples and has the margin varying problem that
increases the risk of overfitting, Zhang et al. [31] proposed a
deep convolutional neural network with quadruplet ranking
loss to learn local feature descriptors. It has four branches
with tied weights, which receive four image patches as inputs.
The output of each branch is the feature vector of the cor-
responding image patch. Each branch is designed based on
ResNet [33], and it consists of two residual blocks along
with other layers. For the sample x, suppose its correspond-
ing network output is f (x). Let (p1, p2, n1, n2) be a sample
quadruplet, and then the quadruplet loss function is defined
as follows:

L(p1, p2, n1, n2) = max(0, I + ‖f (p1)− f (p2)‖2
−‖f (n1)− f (n2)‖2) (5)

where (p1, p2) is the positive sample pair, (n1, n2) is the
negative sample pair, and I is the given interval. Compared
with the triplet loss function, this quadruplet loss function can
mitigate the margin varying problem to some degree. It can
flexibly use any combination of positive and negative pairs,
which can improve the capacity to utilize the limited training
data.

III. THE PROPOSED NON-RIGID 3D MODEL
RETRIEVAL METHOD
In this section, we detail the proposed quadruplet
CNNs-based non-rigid 3Dmodel retrieval method. As shown
in Figure 2, it consists of two stages: the training stage and the
testing stage. For each non-rigid 3D model, we first compute
the WKS descriptor of each vertex and then construct its
correspondingmulti-energy shape distribution. In the training
stage, we use the quadruplet samples to train the proposed

quadruplet networks using our improved quadruplet loss
function. In the testing phase, we use only a single branch
of the quadruplet networks to compute the 3D shape feature
of the non-rigid 3D model. Finally, the retrieval results are
obtained according to the similarity of the 3D shape features.

A. MULTI-ENERGY SHAPE DISTRIBUTION
As the numbers of the vertices of different 3D models are
different, the feature matrices that are directly connected by
the WKS descriptors have different dimensions for different
3D models. Therefore, they cannot be used as the input of
the CNN. If we sample the 3D models with the same number
of vertices, the directly connected feature matrices can have
the same dimensions. However, if the number of sampling
vertices is too small, considerable effective discriminative
information will be lost. If the number of sampling vertices
is too large, the structure of the CNN will be large, and an
optimal search will be difficult. Inspired by the multiscale
shape distribution [30], we propose a construction method for
the multi-energy shape distribution of the WKS descriptor
to obtain the global representation of the 3D model. For
different 3D models, their corresponding multi-energy shape
distribution matrices have the same dimensions. Therefore,
the proposed multi-energy shape distribution is used as the
input of the CNN.

Similar to the multiscale shape distribution of the HKS
descriptor [30], we estimate the probability distribution of
the WKS descriptor to form the shape distribution matrix.
Suppose the non-rigid 3D model X has N vertices, and the
dimension of the WKS descriptor is D. That is, the energy
level of the WKS descriptor is D. For a non-rigid 3D model,
let Si be the WKS descriptor of the ith vertex, where Si =
[S1i , S

2
i , · · · S

D
i ] and Ski is the WKS value at energy level

k(k = 1, · · · ,D). First, find the maximum value Smax and
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the minimum value Sminof all the WKS values, and equally
divide the interval range [Smin, Smax] intoM bins. For energy
level k , we count the number of times that the WKS value
Ski falls into each bin. Then, L1-normalization is performed
on the statistical result, and it is taken as the kth column of
the global shape distribution matrix. Finally, we can obtain
anM ×D multi-energy shape distribution matrix to describe
the 3D model. Figure 3 illustrates four multi-energy shape
distributions of four non-rigid 3D models from two classes.
Here, M = 128, D = 100, the horizontal axis represents the
energy levels, the vertical axis represents the number of times
that the WKS values fall into each bin. From Figure 3, we
can see that the multi-energy shape distributions are similar
for the non-rigid 3D models from the same class, and the
multi-energy shape distributions have obvious differences for
the non-rigid 3D models from different classes. Therefore,
the proposed multi-energy shape distribution can effectively
describe the discriminative information of the non-rigid 3D
models.

FIGURE 3. The multi-energy shape distributions of four non-rigid 3D
models from two classes. (a) human1. (b) human2. (c) ant1. (d) ant2.

B. QUADRUPLET CONVOLUTIONAL NEURAL NETWORKS
Inspired by the quadruplet convolutional neural network
for learning local feature descriptors [31], we propose a
quadruplet CNN for non-rigid 3D model retrieval. As shown
in Figure 4, the proposed networks have four parallel CNNs,
which share the same weights. The reason for using the same
weights is to ensure the consistency of the mapping of differ-
ent CNNs. First, we use the online sampler proposed in [31]
to obtain the quadruplet samples. A quadruplet sample set
(p1, p2, n1, n2) includes four samples. Among them, the sam-
ple p1 and p2 are from the same class and are called a positive
sample pair. The sample n1 and n2 are from different classes
and are called a negative sample pair. Then, we compute the
multi-energy shape distributions of the four samples and send
them to the four CNNs.

FIGURE 4. The framework of the proposed quadruplet convolutional
neural networks.

Each CNN is designed referring to VGG and ResNet [32],
[33]. As shown in Figure 5, each CNN consists of three con-
volutional layers (conv1, conv2, conv3), four pooling layers
(pooling1, pooling2, pooling3, pooling4), two residual blocks
(block1, block2), and two fully connected layers (fc1, fc2).
For each deep network, we use the max-pooling method and
ReLU activation function. Furthermore, we repeatedly use
the convolution kernel with the same size for the first two
continuous convolutional layers, which can reduce network
parameters without degrading performance. When the depth
of the deep network increases, the gradients of the front layers
will become small. To solve this gradient vanishing prob-
lem, we adopt the residual blocks to optimize the network.
To obtain more inputs for the network, we use the online
sampling method to enlarge the training set. Then, the output
of the second fully connected layer is the final 3D shape
feature for non-rigid 3D model retrieval.

In this paper, the aim of the loss function is to decrease
the outputs of the intraclass distances and increase the out-
puts of the interclass distances. The quadruplet loss function
proposed in [31] enforces that the distances between the
positive sample pairs are smaller than the distances between
the negative sample pairs. It is suitable for data with different
distributions and has fewer restrictions, but it easily converges
to the local optimum. Usually, the network needs sufficient
quadruplet samples to ensure convergence to global optimal-
ity. The generalization ability of the network is determined
by the maximum distance of the positive sample pairs and
the minimum distance of the negative pairs of the training
sets. Compared with existing triplet loss functions, although
the quadruplet loss function proposed in [31] can decrease the
risk of overfitting, it also has the risk of underfitting. To solve
this problem, we propose an improved quadruplet loss func-
tion by adding a threshold constraint, which is defined as
follows:

L(p1, p2, n1, n2) = w ‖f (p1)− f (p2)‖22

+max
(
0,T − ‖f (n1)− f (n2)‖22

)
(6)
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FIGURE 5. The structure of the CNN of the proposed quadruplet convolutional neural networks.

where w is the weight, and T is the threshold. From
Equation (6), we can see that the proposed loss function
makes the distance of the positive sample pair as small as pos-
sible, and the distance of the negative sample pair is greater
than a given threshold. Thus, our improved loss function not
only preserves the advantages of the existing quadruplet loss
function but also effectively reduces the dependence on the
training samples. The proposed network is trained by the
stochastic gradient descent (SGD) method with back prop-
agation, and the gradient of the loss function can be derived
as:
∂L

∂f (p1)
= 2 [f (p1)− f (p2)] (7)

∂L
∂f (p1)

= 2w [f (p1)− f (p2)] (8)

∂L
∂f (n1)

= 2 [f (n1)− f (n2)] · 1A
[
T − ‖f (n1)− f (n2)‖22

]
(9)

∂L
∂f (n2)

= −2 [f (n1)− f (n2)] · 1A
[
T − ‖f (n1)− f (n2)‖22

]
(10)

where 1A(x) =
{
1, x >= 0
0, x < 0

.

The proposed non-rigid 3D model retrieval method can
be summarized as follows. In the training stage, we first
select quadruplet samples and enlarge the training set using
the online sampling method. Then, for each training sam-
ple, we compute the WKS descriptor of each vertex, and
its corresponding multi-energy shape distribution matrix.

Finally, we train the proposed quadruplet networks using
the improved quadruplet ranking loss function and the SGD
method, and the final 3D shape feature of each training
sample is obtained. For the testing sample, we first compute
the WKS descriptor of each vertex and its corresponding
multi-energy shape distribution matrix. Then, the 3D shape
feature is computed using one branch of the trained quadru-
plet network. Finally, we use the L2 distance measure to
obtain the retrieval results.

IV. EXPERIMENTAL RESULTS
To evaluate the effectiveness of the proposed non-rigid 3D
model retrieval method, we compare it to the state-of-the-art
methods on two datasets: McGill 3D shape benchmark [38]
and SHREC’11 non-rigid 3D model dataset [39]. In this
paper, we denote our proposed non-rigid 3D model retrieval
method by ‘‘QCNN’’ and use the following four measures:
nearest neighbor (NN), the first tier (FT), the second tier (ST)
and the discounted cumulative gain (DCG) to evaluate the
retrieval performance.

A. EXPERIMENTAL SETTINGS
In the experiments, the number of eigenvalues of the LB
operator k is 300, and 100 values of the energy scale are evalu-
ated. Therefore, the dimension of the WKS descriptor is 100.
Let 128 bins be equally divided between Sminand Smax, and
then the multi-energy shape distribution is a 128×100matrix,
which is used as the input to the CNN. Table 1 presents
a detailed description of each CNN. All the convolutional
layers and the pooling layers adopt the ‘‘SAME’’ convolution
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TABLE 1. Description of each conventional neural network.

method so that the dimensions are consistent after convo-
lution. The activation function of all the convolutional lay-
ers and the fully connected layers is a ReLU function. The
convolution kernel weights are initialized using the truncated
positive distribution, and the bias term is initialized to 0.
We use the batch training method, and the batch size is 5. The
SGD method with back-propagation is used to minimize the
proposed quadruplet loss. The learning rate is 0.001, and the
proposed quadruplet networks converge after 200,000 train-
ing iterations according to the judging from the loss curve.

B. COMPARISON EVALUATION
1) McGill 3D SHAPE BENCHMARK
The McGill 3D shape benchmark contains 255 non-
rigid 3D models from 10 different classes, including:
‘‘ant’’, ‘‘crab’’, ‘‘spectacle’’, ‘‘hand’’, ‘‘human’’, ‘‘octopus’’,
‘‘plier’’, ‘‘snake’’, ‘‘spider’’ and ‘‘teddy-bear’’ [38]. Each
class has 20 to 30 3Dmodels. Thesemodels include rotational
transformation, scale transformation and non-rigid defor-
mation. Some example non-rigid 3D models are shown in
Figure 6.

First, we analyze the learned 3D shape features of the
proposed ‘‘QCNN’’ method. Figure 7 shows the two classes
of the 3D models and their corresponding learned 3D shape
features. From Figure 7, we can see that for different 3Dmod-
els of the same class, their corresponding learned 3D shape
features are very similar. For the different 3D models of
different classes, their corresponding learned 3D shape fea-
tures are distinctive. Therefore, we can conclude that our pro-
posed quadruplet convolutional neural networks can extract

FIGURE 6. Example non-rigid 3D models of the McGill 3D shape
benchmark.

robust and discriminative shape features. Figure 8 shows
some retrieval results that include the given query sample and
the top 15 retrieved 3D models; mistakes are highlighted in
red. From Figure 7, we can see that there are large non-rigid
deformations within the intraclass samples, and some inter-
class samples look similar. For example, when the query is a
‘‘spider’’, it has an incorrectly retrieved 3D model from the
class ‘‘ant’’. They look very similar.

Finally, we compared our proposed ‘‘QCNN’’ method
with the covariance descriptor-based method [20], the hybrid
2D/3D method [21], the CBoFHKS-based method [22],
the graph-based method [24], the hybrid BOW method [25],
the PCA-based VLAT method [26], the DASD-based
method [29], the SPSDE-based method [30], the NMLM-
based method [40] and the QCNN_origin method. The
QCNN_origin method use same network and trainingmethod
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FIGURE 7. The learned 3D shape features for the spider models and the hand models of the McGill 3D shape benchmark. (a) Spider models:
spider1, spider2, spider3. (b) The learned 3D shape feature for the spider models. (c) Hand models: hand1, hand2, hand3. (d) The learned 3D shape
feature for the hand models.

FIGURE 8. Examples showing the given query and the top 15 retrieved 3D models; mistakes are highlighted in red.

as our proposed method, but it use the quadruplet loss func-
tion shown in Equation (5). The comparative retrieval results
of our method and the other state-of-the-art methods are listed
in TABLE 2. From this table, we can see that our proposed
method achieved the best performance on the NN, FT, ST and
DCG measures. Compared with the QCNN_origin method,
our proposed method also performs better. So our improved
quadruplet loss function outperforms the original quadruplet
loss function. In summary, our proposed method achieved
better performance than the other methods.

2) SHREC’11 NON-RIGID 3D MODEL DATASET
The SHREC’11 non-rigid 3D model dataset consists of 600
non-rigid 3D models that are equally classified into 30 cate-
gories, among which 26 classes of objects are collected from
several freely accessible repositories while the other 4 classes

FIGURE 9. Example non-rigid 3D models of the SHREC’11 non-rigid 3D
model dataset.

of objects are created using Autodesk 3dMax. Some example
non-rigid 3D models are shown in Figure 9.

First, six non-rigid 3D models and their corresponding
learned 3D shape features are illustrated in Figure 10. Similar
to Figure 7, we can conclude that the learned shape features
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FIGURE 10. The learned 3D shape features for the rabbit models and the alien models of the SHREC’11 non-rigid 3D model dataset. (a) Rabbit
models: rabbit1, rabbit2, rabbit3. (b) The learned 3D shape features for the rabbit models. (c) Alien models: alien1, alien2, alien3. (d) The learned
3D shape features for the alien models.

TABLE 2. Retrieval results compared with other methods.

of the 3Dmodels belonging to the same class are very similar,
and the leaned shape features of the 3D models belonging to
different classes are distinctive. Thus, our proposed network
can effectively learn the 3D shape features. Figure 11 shows
some retrieval results that include the given query and the
top 15 retrieved 3D models; mistakes are highlighted in red.
We can see that there are two mistakes. When the query
samples are ‘‘cat’’ and ‘‘women’’, there are two incorrectly
retrieved 3D models respectively from the class ‘‘dog’’ and
‘‘man’’. For the two mistakes, both the query sample and the
wrong retrieved 3D model look very similar.

TABLE 3. Retrieval results compared with other methods.

Then, we compared our proposed ‘‘QCNN’’ method with
other state-of-the-art methods [39] and the QCNN_origin
method. From Table 3 we can see that our proposed
method has the best performance with the FT, ST and
DCG metrics. The NN metric of our proposed method
is slightly lower than that of the ‘‘SD-GDM’’ method
and the ‘‘SD-GDM-meshSIFT’’ method. Our proposed
method outperforms the QCNN_origin method with the
four metrics. Thus, our improved quadruplet loss func-
tion is better than the original quadruplet loss function,
and our proposed method performs better than the other
methods.
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FIGURE 11. Examples showing the given query and the top 15 retrieval 3D models; mistakes are highlighted in red.

V. CONCLUSIONS
In this paper, we present a novel non-rigid 3D model retrieval
method based on quadruplet convolutional neural networks.
First, the WKS descriptor and the multi-energy shape dis-
tribution matrix are computed. Then, four branches of the
proposed networks are trained using quadruplet samples.
Finally, the final 3D shape feature is obtained using only
one branch of the proposed networks. The contributions of
the paper are that we design the construction method for
the multi-energy shape distribution and the structure of the
proposed networks. Furthermore, we propose an improved
quadruplet loss function, which can decrease the risk of over-
fitting and underfitting. Our extensive experimental results
show that the proposed method performs better than other
state-of-the-art methods.
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