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ABSTRACT The morphology, symmetry, and volume of brain tissue are good indicators for measuring
the central nervous system disease progression. The objective of this paper is to segment cerebrospinal
fluid (CSF), gray matter (GM), and white matter (WM) automatically with multi-modality magnetic
resonance scans. A novel coarse-to-fine method is proposed to segment CSF, GM, and WM using
two cascade 3D convolutional neural networks. The first densely connected fully convolutional network
(DC-FCN) is designed with feature reuse, which can take full advantage of the spatial information and
alleviate computer memory limitation. The second 6-CNN is designed to correct boundary voxel, which can
further reduce computational cost while improving the segmentation accuracy. As of today, our method ranks
the 3rd on the MRBrainS13 challenge, outperforming most of the participant methods when using available
input modalities (T1, T1-IR, and T2-FLAIR). In addition, we also verify the proposed framework on the
IBSR dataset, which demonstrates the effectiveness of the boundary correction strategy. Through accurate
segmentation of brain tissue, neuroimaging physicians can be assisted in assessing disease progression and
even localizing lesions.

INDEX TERMS Multi-modality, coarse-to-fine, 3D convolutional neural networks, cascade framework.

I. INTRODUCTION
Neuroimaging is an indispensable examination instrument
to measure brain diseases in clinical practice. magnetic
resonance imaging (MRI) is employed fashionably owing
to its security, ability to represent soft tissues and
visualization in three-dimensional. It is the only imaging
technique that can provide the most information at a time
currently, i.e. multi-modality. Nowadays, numerous tool-
boxes have been presented for the analysis of multi-modality
MR scans [1]–[3].

The anatomic region labeling that is a prerequisite for
the quantitative analysis of neuroimaging data attracts much
attention. Generally, a human brain can be segmented into
three main tissues, involving cerebrospinal fluid (CSF), gray
matter (GM) and white matter (WM) [4], which behaves a
good indicator for measuring the disease progression [5].
For example, brain tissue atrophy is a common manifestation

of neurological disorders, such as Alzheimer’s [6] and
Huntington’s disease [7], multiple sclerosis [8], bipolar
disorder or schizophrenia [9]. Consequently, quantitative
characterization of brain tissue in MRI is conventional for the
diagnosis of neurological diseases.

However, the segmentation of CSF, GM and WM in
MRI is a challenging task. On one hand, MRI-related
challenges embody numerous inevitable artifacts in brain
images, such as partial volume effect (PVE), intensity non-
uniformity (INU) and noises. On the other hand, subject-
related challenges subsume personalized cortical thickness
and morphology of the cortex, which blurs the boundary
among brain tissues.

To relieve the workload on experts while improving the
reliability of the radiologist assessment, a great effort has
been devoted to develop the automated segmentation meth-
ods [10]. Atlas-based method [11], [12] is designed upon
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the assumption that the spatial relationships among images
complying with their anatomy, which is the most popular
approach for brain image segmentation [13]. To improve the
accuracy of segmentation, multi-atlas [14] and probabilistic-
atlas [15] have been proposed in succession, which virtually
aggravates the computational burden on the model. There-
fore, a trade-off must be considered between fitting preci-
sion and computational cost [16], [17]. In addition, machine
learning methods are also potential for medical image anal-
ysis [18], [19], including markov random field (MRF)
[4], [20], [21], random forest (RF) [22], [23], support vector
machine (SVM) [24], [25] and their combinations [26], [27].
However, traditional machine learning methods perform not
well in generalization and a set of imaging features which
require specific expertise in anatomy is necessary.

It is noticeable that deep learning methods behave best
when it comes to static spatial information extraction. Typ-
ically, convolutional neural networks (CNNs) have shown
its superiority in several computer vision tasks, such as the
ImageNet challenge [28]. Recently, CNNs are also preva-
lent in medical image analysis [29] owing to its flexibility.
Moeskops et al. [30] presented a multi-scale CNN framework
fusing multiple patch size and multiple convolution kernel
size. It simplified the tissue segmentation into a classifica-
tion problem by extracting the patch in voxel and judging
which tissue it belongs to. Subsequently, Nie et al. [31]
employed fully convolutional networks (FCNs) to segment
the isointense phase brain MR images. It performed effi-
ciently because it avoids the problem of duplicate storage
and computational convolution caused by numerous voxel.
Brosch et al. [32] proposed a convolutional encoder network
(CEN) by constructing two interconnected pathways, i.e.
convolutional and de-convolutional pathway. CEN performed
pre-training on the input images using restricted boltzmann
machines (RBMs). However, a higher requirement is put
forward for computer on the efficient partitioning of network
architectures.When the depth of the network reaches a certain
level, the computer cannot model successfully due to the
limited memory-bound.

To accurately and efficiently segment brain tissues from
volumetric MRIs, a novel coarse-to-fine segmentation frame-
work is proposed by synthesizing the correlation between
context-based and voxel-based learning method. Specifi-
cally, our pipeline consists of two cascade stages. The first
stage is coarse segmentation, where the densely connected
fully convolutional network (DC-FCN) [33] is designed in
combination with convolution and deconvolution operations.
It performs down-sample before traditional convolutional
operations to decrease the size of data, which lowers the com-
puter requirements as well as achieves significant accelera-
tion. The second stage is boundary correction in which a fine
boundary definition is performed. It amends the boundaries
of the tissues in voxel level and yields the final segmentation
results. To the best of our knowledge, this is the first work to
segment brain tissue using cascaded CNNs.

The main contributions of this work are summarized as
below:

(1) A coarse-to-fine cascade segmenting framework is pro-
posed taking into account not only the overall brain but
also the detail of the boundary between brain tissues.

(2) DC-FCN with three-dimensional convolution and
deconvolution operations is constructed for the coarse
brain tissue segmentation. It achieves better perfor-
mance with fewer parameters through repeated utiliza-
tion of features.

(3) The concept of boundary correction is presented. Only
a very small number of voxel are selected (∼5% of
total brain volume) for the boundary correction
model, which decreases the redundancy of patches
noticeably.

(4) The generalization capabilities of our cascade frame-
work are illustrated not only on the internet brain seg-
mentation repository (IBSR) datasets, but also with an
online assessment in the MR brain image segmentation
challenge (MRBrainS).

The rest of this paper is organized as follows. The proposed
framework is presented in Section II, where we describe
the detailed cascade framework. In Section III, the multiple
databases are described, along with the experimental results.
The discussion is presented in Section IV and the main con-
clusion is drawn in Section V.

II. METHOD
An overview of the proposed segmentation framework is
illustrated in Figure 1. The brain tissue is automatically seg-
mented in a cascaded scheme, including preprocessing and
segmentation framework. This work is detailed as follows:

A. PREPROCESSING
Considering the MRI-related and subject-related challenges
described above, specific preprocessing steps are required
before brain tissue segmentation. With the extensive devel-
opment of deep learning, the impact of some preprocess-
ing steps on the final segmentation performance is neg-
ligible gradually [34]. Therefore, only the skull stripping
and intensity normalization are carried out for structural
MR scans.

1) SKULL STRIPPING
From the perspective of images, non-brain tissue in structural
MRI will affect the accurate segmentation of brain tissue
seriously, such as scalp, skull and so on. In this paper, the skull
stripping is achieved by BET [35] from FSL software.

2) INTENSITY NORMALIZATION
From the perspective of intensity, it should be mapped into a
standard scale. For each scan, it first subtracts its mean and
then divides its variance, which can speed up the procedure
of model training as well.
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FIGURE 1. Overview of the proposed segmentation pipeline.

FIGURE 2. A simple schematic of the DC-FCN used in coarse segmentation.

B. SEGMENTATION FRAMEWORK
The main challenge of brain tissue segmentation is the
determination of boundaries between tissues. Accordingly,
a pipeline with two cascade components is designed, which
includes DC-FCNs that produce overall segmentation maps
and CNNs that impose boundary correction on the output
of DC-FCNs and produce the fine segmentation labels. The
detail of segmentation framework is revealed in Algorithm 1.

1) COARSE SEGMENTATION
In computer vision, the extraction and utilization of features
affect the performance of models directly. In the field of
medical image analysis, the width and depth of the net-
work are usually limited to computer memory, resulting in
infinite precision. Densely connected convolutional network
(DenseNet) takes advantage of features by short connec-
tions to enhance the transmission between features, mak-
ing the network narrower with fewer parameters. Different
from the residual network [36], DenseNet concatenates all
the layers on the premise of guaranteeing the maximum

transmission of information among layers. Each layer in
DenseNet has direct access to gradients from the loss func-
tion and the original input signal, leading to an implicit
deep supervision. It improves the delivery of information
and gradients throughout the network, avoiding the short-
coming that the residual network is easy to trap in the local
optimum.

The DC-FCN is designed referring to the architecture of
U-net [37] for rough segmentation in brain MR images.
As shown in Figure 2, it consists of two symmetric
pathways, that is, contracting-pathway with convolutional
operations [38] and expansive-pathway with deconvolution
operations [39]. In order to improve the accuracy as well as
has fewer parameters, the kernel size in the convolutional
layer and deconvolution layer is set to 3∗3∗3, batch normal-
ization (BN) is used after each convolutional operation and
rectified linear unit (ReLU) is used as the activation function.
In the last layer, the feature map is converted to the result
with a specific depth, so its kernel size is set to 1∗1∗1 and the
activation function is soft-max.
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Algorithm 1 Hybrid Scheme for Segmentation Framework
Given notations
(Nx , Ny, Nz): size of input volume
L1: the depth of global network
L2: the depth of classification network
U(•): 3D up-sampling
D(•): 3D down-sampling
B(•): Boundary voxels selection
P(•): Record the position of the boundary voxel
A(•): Substitute the value of the corresponding position
Input
I ∈ RNx×Ny×Nz : T1-weighted volume
Oi1(•): the operation in i-th layer of coarse segmentation
model
Oi2(•): the operation in i-th layer of classification model
Si: the output of i-th layer of coarse segmentation model
SSi: the voxel output of i-th layer of classification model
SF ∈ RNx×Ny×Nz : Final segmentation map
Phase 1 - Coarse Segmentation
1. fori= 1 :L1 do
2. if i= 1 then
3. S0 = D(I)∈ RNx/2×Ny/2×Nz/2

4. else if i=L1 then
5. SL1 = U( Si−1)
6. else
7. Si← Oi1( W

i
1, Si−1)

8. end if
9. end for
10. B = B( SL1)
11. P = P( B, SL1 )
Phase 2 – Boundary Correction
12. SS0 = B
13. for i = 1:L2 do
14. SSi← Oi2( W

i
2,SSi−1)

15. end for
16. SF = A(SL1, P, SSL2)
17. return SF

The DC-FCN performs an overall analysis of the input
image with an output size that is consistent with the input
image. Therefore, we design a loss function based on the dice
similarity index to achieve the coarse segmentation of brain
tissue as shown in Eq.(1).

E1 = −
1
n

∑
x

∑
k

(1 - 2
yx1,k × ŷ

x
1,k∣∣∣yx1,k ∣∣∣+ ∣∣∣ŷx1,k ∣∣∣ )+

λ

2n
w2
1, (1)

where yx1,k represents the probability prediction of image x
on category k(k ∈ {1, 2, 3, 4}) in the first stage, w1 denotes
the weight in the DC-FCN, and λ is regularization coefficient
which is set to 0.05 in this study.

2) BOUNDARY CORRECTION
It is particularly difficult to determine the boundary between
tissues in view of the mentioned subject-related challenges.

Accordingly, the cascade pipeline is proposed to overcome
the difficulties of tissue segmentation by adjusting boundary
voxel iteratively.

The detail of boundary voxel selection are summarized
in Algorithm 2.

Algorithm 2 Boundary Voxels Selection
Given notations
(Vx ,Vy,Vz): size of volume of interests
Input
I ∈ RNx×Ny×Nz : T1-weighted volume
Sc ∈ RNx×Ny×Nz×4: Rough segmentation results
Output
B: Filtered border dataset
P: the location dataset corresponding to B
Boundary Voxels Selection
1. B = [ ]
2. for c = {i, j, k} in I do
3. n ← the tissue category of the voxel from Sc at

location c
4. v← Extracting volume centered at c and size with

(Vx ,Vy,Vz) from I
5. p← Extracting rough segmentation centered at c

and size with (3, 3, 3) from Sc in channel n
6. if there is 0 in p then
7. Append volume v to border dataset B
8. Append location c to location dataset P
9. end if
10. end for
11. return B,P

The set of boundary patches B is stacked as B =[n ×
v × v × v], where n denotes the number of the selected
training patches and v denotes the size of the selected patches.
Meanwhile, the flow of boundary correction is depicted
in Figure 3a vividly. The small network is considered to
prevent overfitting because of lower variation in tissues in
MRI-based patches. Here, a 6-layer convolutional neu-
ral network (6-CNN) is designed for boundary correction
(see Figure 3b). 6-CNN contains four stacks of convolution
operation with a valid mode, followed by a fully-connected,
and the soft-max classification layer in the last layer. Among
them, the soft-max layer returns four categories which indi-
cate the probability of each voxel belongs to the brain tissue.

In this issue, we simplify the boundary correction to a
classification problem, recognizing the categories of tissues
which the center voxel belongs to. Then, the typical cross-
entropy is used as the loss function to optimize the classifica-
tion model, as shown in Eq.(2).

E2 = −
1
n

∑
x

∑
k

Ckyx
′

2,k ln ŷ
x ′
2,k +

λ

2n
w2
2, (2)

Where Ck indicates the equilibrium coefficient on k-th tis-
sue to compensate for the imbalance in the class gap.
yx
′

2,k represents the probability prediction of voxel x ′ on
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FIGURE 3. (a) The pipeline for boundary correction and the flow of testing is represented in blue box. (b) The proposed CNN model is
trained using the multi-modality 3D voxels selected from boundary filter.

category k(k ∈ {1, 2, 3, 4}) in the second stage, w2 is the
weight in the 6-CNN.

C. IMPLEMENTATION
Considering the limited training data, we adopt leave-one-
out method to optimize as well as validate the proposed
cascade architecture. The first DC-FCN is optimized using
the stochastic gradient descent (SGD) with learning rate of
0.03, decay of 1E-4, and momentum of 0.6. And the second
6-CNN is optimized by adaptive moment estimation
(Adam) [40] with learning rate of 1E-4.

The proposed method is implemented in the Python lan-
guage, using Keras based on tensorflow libraries. All exper-
iments are performed on a single GTX 1080 GPU with
8 GB RAM memory.

III. EXPERIMENTS AND RESULTS
A. MICCAI 2013 MR BRAIN IMAGE SEGMENTATION
DATA
The MRBrainS challenge is composed of 20 subjects
acquired on a 3.0T Philips Achieva MR scans at uni-
versity medical center Utrecht (Netherlands) [41]. Multi-
sequence MRI brain scans, including T1 (TR:7.9ms,
TE:4.5ms), T1-IR (TR:4416ms, TE:15ms, TI:400ms), and
T2-FLAIR (TR:11000ms, TE:125ms, TI:2800ms), were
acquired and used for the challenge. The rigid registration
using Elastix [42] and bias correction using SPM8 [43]
were performed for all scans. The voxel spacing of all
provided sequences was 0.96×0.96×3.00mm3 after such
preprocessing.
• Training dataset: 5 typical samples (2 male + 3 female)
withvarying degrees of atrophy andwhite matter lesions,
and the corresponding manual annotations are provided.

• Testing dataset: 15 samples (8 male + 7 female) with
labelsheld out by the organizing committee for fair and
objective evaluation.

EVALUATION
To evaluate the segmentation results, the committee employs
three type of measures: voxel-, distance-, and volumetric-
based metrics. The dice similarity coefficient (DSC) [44]
quantifies the spatial overlap between the manual (M ) and
the automatic (A) segmentation result. A larger value denotes
a better performance. It is defined as:

DSC(M ,A) =
2|M ∩ A|
|M | + |A|

× 100%. (3)

The boundary distance between the ground truth and auto-
matic segmentation is depicted by the 95th-percentile of the
Hausdorff distance (HD). On this basis, the K-th ranked
distance [45] is used to suppress the outlier, which avoids the
conventional Hausdorff distance is too sensitive to outliers.
It is defined as:

h95(M ,A) =95 K th
m∈Mmin

a∈A
||a− m||, (4)

where 95Kth
m∈M is the K-th ranked minimum euclidean dis-

tance with K/Nm = 95%, M and A represent the boundaries
set of manual annotation M and automatic output A, respec-
tively. The lower the HD, the higher the proximity between
ground truth and automatic segmentation. The HD is defined
as:

HD(M ,A) = max(h95(M ,A), h95(A,M )). (5)

The third pattern is the absolute volume difference (AVD),
it is defined as:

AVD(M ,A) =
|VM − VA|
|VM |

× 100%, (6)

where VM and VA represent the volume of the segmenta-
tion result and the reference standard, respectively. Similar
to HD(M , A), a smaller value of AVD(M, A) indicates a better
segmentation performance.
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TABLE 1. Segmentation results on the MRBrainS13 test dataset. Mean DC, HD and AVD split by CSF, GM and WM tissues as well as rank and the final
scores are shown. The best value of each score is depicted in bold.

Overall, the committee calculates a final score for each
component (CSF, GM and WM) and each evaluation mea-
sure (DSC, HD, and AVD). Specific details of the assess-
ment can be found in the official challenge website1.
(http://mrbrains13.isi.uu.nl/details.php)

EXPERIMENTAL DETAILS
Similar to [46] and [47], we rotate 180 degrees along the
axial plane first, and flip the rotated and original volumes
horizontally. The 3-channel convolutional neural networks
are constructed from the provided T1, T1-IR and T2_FLAIR
modality. In this experiment, the cerebellum and brainstem
are often misclassified to GM and WM due to the limited
training samples. Hence, two different pipelines are trained
for this particular experiment:

(i) One trained with four-categories labels by attributing
the cerebellum and brainstem to the background.

(ii) One trained with five-categories labels by combin-
ing cerebellum and brainstem into an additional
category.

In the second stage, the boundary voxel of GM is down-
sampled to balance the training data, generating a boundary
dataset of 2,076,098 patches. And the equilibrium coefficient
Ck in eq.(2) is set to 1. The number of epoch is set to 500 in
coarse segmentation and 10 in boundary correction.

RESULTS
Table 1 presents the mean DSC, HD, AVD in CSF, GM, WM
and overall scores of the proposed pipelines. In this paper, we
compare the proposed method with other 4 out of 50 other
participants who upload their segmentation results. As of
today, our strategy ranks in the third position of the challenge,
outperforming the most of participant methods.

So far, the proposed pipeline ranks second place in terms
of WM segmentation while ranking third in GM and eleventh
in CSF. Table 1 lists the performance of some representative
team and its ranking when we submit the results. As shown
in Table 1, our proposed pipeline depicts a lower AVD score
whether in CSF, GM or WM. However, other approaches
obtain better performance in HD such as the similar work pro-
posed by MMAN and HDN. For method SJCE, it performs
poor in DC and HD although obtained lowest AVD in GM.

A complete ranking of all the participant can be referred to the
challenge website2. (http://mrbrains13.isi.uu.nl/results.php)

B. THE INTERNET BRAIN SEGMENTATION REPOSITORY
DATA
The center for morphometric analysis at Massachusetts
General Hospital provides the 1.5T MR brain data sets
which manual segmentation were provided in the website3

(http://www.cma.mgh.harvard.edu/ibsr/). A limitation of the
IBSR database is that sulcal cerebrospinal fluid voxel are
considered as GM. For convenience, we distinguish them as
SCFS and SGM.
• IBSR-18 dataset: It is composed of 18 T1-weighted
MR images (Age: 38.5±23.3, 14 males and 4 females)
from healthy crowds with manual-guided expert
segmentation. The voxel size of each scan was
0.94×1.5×0.94mm3. The preprocessing steps of MR
brain images, such as skull-stripping, image registration,
have been performed [48].

• IBSR-20 dataset: It contains 20 subjects (Age:
29.1±4.81, 10 males and 10 females) with T1-weighted
MR Image data. All data were normalized and then
resliced into 1.0 mm axial, and 1.0 mm sagittal, 3.0 mm
coronal scans.

EVALUATION
For comparison with other methods, we just apply the DSC
as the evaluation criteria since it is the most common metric.

EXPERIMENT DETAILS
For each database, only T1 image is delivered to the cascade
model. For IBSR-18, the CSF with and without sulcal are
available. Accordingly, we construct one coarse segmentation
and two specific boundary correction models, achieving the
transfer learning from SCSF to CSF. For IBSR-20, only
labels with SCSF are provided, which negatively affects some
methods.

In the IBSR dataset, the category imbalance is still serious
although the up- and down-sampling is used. Therefore, the
corresponding equilibrium coefficients Ck in eq.(2) is set for
each model, as detailed in Table 2. The number of the epoch
is set to 100 in coarse segmentation and 10 in boundary
correction.
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FIGURE 4. DSC of the SCSF, GM and WM categories, measured in each subject in IBSR-18, without (blue) and with (green) BoC.

FIGURE 5. DSC of the SCSF, GM and WM categories, measured in each subject in IBSR-20, without (blue) and with (green) BoC.

TABLE 2. Equilibrium coefficients for each boundary correction model on
the IBSR dataset.

RESULTS
Figure 4 depicts a quantitative evaluation of our pipeline for
each subject on the IBSR-18 database. Relying on obtained
results, it can be observed that the performance of tissue
segmentation can be improved by 1∼2% approximately after
boundary correction. Meanwhile, the mean DSC scores for
all evaluated methods are presented in Table 3. As seen
in Table 3, our proposed approach clearly outperforms the
rest of available tissue segmentation methods.

Table 4 illustrates the mean DSC value obtained on the
IBSR-20 database. It is noticeable that 5∼6% improvement
approximately in DSC after boundary correction.Meanwhile,
Figure 5 reveals the effect on the boundary correction by
characterizing the performance of each evaluated sample in
the first and second stage. This phenomenon also illustrates
the effectiveness in improving the robustness of tissue seg-
mentation of the boundary correction because it compensates

TABLE 3. DSC results (mean±standard deviation) obtained on the
IBSR-18 dataset with SCSF for each method.

TABLE 4. Results obtained on the IBSR-20 dataset with SCSF for the DSC
(meanstandard deviation).

for the uneven performance in the coarse segmentation stage.
Overall, the cascade framework performs more stable after
boundary correction.

Comparing with the state-of-the-art approaches, we
present the results in Table 3 and Table 4. Atlas of classi-
fiers (AoC) is an informative approach by allowing a sta-
tistical summary of the annotated datasets. AoC achieved
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higher accuracy than coarse segmentation model DC-FCN
and even surpass DC-FCN+6-CNN on GM and WM of
IBSR-20 dataset. However, the proposed convolutional neu-
ral cascade model realizes a smaller variance and is far
superior to other methods in SCSF segmentation. From the
aforementioned analysis, the proposed framework performs
better than the other evaluated methods.

IV. DISCUSSION
Clinically, the segmentation of brain tissue is of great sig-
nificance in the diagnosis of nervous system disease. In this
paper, a deep learning computational architecture is proposed
to segment brain tissue with application to 1.5T and 3T MR
images. The proposed pipeline is made up of two CNNs in a
cascade manner, where the first network (DC-FCN) segment
the brain tissue coarsely while the second network (6-CNN)
iteratively correct the boundary voxel which is produced by
the previous stage. Although the methods based on CNNs
have been applied in brain MRI widely [52]–[54], the idea
of boundary correction has not been mentioned yet. From
our perspectives, the proposed coarse-to-fine segmentation
framework is an interesting contribution to the present study.
It is consistent with the habit of manual segmentation and
increases the segmentation accuracy significantly. Experi-
mental results show that the proposed framework achieves
high-precision segmentation of brain tissue, ranking in the
third place in the MRBrainS13 challenge currently. Besides,
additional experiments with the IBSR database confirm the
effectiveness of the proposed framework as well. Overall,
the accuracy of brain tissue segmentation is not only analyzed
in patients but also verified in the normal human.

In the proposed coarse segmentation network, DC-FCN,
each dense block is an iterative cascade of previous fea-
tures. It can be viewed as an extension of residual network,
performing the iterative concatenate of the previous fea-
ture map. There are some appealing changes in application:
(1) parameter efficiency, a smaller growth rate makes the net-
work narrower and parameters reduced significantly, which
effectively decreases its compute and suppresses over-fitting.
(2) feature reuse, all layers can access their previous layers
easily so that previously calculated feature map information
can be reused easily. (3) feature transfer, enhanced feature
transfer facilitates the deep-supervised training. The cross-
layer connectivity and multi-scale monitoring of DC-FCN
make it ideal for integral tissue segmentation.

AlthoughDC-FCNhas achieved brain tissue segmentation,
the processing of boundary is not elaborate enough, resulting
in blur and smooth in tissue boundaries and failing to meet
the clinical application requirements. The introduction of cas-
cade boundary correction can solve the mentioned issue well.
It starts from details and realizes the segmentation correction,
taking the voxel as focus and extracting characteristics around
the voxel. In this article, a 6-layers convolutional neural
network is designed to avoid over-fitting caused by lower
variation in structural MRI scans. Adequate experiments [58]
have proved that the smaller network can meet our demands

FIGURE 6. Mean DSC with respect to the number of iteration used for
migrating from SCSF to CSF on IBSR-18 dataset. For observation, the
value of CSF corresponds to the left scale while GM and
WM correspond to the right.

and decrease the time it takes to organize the segmentation
while ensuring accuracy.

Nevertheless, different diseases have various criteria for
organizational segmentation, so the migration among models
is particularly important. In the cascade algorithm proposed
in this paper, this idea can be achieved by constructing a
major coarse segmentation network and two boundary cor-
rection networks. For IBSR-18, the CSF with and without
sulcal are available. Accordingly, one coarse segmentation
and two specific boundary correction models are constructed,
which realizes a transfer learning from SCSF to CSF. In the
migration study, Figure 6 depicts the variation of the DSC
with the number of iteration for each tissue. Judging from
the transition from SCSF to CSF, CSF is the most affected
tissue by the boundary model. And the accuracy of GM
and WM tissue show a slight downward trend after the first
iteration. Overall, themigrationmodel has the comprehensive
performance when the number of iteration is 3.

With the design of coarse-to-fine cascade pipeline, we
attribute to keep two goals in mind: accuracy and efficiency.
For automated tissue segmentation systems for clinical prac-
tice, both of them have equal significant impact on clinical
application. Figure 7 and Figure 8 illustrate the output in each
segmentation stage of samples from the MRBrainS13 and
IBSR dataset, respectively. Comparing the results before and
after the boundary correction, there is a significant improve-
ment on the segmentation accuracy. However, the trade-off
between segmentation and correction is an important factor
influencing the performance. In Figure 8, red circles represent
the example of under-correction, and black circles indicate
the case of over-correction. After many trials, the comprehen-
sive performance is the best when the boundary is corrected
three times.

The proposed automatic tissue segmentation architecture
has great significance in clinical practice. It has been proven
that the morphology of GM is associated with many central
nervous system diseases. For example, epilepsy. The blurring
boundary between GM and WM is an important biomarker
of focal cortical dysplasia (FCD) II [57], which contributes
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FIGURE 7. Tissue segmentation results on the third training subject of MRBrainS13 dataset (viewed in axial planes). (A) T1 image.
(B) T1_IR image. (C) T2_FLAIR image. The tissue segmentation results of manual annotation(D), coarse segmentation(E) and
the 1-3th iteration boundary correction(F-H) are visualized with green(CSF), yellow(GM), red(WM).

FIGURE 8. Segmentation examples on the best(upper) and worst(bottom) of IBSR-18 dataset.
(A) T1 image. Manual annotation of SCSF(B) and CSF(C), coarse segmentation(D), corrected
results corresponding to SCSF(E) and CSF(F) are displayed in coronal view. Under-correction
area is circled in black and over-correction in red.

to the pathological diagnosis of the disease. In addition,
the symmetry and atrophy of tissue are the references for
locating the epileptogenic focus. In the future, we will delve

into the specific clinical relationship between brain tissue and
nervous system diseases, and assist in disease diagnosis and
preoperative evaluation.
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V. CONCLUSION
Automated tissue segmentation is still an issue of great
concern because it is important for assessing the progress
of diseases. To relieve the pressure of computation under
the premise of accuracy, a two-stage cascade architecture is
proposed to segment tissues automatically from volumetric
medical data with application to 1.5T and 3T MR scans. The
first stage DC-FCN classifies the imaged tissue roughly and
the second stage performs detailed correction according to
the boundaries produced in the previous phase. Competitive
performance is obtained on MRBrainS13 online evaluation
as well as IBSR self-evaluation. This is an implication that
the proposed framework is applicable to both normal and
diseased subjects, that is, it generalizes well.
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