
Received October 30, 2018, accepted November 18, 2018, date of publication November 22, 2018,
date of current version December 27, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2882824

Parsimonious Kernel Recursive Least Squares
Algorithm for Aero-Engine Health Diagnosis
HAOWEN ZHOU , JINQUAN HUANG, AND FENG LU
Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China

Corresponding authors: Haowen Zhou (zhouhaowen@nuaa.edu.cn) and Jinquan Huang (jhuang@nuaa.edu.cn)

This work was supported in part by the Funding of Jiangsu Innovation Program for Graduate Education under Grant KYLX16_0400 and in
part by the National Natural Science Foundation of China under Grant 61304113.

ABSTRACT Kernel adaptive filtering (KAF) has gained widespread popularity among the machine learning
community for online applications due to its convexity, simplicity, and universal approximation ability.
However, the network generated by KAF keeps growing with the accumulation of the training samples,
which leads to the increasingmemory requirement and computational burden. To address this issue, a pruning
approach that attempts to restrict the network size to a fixed value is incorporated into a kernel recursive least
squares (KRLS) algorithm, yielding a novel KAF algorithm called parsimonious KRLS (PKRLS). The basic
idea of the pruning technique is to remove the center with the least importance from the existing dictionary.
The importance of a center is quantified by its contribution tominimizing the cost function. The calculation of
the importance measure is formulated in an efficient manner, which facilitates its implementation in online
settings. Experimental results on the benchmark tasks show that PKRLS obtains a parsimonious network
structure with the satisfactory prediction accuracy. Finally, a multi-sensor health diagnosis approach based
on PKRLS is developed for identifying the health state of a degraded aero-engine in real time. A case study in
a turbofan engine degradation data set demonstrates that PKRLS provides an effective and efficient candidate
for modeling the performance deterioration of real complex systems.

INDEX TERMS Health diagnosis, kernel adaptive filtering, pruning method.

I. INTRODUCTION
Kernel methods provide a unified framework to formulate
nonlinear methods based on the linear counterparts and has
gained numerous successful applications, including support
vector machine [1], kernel principal component analysis
(KPCA) [2], kernel fisher discriminant analysis [3]. The
main idea behind these applications is that an implicit non-
linear mapping associated with a Mercer kernel is used to
transform the data from the input space to high-dimensional
reproducing kernel Hilbert spaces (RKHS) where the linear
learning algorithms are implemented. However, the above-
mentioned approaches are derived in a batch form and
require all the training data to be available in advance.
In online scenarios where the training samples arrive sequen-
tially, these offline methods have to retrain the model from
scratch once a new data point is available and are thus
unsuitable for real-time applications. By contrast, a sequen-
tial learning method that updates the existing model recur-
sively without reconsidering the historical data would be a
better choice, especially when the real-time performance is
emphasized.

Online kernel-based learning (OKL) is a feasible paradigm
of learning the desired nonlinearity recursively. Recently,
online KPCA has been proposed for feature extraction [4].
However, all the available observations are required for repre-
senting the basis functions, which leads to the high computa-
tional complexity. As a remedy, a compact dictionarywhich is
a subset of the whole training dataset is derived and the inclu-
sion or replacement of a dictionary member is determined at
each time step [5], [6]. Due to the online adaption mecha-
nism, they can be applied to capturing time-varying pattern
features. As another subfield of OKL, kernel adaptive filter-
ing (KAF) has become very appealing in online settings due
to its universal approximation capability, convexity, and sim-
ple structure. KAF aims to reconstruct the well-established
linear adaptive filters in RKHSwhereby nonlinear filters with
more powerful modeling capability in the original input space
are obtained. The KAF family includes kernel least mean
square (KLMS) [7], kernel affine projection algorithm [8],
KRLS [9], and extended KRLS [10], etc.

Similar to the most kernel-based machines such as KPCA,
KAF suffers from the lack of sparseness. KAF generates a
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linearly growing network by allocating a kernel unit for the
new data point at each iteration, which incurs an increas-
ing demand for computational resource and memory stor-
age. According to [11], there are mainly two strategies that
can achieve a parsimonious structure. The first one is the
constructive strategy which starts with a null network and
gradually adds new neural nodes according to some rules.
The second is the destructive strategy where a large network
is first built and irrelevant nodes are pruned. Considering that
the training samples arrive sequentially in online scenarios,
the constructive strategy is a straightforward method for con-
trolling the growth of the network. Concretely, only the infor-
mative samples are selected based on some sparsification
criteria such as novelty criterion [12], approximation linear
dependency (ALD) criterion [9], coherence criterion [13],
and surprise criterion [14]. Alternatively, the destructive strat-
egy has been adopted to eliminate the redundant centers from
the existing dictionary. In [15] and [16], the l1-norm regular-
ization term is incorporated into the cost function whereby
the centers associated with the negligibly small coefficients
are automatically pruned. A sliding-windowKRLS algorithm
is proposed by utilizing only the last N data points to train
the model [17]. Despite its simple structure, it exhibits an
excellent tracking capability in non-stationary environment.
In contrast to sliding-window KRLS that omits the oldest
center, the algorithm proposed in [18] eliminates the center
that leads to the least approximation error. In [19], the center
with the least influence on the output of the overall learning
system is removed so as to keep the network size within a pre-
defined threshold. In [20], the minimum description length
principle is adopted to adapt the network size according to
the variations in the input data complexity.

While the aforementioned sparsification techniques reduce
the computational burden effectively, the accuracy perfor-
mance deteriorates inevitably because the redundant data that
are unable to satisfy a certain criterion are thrown away
directly and excluded from the training process. Considering
that these discarded data is useful more or less, they can
be used to modify the coefficients of the network instead
of updating the structure (allocating a new kernel unit).
Enlightened by this idea, a quantization technique was intro-
duced into KLMS and KRLS [21]–[24]. The quantization
method divides the whole input space into small regions and
each region is represented by a center. The redundant data
are used to update the coefficient of the closest center in
the dictionary. By doing so, the information conveyed by the
data are fully perceived such that a compact network with the
satisfactory accuracy performance is obtained.

Despite the utilization of the sparsification criterion,
the network size may still keep growing with the accumu-
lation of the training data. In order to keep the computational
complexity moderate at each iteration, a pruning technique is
integrated into KRLS algorithm. The main contributions of
this study are summarized as follows.

1) A novel pruning technique that attempts to keep
the network size upper bounded is proposed.

The importance of each center is measured by its
contribution to minimizing the cost function. In order
to facilitate the online application of the importance
criterion, it is calculated in an efficient manner.

2) The training data are not equally informative. Thus,
flexible learning strategies are adopted according to
different samples so as to allocate the computational
resources appropriately. Concretely, our method com-
bines three learning strategies and each one plays a
distinct role in the training phase. The first refers to
the coefficient update strategy which employs each
entered sample for adjusting the coefficients of the
network. The second is the structure update strategy
that selects a minimal number of centers according to
ALD criterion such that a compact network with the
required nonlinearity is constructed. The last one is
the pruning strategy and it deletes the least significant
dictionary member once the dictionary size exceeds a
preset threshold.

3) A multi-sensor health diagnosis method based on
PKRLS is developed. To be specific, a health state
classifier is generated by PKRLS. Due to its parsimo-
nious structure, the classifier achieves fast predicting
speed, which is beneficial to the online assessment of
the health status of aero-engines.

The rest of this paper is organized as follows. In section II,
we briefly reviewKRLS andALD criterion. Section III elabo-
rates on the derivation of PKRLS algorithm. Section IV gives
experimental results on several benchmark datasets to verify
the feasibility of PKRLS. Section V develops a novel multi-
sensor health diagnosis method based on PKRLS. Section VI
summarizes our research work.

II. KERNEL RECURSIVE LEAST SQUARES ALGORITHM
A. FORMULATION OF THE COST FUNCTION
Consider the task of learning a nonlinear function
f : U → R based on a sequence of input-output pairs
{uj, dj}ij=1up to time step i, where U ⊆ Rl is the input
domain, uj is the input vector, and dj is the corresponding
scalar output.

A nonlinear mapping ϕ : U → H associated with a
Mercer kernel is utilized to convert the input data into a high-
dimensional feature space H. One notable property of the
kernel-induced mapping is that the inner product operation
in the feature space can be calculated via a kernel function κ
as follows

κ(u1,u2) = ϕ(u1)Tϕ(u2) (1)

where κ : U × U → R. The Gaussian kernel expressed as
κ(u1,u2) = exp(−‖u1 − u2‖2/2σ 2) where σ denotes kernel
parameter is adopted in this paper.
With the utilization of the kernel-inducedmapping, a linear

model in the feature space is constructed as

f (u) = ωTϕ(u) (2)
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where ω denotes the weight vector in H. Then the learning
task boils down to selecting a weight vector ωi ∈ H that
minimizes the following cost function

min
ωi

Ji =
i∑

j=1

|dj − ωTi ϕ(uj)|
2
+ λ‖ωi‖

2 (3)

where λ is the regularization parameter.

B. ITERATIVE COMPUTATION OF THE KERNEL
MATRIX INVERSION
By setting the gradient of Ji with respect to ωi to zero,
the optimal solution of (3) is obtained as

ωi = 8i[λIi +8T
i 8i]−1di (4)

where Ii is the identify matrix, di = [d1, · · · , di]T , and
8i = [ϕ(u1), · · · , ϕ(ui)]. The weight vector ωi can be also
expressed in the form of a linear combination of the feature
inputs as

ωi = 8iαi (5)

where αi = [λI+8T
i 8i]−1di. The coefficient vector αi is

updated recursively by

αi = Qidi =
[
Qi−1 + r

−1
i zizTi −zir

−1
i

−zTi r
−1
i r−1i

]
(6)

where Qi = [λI+8T
i 8i]−1, zi = Qi−18

T
i−1ϕ(ui), and

ri = λ+ κ(ui,ui)− zTi 8
T
i−1ϕ(ui).

Finally, given an input pattern u, the corresponding output
of the model approximated at the i-th iteration is

fi(u) = ωTi ϕ(u) = α
T
i 8

T
i ϕ(u) =

i∑
j=1

α
j
iκ(uj,u) (7)

where αji denotes j-th element of the coefficient vector αi.
Equation (7) reveals that KRLS generates a radial basis func-
tion network shown in Fig. 1. Once a new training sample
comes in, KRLS allocates a new kernel unit with the new
input as its center. This fact indicates the network size grows
linearly with the number of training data, which incurs the
increasing computation and memory requirement.

FIGURE 1. The network structure generated by KRLS at iteration i .

III. PARSIMONIOUS KERNEL RECURSIVE LEAST
SQUARES ALGORITHM
In order to develop the novel algorithm, three steps should
be taken when a new training sample {ui, di} arrives. During
the first step, the training sample is employed to update the
coefficients of the network. In the following step, ALD crite-
rion is used to test whether this training sample is informative
enough for updating the network structure. If so, ui will
be added into a center set C called the dictionary and the
network size will increase by allocating a new kernel unit
with ui as its center. Otherwise, the network structure main-
tains unchanged. Finally, a pruning approach is adopted to
delete the center with the least importance from the dictionary
when the network size exceeds a pre-set threshold. Based on
the idea mentioned above, the flowchart of the algorithm is
depicted in Fig. 2.

FIGURE 2. The flowchart of PKRLS.

A. REFORMULATION OF THE COST FUNCTION
Assume the dictionary at iteration i is Ci = {cki }

mi
k=1, where

cki denotes the k-th center and mi is the dictionary size. The
approximated model with sparsification is constructed with
the following form

fi(u) =
mi∑
k=1

αki κ(c
k
i ,u) (8)

and the weight vector ωi is expressed as a linear combination
of the feature inputs in the dictionary

ωi =

mi∑
k=1

αki ϕ(c
k
i ) (9)
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Then the cost function is reformulated as

min Ji =
i∑

j=1

|dj −
mi∑
k=1

αki κ(c
k
i ,uj)|

2
+ λ‖ωi‖

2 (10)

By incorporating (9) into (10), we obtain

min
αi

Ji =
i∑

j=1

|dj −
mi∑
k=1

αki κ(c
k
i ,uj)|

2
+ λαTi KB,iαi (11)

where

KB,i =


κ(c1i , c

1
i ) · · · κ(c1i , c

mi
i )

κ(c2i , c
1
i ) · · · κ(c2i , c

mi
i )

...
. . .

...

κ(cmii , c
1
i ) · · · κ(cmii , c

mi
i )


αi = [α1i , α

2
i , · · · , α

mi
i ]T

Furthermore, (11) can be compactly written as

min
αi

Ji = αTi [KP,iKT
P,i + λKB,i]αi − 2dTi K

T
P,iαi (12)

where

KP,i =


κ(c1i ,u1) · · · κ(c1i ,ui)
κ(c2i ,u1) · · · κ(c2i ,ui)

... · · ·
...

κ(cmii ,u1) · · · κ(cmii ,ui)


By setting the gradient of Ji with respect to αi to zero,

the optimal solution of (12) is achieved as

αi = [KP,iKT
P,i + λKB,i]−1KP,idi = QiKP,idi (13)

where Qi = [KP,iKT
P,i + λKB,i]−1. By plugging (13)

into (12), the minimal value of Ji is obtained as

J̃i = −dTi K
T
P,i[KP,iKT

P,i + λKB,i]−1KP,idi (14)

B. COEFFICIENT UPDATE STRATEGY
In order to update the coefficients of the network based on the
new data {ui, di}, the inverse matrix Q in (13) becomes

Qi =

[[
KP,i−1 kib

] [KT
P,i−1
kTib

]
+ λKB,i−1

]−1
=
[
KP,i−1KT

P,i−1 + λKB,i−1 + kibkTib
]−1

=

[
Q−1i−1 + kibkTib

]−1
(15)

where kib = [κ(c1i−1,ui), · · · , κ(c
mi−1
i−1 ,ui)]

T .
By utilizing the matrix inversion lemma

(A+ BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1

with the identifications

Q−1i−1→ A,kib→ B, 1→ C,kTib→ D

we have the following recursive formula

Qi = Qi−1 −
Qi−1kibkTibQi−1

1+ kTibQi−1kib
(16)

Hence, the coefficient vector is recalculated as

αi = QiKP,idi = αi−1 +
Qi−1kib

1+ kTibQi−1kib
ei (17)

where KP,i =
[
KP,i−1 kib

]
, ei = di − kTibαi−1 denotes the

prediction error on the current sample using the approxima-
tion model achieved at the previous time step.

C. STRUCTURE UPDATE STRATEGY
According to ALD criterion, the input ui will be added into
the dictionary, i.e., Ci = Ci−1 ∪ {ui} when it satisfies the
following condition

Di = κ(ui,ui)− kTibK
−1
B,i−1kib > η (18)

where η is a predefined positive constant. If this condition
holds, the inverse matrix Q needs to be augmented as

Qi =
[
KP,iKT

P,i + λKB,i
]−1

=

[[
KP,i
kip

] [
K
T
P,i kTip

]
+

[
λKB,i−1 λkib
λkTib λκ(ui,ui)

]]−1
=

[[
KP,iK

T
P,i KP,ikTip

kipK
T
P,i kipkTip

]
+

[
λKB,i−1 λkib
λkTib λκ(ui,ui)

]]−1
(19)

where

kip = [κ(ui,u1), · · · , κ(ui,ui)]

KP,i =

[
KP,i
kip

]
KB,i =

[
KB,i−1 kib
kTib κ(ui,ui)

]
In order to updateQi iteratively, we consider the following

block matrix inversion identity[
A B
C D

]−1
=

[
A−1 + A−1BVCA−1 −A−1BV

−VCA−1 V

]
(20)

where

V = (D− CA−1B)−1

By applying (20) to (19) with the identifications

Q
−1
i = KP,iK

T
P,i + λKB,i−1 → A

KP,ikTip + λkib → B

kipK
T
P,i + λk

T
ib → C

kipkTip + λκ(ui,ui) → D

the recursion to calculate Qi is achieved as

Qi =

[
Qi 0
0T 0

]
+ r−1i

[
zi
−1

] [
z−1i −1

]
(21)

where

zi = Qi(KP,ikTip + λkib)

ri = kipkTip + λκ(ui,ui)− (kipK
T
P,i + λk

T
ib)zi
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Therefore, the formula of computing αi is expressed as

αi = QiKP,idi (22)

If Di ≤ η, the network structure stays unchanged and let
Ci = Ci−1
αi = αi

Qi = Qi

(23)

D. PRUNING STRATEGY
Here, we define the importance of a center as the increase in
the cost function caused by the removal of the corresponding
kernel unit. Instead of computing the importance of a center
directly, we will elaborate on how to calculate it in a more
efficient way.

To start, the cost function in (12) is modified to

min
αi

J (−j)i = αTi
[
KP,iKT

P,i + λKB,i +3i
]
αi − 2dTi K

T
P,iαi

(24)

where

3i =



011 · · · 01j · · · 01mi
...

. . .
...

. . .
...

0j1 · · · εjj · · · 0jmi
...

. . .
...

. . .
...

0mi1 · · · 0mij · · · 0mimi


and εjj is a positive scalar. Observe that by setting εjj →∞,
α
j
i , which is the coefficient associated with the j-th center is

forced to move toward zero so as to minimize (24). Conse-
quently, this center makes no contribution to the output of
the network, which implies that the corresponding kernel unit
is pruned from the network. Moreover, (24) can be written
compactly as

min
αi

J (−j)i = αTi [KP,iKT
P,i + λKB,i + νν

T ]αi − 2dTi K
T
P,iαi

(25)

where ν =
√
ετ with τ being the j-th column of the mi-order

identity matrix.
Now the explicit definition of the importance of a center cji

is given by

1J (−j)i = J̃ (−j)i − J̃i (26)

where J̃ (−j)i is the minimum of (25) expressed as

J̃ (−j)i = −dTi K
T
P,i[KP,iKT

P,i + λKB,i + νν
T ]−1KP,idi (27)

Substituting (14) and (27) into (26) yields

1J (−j)i = dTi K
T
P,i
[
KP,iKT

P,i + λKB,i
]−1

KP,idi

−dTi K
T
P,i
[
KP,iKT

P,i + λKB,i + νν
T ]−1KP,idi

(28)

Note that by using the matrix inversion lemma, we can easily
obtain

[KP,iKT
P,i + λKB,i + νν

T ]−1

= [KP,iKT
P,i + λKB,i]−1

−
[KP,iKT

P,i + λKB,i]
−1
ννT [KP,iKT

P,i + λKB,i]
−1

1+ νT [KP,iKT
P,i + λKB,i]

−1
ν

(29)

Then, by combining (28) and (29), we can efficiently calcu-
late 1J (−j)i with the equation

1J (−j)i = dTi K
T
P,i

Qiνν
TQi

1+ νTQiν
KP,idi

=
αTi νν

Tαi

1+ νTQiν
=

ε(αji)
2

1+ ετTQiτ
(30)

As the value of ε approaches infinity, 1J (−j)i becomes

1J (−j)i = lim
ε→∞

ε(αji)
2

1+ ετQiτT
=

(αji)
2

τQiτT
=

(αji)
2

qjj
(31)

where qjj denotes the j-th diagonal element ofQi. Considering
that Qi is already available, the computational load of calcu-
lating importance in (31) is acceptable. Obviously, 1J (−j)i is
positive and it is thereby suitable to quantify the importance
of a center. The larger the value of1J (−j)i is, the more contri-
bution the center cji makes to the cost function minimization.
Therefore, all the centers in the dictionary can be ranked
in order of importance. Assume that the dictionary size mi
is larger than a preset threshold M and the j-th center cji is
determined to be the least important. In this case, cji needs to
be pruned from the existing dictionary.

For this goal, we let Ci = Ci\{cj} and prune the j-th row
and column of Q−1i . Accordingly, the inverse matrix Qi and
the coefficient vector αi need to be modified.
Firstly, Qi is written in the following block matrix form

Qi =

Q11 Q12 Q13
QT

12 qjj Q23
QT

13 QT
23 Q33

 (32)

subsequently, a recursive updating scheme for Qi and αi
based on [17] is given by

Qi =

[
Q11 Q13
QT

13 Q33

]
−

1
qjj

[
Q12
QT

23

] [
QT

12 Q23
]

(33)

and

αi = QiKP,idi (34)

where KP,i is updated by eliminating its j-th row vector.
By combining the above three strategies, a parsimonious

KRLS algorithm for online sequential learning is derived. Its
pseudocode is shown in Algorithm 1.
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Algorithm 1 PKRLS Algorithm
Require:

Kernel parameter σ ; Regularization factor λ; A small pos-
itive constant η; A positive integer number M ; An empty
set C;
for i = 1, 2, · · · do
A new data point {ui, di} arrives;
if i = 1 then

C1 = {u1}; Q1 = (λ+ κ(u1,u1))−1; α1 = Q1d1;
else
Compute Qi and αi based on (16) and (17), respec-
tively;
Compute Di based on (18);
if Di > η then

Ci = Ci−1 ∪ {ui};
ComputeQi and αi based on (21) and (22), respec-
tively;

else
Ci = Ci−1; Qi = Qi; αi = αi;

end if
if mi > M then

Compute the importance 1Ji of each center based
on (31) and assume the center cj is the least impor-
tant;
Ci = Ci\{cji};
Update Qi and αi based on (33) and (34), respec-
tively;

end if
end if

end for

E. COMPUTATIONAL COMPLEXITY ANALYSIS
The computational complexity at iteration i for KRLS,
KRLS with ALD criterion (KRLS-ALD), online sequential
extreme learning machine (OS-ELM) [25], PKRLS are listed
in Table 1, where L denotes the network size of OS-ELM.
In KRLS-ALD, if the sample is considered informative based
on ALD, it will be used to update the network structure and
coefficients; otherwise this data will be discarded directly.
From Table 1, we observe the computational burden of each
method is closely related to the dictionary size (or network
size). Hence, the key point is how to reduce the dictionary
size significantly without sacrificing the prediction accuracy.
Remark 1: As for KRLS-ALD, a subset of the training

data are selected to train the model and the remaining data
are purely discarded. Although the computational complexity
is reduced effectively, the accuracy performance deteriorates
inevitably. This is because each training sample contains
more or less useful information and the information conveyed
by the redundant data is omitted. Consequently, KRLS-ALD
fails to deal with the tradeoff between the generalization
performance and the real time adequately.
Remark 2: PKRLS attempts to get rid of this dilemma

by enhancing the utilization efficiency of the training data.

Specifically, all training data are employed to update the
coefficients of the network and the relatively informative ones
are picked up to update the network structure, i.e., add a
new center into the existing dictionary. Moreover, the pruning
strategy further simplifies the network by removing the center
with the least importance. By doing this, fewer centers are
required to construct a compact network with the desired
modeling capability. In real applications, the dictionary size
is much less than the number of training samples. The exper-
imental results in the next section will support this point.
Remark 3: As for OS-ELM, the hidden layer is randomly

generated before training. Due to the random strategy, it often
needs much hidden nodes so as to achieve the desirable
performance. During the training process, the hidden layer is
fixed and only the output weights need to be adjusted at each
iteration. Hence, the computational complexity of OS-ELM
at each iteration keeps constant.

IV. BENCHMARK DATASETS TESTING
In this section, 8 benchmark datasets including
Winequality_red, BodyFat, Concrete, airfoil Self-Noise,
Boston Housing, mg, abalone and mpg are utilized to show
the advantage of our method. The three data sets which
are Winequality_red, Concrete and Airfoil Self-Noise are
obtained from UCI machine learning repository1 and the
others are downloaded from the website.2 The details of each
dataset, containing number of features (#feature), number
of training data examples (trNum) and number of testing
data examples (teNum), are listed in the Table 2. The input
and output variables are normalized into the closed interval
[−1, 1] and [0, 1], respectively. For comparison, we also
evaluate KRLS, KRLS-ALD, KLMS and OS-ELM. KRLS,
KRLS-ALD and PKRLS share the same model parameters,
i.e., kernel parameter and regularization factor, which are
selected using the leave-one-out cross validation strategy on
KRLS. As for PKRLS and KRLS-ALD, the remaining free
parameters are tuned such that they achieve nearly the same
accuracy performance as KRLS.

Our experiments are carried out using Matlab 2013b on
a personal computer with Intel R© CoreTM i5 CPU 3230M
2.6 GHz processor, 8.00 GB memory and Window 7 opera-
tion system. The root mean square error (RMSE) is employed
to measure the generalization performance of all considered
algorithms, which is expressed as

RMSE =

√∑N
j=1 (d̂j − dj)

2

N
(35)

where d̂j is the predicted value, and N is the number of the
testing samples.

The experimental results are listed in Table 3 where trTime
and teTime denote training time and testing time, respec-
tively. KLMS requires the least training time but obtains
the worse generalization performance. This phenomenon is

1http://archive.ics.uci.edu/ml/datasets.html.
2http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/regression.html.
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TABLE 1. The comparison of computational complexity at iteration i .

TABLE 2. Specifications of regression datasets.

due to the fact that the computational complexity of KLMS
grows linearly with the network size while that of the other
algorithms is proportional to the network size at quadratic
scale. PKRLS selects the relatively important samples for
updating the network structure according to ALD criterion
and the pruning strategy further improves the quality of the
centers. Therefore, PKRLS generates the most parsimonious
network structure among all the considered algorithms while
achieves almost the same accuracy performance as KRLS.
PKRLS also consumes the least testing time since it is just
determined by the network size.

Next, we investigate the performance of PKRLS and
KRLS-ALD with different network sizes. The tendency of
RMSE versus the network size onWinequality_red and mg is
depicted in Fig. 3 where the blue dash line produced byKRLS
is treated as the benchmark for comparison. Experimental
results on the other datasets are not provided because of
similar results and limited space. It is easy to observe that
RMSE converges to the benchmark line gradually as the net-
work size grows. PKRLS obtains a much faster convergence
rate than KRLS-ALD. In KRLS-ALD, the samples that are
not informative enough for updating the network structure
are omitted directly, which leads to the accuracy degra-
dation inevitably. In the case of PKRLS, these redundant
data are employed to update the coefficients of the network,

FIGURE 3. RMSE versus network size. (a) Winequality_red, and (b) mg.

improving the utilization efficiency of the training dataset.
This explains why the accuracy performance of KRLS-ALD
is more sensitive to the network size.

V. AERO-ENGINE HEALTH STATE DIAGNOSIS
The operation of an aero-engine is the interaction of various
components (see Fig. 4). With the increase of service time,
gas path components including fan, compressor and turbine
tend to deteriorate inevitably, due to several reasons such as
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TABLE 3. Experimental results on benchmark datasets.

FIGURE 4. A schematic of a turbofan engine.

fouling, erosion of blades and seals, and blade tip clearance.
As a result, aero-engines experience the gradual performance
degradation throughout the whole life cycle. Health diagnosis
attempts to monitor the current and past health status of a

mechanical system according to the observable symptoms
and plays a crucial role in mission scheduling and main-
tenance decision-making [26]. Health diagnosis techniques
are primarily classified into model-based and data-driven
methods. Model-based methods depend upon the availability
of accurate mathematical models of aero-engines. The perfor-
mance degradation of gas-path components can be described
by the variation of health parameters, including thermody-
namic efficiency and flow capacity [27], which are estimated
using sequential Bayesian inferencemethods according to the
available outputs of the system [28]–[30]. Due to advances
in the sensing and communication technologies, data-driven
approaches have been widely utilized to infer the underlying
health status of a monitored system from the data collected
from multiple sensors directly. The basic idea of data-driven
methods is to transform health state diagnosis into a pattern
recognition problem [31]–[33]. To be specific, a nonlinear
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FIGURE 5. The schematic of the proposed multi-sensor health diagnosis approach.

relationship between the input patterns and the target class
labels that represent different levels of degradation perfor-
mance is learned based on a given training dataset and the
trained health state classifier is employed to predict the class
labels for the unknown patterns. The prediction phase is
commonly carried out online so as to identify the health state
of the degraded system continuously according to the real-
time signals acquired from the multiple sensors. In this case,
a classifier with simpler structure obtains faster predicting
speed and becomes more favorable. Considering that PKRLS
is efficient in modeling nonlinearity, it will be a viable choice
for health diagnosis. Hence, a health diagnosis method using
PKRLS is proposed. The novel method includes four steps as
follows (also see Fig. 5)

1) Sensor selection, selecting the sensors closely related
to the performance degradation.

2) Training dataset construction including sensory data
fusion and time window processing.

3) Training a PKRLS classifier based on the training
dataset.

4) Performing health diagnosis using the trained classifier.

A. TRAINING DATASET CONSTRUCTION
1) SENSORY DATA FUSION
In order to provide a better characterization of the degradation
behavior of an aging engine, a simple linear regression
method is used to fuse the multi-dimensional sensory data
yi = [y1i , · · · , y

n
i ] collected at the i-th operation cycle into a

single health indicator (HI) zi, which is defined in the closed
interval [0, 1] [34], [35]. The data fusion model is expressed
as

zi = TyTi (36)

where T ∈ R1×n is the transformation vector. To obtain the
linear model, the sensory data collected at the beginning and
the end of an engineered system’s life are first stored in two

matrices Y1 ∈ Rl1×n and Y0 ∈ Rl0×n, respectively. Then,
the transformation vector T is calculated by

T = (YTY)−1YTZ (37)

where Y = [Y1;Y0], Z = [Z1;Z0], Z1 ∈ Rl1×1 is a unity
vector, and Z0 ∈ Rl0×1 is a zero vector. Once the transforma-
tion vector T is available, the data fusion model converts the
real-time sensor signals into a noisy HI according to (36). The
HI of a system is assumed to vary between 1 and 0 throughout
the whole service life and its value represents different level
of performance degradation. Specifically, a machine starts
from a healthy state with an HI value of 1, and continues
to run until a failure occurs, which lead to the value for
HI reaching 0.

2) TIME WINDOW PROCESSING
The health state of the monitored machine at a certain time
step is determined by the current and historical operating
conditions. Hence, the temporal dependencies between data
points at neighboring time steps facilitates characterizing
the evolution of the health state. Hence, a fixed-size sliding
window that contains consecutive data points is constructed.
To be specific, at the j-th time step, the HIs at the current and
previous time steps are concatenated into amulti-dimensional
feature vector ui = [zi, · · · , zi−l], where l denotes the
window length and it is fed into a health state classifier as
the input.

3) HEALTH STATE CLASSIFIER
Assume that an aero-engine experiences k distinct health
states throughout the whole service life. In order to fulfill this
k-class classification task, k binary classifiers {f j : Rl

→

{0, 1}}kj=1 are trained by PKRLS and each one aims to judge
whether the input data belongs to a certain class. The esti-
mated class label is determined by the index of the classifier
with the maximum output value.
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B. A CASE STUDY IN A TURBOFAN ENGINE
DEGRADATION DATASET
A turbofan engine degradation dataset produced by commer-
cial modular aero-propulsion system simulation (C-MAPSS)
is utilized to illustrate the feasibility of the proposed health
diagnosis method [36]. The C-MAPSS dataset contains four
sub-datasets. Each sub-dataset includes a certain number of
engine units. Each unit is represented by a multivariate time
series produced by collecting the sensory data over a period
of flight cycles. The data for each cycle contains the unit
ID, operating cycle index, 3 values that indicates the oper-
ational settings and 21 sensor measurements contaminated
by high level of unknown noises. Engine unit starts with
different level of initial wear caused by manufacturing and
assembly variations and ends until a failure occurs. The
summary of the C-MAPSS degradation dataset is provided
in Table 4.

TABLE 4. Specifications of four sub-datasets in the C-MAPSS degradation
dataset.

In this work, the 7 sensors including T24, T30, T50, P30,
Ps30, phi and BPR, are selected [34]. It should be noted
that the engine units in sub-datasets #2 and #4 run under six
operational conditions. To eliminate the influence of the vari-
ation in operational conditions on sensory data, six different
linear fusion models related to each operational condition are
trained. The sensory data that locate in different condition
regimes are converted into the HIs using the corresponding
fusion model. Then, the constructed HI time series are trans-
formed into the feature sequence by time window processing
where the window length l is set to 7. These run-to-failure
data are labeled with 4 distinct health states according to their
proximity to the failure time [32]. Finally, the whole dataset
is divided into training and testing datasets. The health state
classifier is trained based on the training dataset and validated
using the testing dataset.

For the sake of comparison, the health state classifier is
also approximated by various sequential learning algorithms
and the classification results are listed in Table 5. PKRLS
achieves the highest correct classification rates with the
smallest network among all considered algorithms, which
indicates that PKRLS is efficient and effective in infer-
ring the latent health status of the aero-engines. Moreover,
PKRLS also achieves the best real-time performance dur-
ing the testing phase, which facilitates its application for
estimating the health state of the complex systems online.
In Fig. 6, the tendency of the classification accuracy versus
the network size is presented. Compared with KRLS-ALD,

FIGURE 6. RMSE versus network size. (a) FD001, (b) FD002, (c) FD003 and
(d) FD004.

PKRLS requires much less kernel units when reaching the
blue dash line, which indicates the efficacy and feasibility of
the pruning strategy.
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TABLE 5. Classification results on C-MAPSS degradation dataset.

VI. CONCLUSION
In online scenarios where the computational resources and
memory storage are commonly limited, it is necessary to keep
the network size upper bounded. Furthermore, a compact
network can accelerate the learning speed at each iteration.
Therefore, we propose a novel PKRLS algorithm by devising
the effective pruning procedure. This pruning method can
rank the centers in order of importance and remove the
least important one from the existing dictionary, thereby
curbing the network growth. The importance criterion is
defined as the contribution of the center to the cost function.
The computational burden of calculating the importance
criterion is alleviated significantly by a speedup scheme.
In addition, the data that are not informative enough for
updating the network structure are utilized to adapt the
coefficients of the network, which improves the utilization
efficiency of the whole training dataset. Since PKRLS can
adapt the learning strategies flexibly according to different
training samples, it makes a good compromise between
the computational complexity and the approximation
accuracy.

Due to the wide utilization of multiple sensors for con-
dition monitoring, massive data collected from mechanical
systems become available. Nevertheless, how to fully capture
the degradation pattern based on the large amount of sensory
data in an efficient manner is an intricate problem. In view
of its efficient learning procedure, PKRLS is used for health
diagnosis. A case study in a turbofan engine degradation
dataset shows the health state classifier based on PKRLS can
recognize the health state with the satisfactory accuracy. It is
noteworthy that the classifier is represented by the parsimo-
nious network structure, which facilitates the application of
the novel diagnosis method for estimating the health state of
a system in real time.
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