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ABSTRACT Sparse coding, which aims at finding appropriate sparse representations of data with an
overcomplete dictionary set, has become a mature class of methods with good efficiency in various areas,
but it faces limitations in immediate processing such as real-time video denoising. Unsupervised deep neural
network structured sparse coding (DNN-SC) algorithms can enhance the efficiency of iterative sparse coding
algorithms to achieve the goal. In this paper, we first propose a sparse coding algorithm by adding the idea
‘‘weighted" in the iterative shrinkage thresholding algorithm (ISTA), named WISTA, which can enjoy the
benefit of the lp norm (0 < p < 1) sparsity constraint. Then, we propose two novel DNN-SC algorithms by
combining deep learning with WISTA and the iterative half thresholding algorithm (IHTA), which is the l0.5
norm sparse coding algorithm. Furthermore, we present that by changing the loss function, the DNN can be
learned supervisedly and unsupervisedly. Unsupervised learning is the key to ensure the DNN to be learned
online during processing, which enables the use of the DNN-SC algorithms in applications lacking labels for
signals. Synthetic data experiments show that WISTA can outperform ISTA and IHTA. Moreover, the DNN-
structured WISTA can successfully achieve converged results of WISTA. In real-world data experiments,
the procedure of utilizing DNN-SC algorithms in image denoising is first presented. All DNN-SC algorithms
can accelerate at least 45 times while maintaining PSNR results compared with their corresponding sparse
coding algorithms. Finally, the strategy of utilizing DNN-SC algorithms in real-time video denoising is
presented. The video-denoising experiments show that the DNN-structured ISTA and WISTA can conduct
real-time video denoising for 25 frames/s 360× 480 pixels gray-scaled videos.

INDEX TERMS Sparse coding, deep neural network, weighted iterative shrinkage thresholding algorithm,
unsupervised learning, real-time video denoising.

I. INTRODUCTION
The concept of sparse representation, which concentrates on
presenting sparse estimations from underdetermined linear
measurements, has proven its efficiency in signal processing
for over ten years [1], [2]. Sparse coding considers a certain
condition where one searches for sparse representations of a
signal from a predefined overcomplete set of vector bases.
The idea of sparse representation comes from the fact that
most real-world signals and data can be represented by a lin-
ear combination of a few representative elements from a dic-
tionary base in certain signal models. To construct effective
sparse coding algorithms, many researches have made effort
to design appropriate dictionary bases and develop efficient
algorithms to reconstruct signals from noisy and incomplete
measurements. As a consequence, various signal processing
applications have benefited from employing sparse coding

such as image denoising [3]–[5], inpainting [2], [6], super-
resolution [7], [8], etc..

Focusing on the object of sparse coding, one is required
to recover a sparse signal z ∈ Rn from a lower-dimensional
measured signal x ∈ Rm, n > m, in a linear relationship as
x = Dz+n, where D ∈ Rm×n is a dictionary matrix, and n ∈
Rm is the measurement noise. Since D is overcomplete, this
signal reconstruction task is ill-posed with infinite solutions
if there is no restriction on z. In some applications, to find
a sparsest one in the infinite solutions can be a meaningful
mode and can make the problem well-posed, which is the
essence of sparse coding. Therefore, the optimization prob-
lem is commonly used to search for the optimal solution of
the linear signal model,

min
z
‖z‖q subject to ‖x− Dz‖2F ≤ ε, (1)
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where ‖z‖q is the sparsity constraint. Among the various
possible values for q, the sparsest solution can be guaranteed
when q = 0, where the l0 norm counts the number of nonzero
entries in z. However, this is a combinatorial optimization
problem, where searching for an accurate sparse represen-
tation with large n is computationally prohibited [2]. One
typical alternative method is using a greedy algorithm such
as orthogonal matching pursuit (OMP) [9], which can always
find sufficiently sparse solutions but faces the problem of
high computational complexity, though it is not computation-
ally prohibited, with large data size. Another idea to solve the
optimization problem relies on relaxation-based approaches.
For example, the l1 norm, where q = 1, is often selected
as the sparsity constraint for the optimization problem, e.g.,
the Iterative Shrinkage Thresholding Algorithm (ISTA) [10]
and Basis Pursuit (BP) [11]. The l1 norm is attractive because
it is a convex problem and can achieve reasonable perfor-
mance. Subband Adaptive Iterative Shrinkage Thresholding
Algorithm (SISTA) [12], [13], a modified version of ISTA,
can accelerate the convergence via processing of ISTA in
subbands. The developed algorithm in the paper, as detailed
in the following, works with the whole-band signal; but
may be further modified to work in subbands. While search-
ing for sparser and more accurate representations, the lp
norm, where q = p ∈ (0, 1), can be an alternative
choice as a relaxation approach. Although the lp norm (0 <
p < 1) makes the optimization problem nonconvex, it has
proven its possibility in enhancing the sparsity and accu-
racy of solutions compared to the l1 norm, e.g., the Iterative
Half Thresholding Algorithm (IHTA) [14], and weighted l1
norm [15]–[18].

Nevertheless, the efficiency and capacity of the current
sparse coding algorithms have not reached the requirement
of certain missions that require fast processing, such as
real-time video denoising; thus, we propose our sparse cod-
ing algorithms, which use the DNN structure and corre-
sponding learning procedure in sparse coding to achieve
the goal. Recently, deep learning has shown to be a pos-
sible approach by combining with iterative sparse coding
to resolve sparse representation problems in previous work
(e.g., [19]–[24]). In 2010, Gregor and LeCun introduced the
idea with ISTA, where the learned DNN can perform nearly
10 times faster than the original sparse coding algorithm,
i.e., ISTA [19]. However, its learning procedures require one
to know the true answers of the sparse representation. In 2015,
Sprechmann et al. showed that it is possible to learn the DNN
without requiring the true answers to serve as the train-
ing labels, i.e., the unsupervised learning is possible [22].
With unsupervised network learning, the Deep Neural Net-
work structured Sparse Coding (DNN-SC) algorithms can
be more suitable for online processing without prior train-
ing when the network can be efficiently quickly learned
online to make the processing enjoy the acceleration intro-
duced by the DNN structure. Then, we would like to give
a brief review about DNN-structured sparse representation
algorithms.

FIGURE 1. (a) Illustration of the ISTA algorithm for sparse coding. The
optimal sparse representation can be obtained by the recursive structure
z(k) = πt (Wx+Hz(k−1)), where x is the input signal, πt is the soft
thresholding function with threshold t , W = 1

αDT, H = I− 1
αDTD, and α is

a restriction parameter for ISTA. (b) Network structure of the supervised
learned DNN-ISTA, which is named LISTA, formed from unfolded ISTA and
truncated to a fixed number of iterations (3 here). W, H, t are trainable
parameters in the network to give an approximate sparse representation
on a given dataset. (c) Network structure of the unsupervised learned
DNN-ISTA, which is named TISTA. TISTA has a similar propagation
structure to LISTA, and W, H, and t are targeted trainable parameters. The
key difference is that TISTA uses a decoder to output x as the learning
objective, where the original x is the known input. On the contrary,
original z, which is required for supervised learning, is a priori knowledge.

A. PRIOR ART
All DNN-structured sparse representation algorithms are
based on the idea of unfolding an iterative algorithm with
shared parameters through specific layers based on the pro-
cessing similarity between the iterative algorithm and the
Recurrent Neural Network (RNN), which was developed by
Domke and applied to the tree-reweighted belief propagation
and mean-field inference [25], [26]. Gregor and LeCun were
the first to implement this idea in the sparse coding algo-
rithm [19]. They unfolded the structure of ISTA, as shown
in Fig. 1(a), to form a feed-forward neural network named
Learned ISTA (LISTA), which is illustrated in Fig. 1(b).
LISTA is a supervised learned neural network that requires
inputting a dataset of signals and corresponding sparse repre-
sentations (as labels for training) pairs to a truncated unfolded
ISTA structure to train the weights and bias. The learned
DNN from LISTA has proven its efficiency in estimating
spare representations of other signals besides the ones used
in training, which can reach the converged result standard
of ISTA with much fewer layers than the number of ISTA
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convergent iterations. Sprechmann et al. proposed the unsu-
pervised Trained ISTA (TISTA) [22]. TISTA has a similar
neural network structure to LISTA because both form from a
truncated unfolded ISTA structure, as shown in Fig. 1(c), but
TISTA changes the learning procedure by adding a decoder
at the end of the network. By requiring the output as close as
possible to the input, it becomes possible to directly learn the
weights and bias from the loss function of the original sparse
representation problem. Consequently, TISTA avoids using
the true sparse representations for a separated training and
enables the online network learning and processing procedure
simultaneously. The unfolded ISTA also shows that DNN-SC
can help learning the optimal nonlinear threshold functions
for iterative sparse coding to achieve better performances
in known datasets [20], [21]. Kamilov and Mansour [20]
proposed to learn the nonlinear activation function, which
is modeled using cubic B-splines through DNN-structured
ISTA. The learned nonlinear threshold can result in bet-
ter accuracy than ISTA. Mahapatra et al. [21] proposed a
more parsimonious representation of the thresholding func-
tion using a linear expansion of thresholds during learning.
Furthermore, the DNN can be applied to other iterative spare
coding algorithms such as Iterative Hard Thresholding (IHT)
[23] and Approximate Message Passing (AMP) [24]. Both
IHT and AMP have the key similarity to ISTA: All func-
tions in these sparse coding algorithms are continuous and
overall differentiable throughout; thus, they can be unfolded,
and the parameters in their structures can be learned as a
DNN. Moreover, Moreau and Bruna presented mathematical
explanations about the acceleration of DNN-structured algo-
rithms by analyzing the specific matrix factorization in the
Gram kernel of dictionaries [27]. The findings show that
the learning procedure in DNN-SC attempts to diagonalize
the kernel with a basis, which produces a small perturbation
of the original l1 space, and the learning may fail if there is no
factorization. Efforts are also made to combine sparse coding
algorithms with different DNN structures. The convolutional
neural networks (CNN), which have proven its superiority
in image processing tasks, have been widely combined with
sparse coding algorithms for image classification [28]–[30]
and image restoration [31]–[33]. These deep learning archi-
tectures are significantly different from DNN-SC since they
are not truncated iterative SC algorithms but using sparse cod-
ing structure to reconstruct signal for specific tasks. A notable
difference is that the output signal is, e.g., class labels in the
general deep learning architectures. In this paper, the output
signal is z, since the purpose is to present signal x with a
sparse z.

B. THIS PAPER
In contrast with previous work, the main contributions of this
paper are as follows.

1) We show how to unfold IHTA and WISTA to form a
feed-forward neural networks (section III), where the
parameters can be learned by back-propagation. Both
unfolded WISTA and IHTA have similar structures to

TABLE 1. Notations and descriptions.

ISTA and the recurrent neural network, where each
layer is comprised by a differentiable combination of
linear and nonlinear operators.

2) For the setting of the loss function, all DNN-SC
algorithms can be learned through supervised and unsu-
pervised schemes (section III.A). The unsupervised
learning procedure is the key to apply DNN-SC in
online learning processing.

3) Benefiting from the acceleration of the DNN struc-
tured processing, we show that DNN-SC algorithms
can conduct real-time video denoising with only CPU
for 25-FPS 360× 480-pixel gray-scaled videos.

Subsequently, we give a experimental validation of
proposed algorithms in section IV. Synthetic data experi-
ments (section IV.A) present a performance comparison in
terms of the relative norm error and accuracy among the
sparse coding algorithms ISTA, IHTA and WISTA and their
DNN-structured versions.

Real-world graphic experiments are shown in section IV.B.
Both image and video denoising experiments concentrate
on the acceleration of the DNN-SC algorithm in denoising
while maintaining reasonably good performances. Further-
more, DNN-WISTA and DNN-ISTA have proven their pos-
sibility in conducting real-time video denoising.

II. SPARSE CODING
The paper considers a sparse representation problem, where
we tend to find a proper approach to obtain an optimal sparse
solution z ∈ Rn from given noisy data x ∈ Rm based on the
linear signal model described in the following equation:

x = Dz+ n, (2)
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Algorithm 1 ISTA
Input: data x, dictionary D, proper parameters λ and α.
Restriction: α > largest eigenvalue of DTD
Initialization: t = λ

α
, z(0) = 0, k = 0.

Main iteration: increment k by 1
z(k) = πt (z(k−1) − 1

α
DT(Dz(k−1) − x))

Stopping rule: stop if z(k) has converged
Output: z = z(k)

where D ∈ Rm×n is an overcomplete dictionary matrix with
n > m, and n ∈ Rm is an additive white Gaussian distributed
noise vector. The above equation (2) defines an underdeter-
mined linear system. Because the dictionary in the equation
is supposed to be a full row-rank matrix, this model should
have infinite solutions. To achieve the required sparse answer,
the sparse constraint is introduced. Therefore, the general
minimization model with the square data fitting error and a
sparse constraint is applied to solve the linear signal model,

min
z

f (z) = ‖x− Dz‖22 + λdq(z), (3)

where λ > 0 is a tuning parameter to adjust the effect of the
sparse constraint; the function dq(z) is a sparse penalty term
formulated as follows,

dq(z) = ‖z‖qq =
n∑
j=1

|zj|q, (4)

A. ISTA
ISTA [10] is one of the best known iterative algorithms to

solve the sparse linear problem. The q value in equation (3)
of ISTA is 1, i.e., this is a convex problem where a local
minimum is the global minimum. The detail of ISTA is shown
in Algorithm 1, and the diagram is presented in Fig. 1(a). For
input vector x, ISTA iterates the following recursive equation
to approach the optimal:

z(k) = πt (Wx+Hz(k−1)), (5)

where W =
1
α
DT, H = I − 1

α
DTD and α is a restriction

parameter, which should be larger than the largest eigenvalue
of DTD. The operator πt is a nonlinear soft thresholding
operator, which is defined in equation (6).

[πt (x)]j = sign(xj) max {|xj| − t, 0} (6)

B. IHTA
IHTA [14] concentrates on the nonconvex and nonsmooth
optimization model, where the q value of equation (3) is 0.5.
The detail of IHTA is shown in Algorithm 2, and the diagram
is presented in Fig. 2(a).

In Algorithm 2, ht is the half thresholding operator, which
is the key difference of IHTA compared to ISTA. Applying
q = 0.5 may cause a convergence issue since it is nonconvex,
whereas the lower q ∈ (0, 1) value tends to more rapidly
and efficiently achieve a sparser representation, meanwhile,
the algorithm IHTA can lead to a converged result when

FIGURE 2. (a) Illustration of the IHTA structure for sparse coding. The
optimal sparse representation can be obtained by the recursive structure
z(k) = ht (Wx+Hz(k−1)), where x is the input signal, ht is the half
thresholding operator with threshold t , W = 1

αDT, H = I− 1
αDTD and α is

a restriction parameter for IHTA. (b) The network structure of DNN-IHTA is
formed from unfolded IHTA and truncated to a fixed number of iterations
(3 here). W, H, and t are trainable parameters in the network to provide
an approximate sparse representation on a given dataset. The network
can be trained supervisedly with only the encoder and unsupervisedly
using both encoder and decoder.

Algorithm 2 IHTA
Input: data x, dictionary D, proper parameters λ and α.
Restriction: α > largest eigenvalue of DTD
Initialization: t = λ

α
, z(0) = 0, k = 0.

Main iteration: increase k by 1
z(k) = ht (z(k−1) − 1

α
DT(Dz(k−1) − x))

Stopping rule: stop if z(k) has converged
Output: z = z(k)

λ is sufficiently small, and dictionary D satisfies a certain
concentration assumption [34]. By applying the l0.5 norm
sparsity constraint, the half thresholding operator ht can be
formulated as an analytical expression of the well-defined
resolvent operator on its loss function [14], which is defined
in (7).

[ht (x)]j =
2
3
xj(1+ cos (

2π
3
−

2
3
arccos(

t
8
(
|xj|
3

)−1.5)))

× sign(|xj| −
3
√
54
4

t
2
3 ) (7)

C. WISTA
The proposed Weighted Iterative Shrinkage Thresholding
Algorithm (WISTA) in this paper also concentrates on
the nonconvex and nonsmooth lp regularization (q =

p ∈ (0, 1)) optimization model considering the benefit in
sparsity-inducing and efficiency. The word ‘weighted’ refers
to the idea of restraining the l1 sparsity constraint with infor-
mation from the previous iteration, which can approximately
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FIGURE 3. (a) Illustration of the WISTA structure for sparse coding. The
optimal sparse representation can be recursively obtained in two steps:
z(k) = π

t(k−1) (Wx+Hz(k−1)), t(k) = λ
α |z

(k)|p−1, where x is the input
signal, πt is the soft thresholding operator with a changing threshold t
during the iterations, W = 1

αDT, H = I− 1
αDTD, and α is a restriction

parameter for WISTA. (b) The network structure of DNN-IHTA is formed
from the unfolded WISTA and truncated to a fixed number of iterations
(3 here). W, H, and t are trainable parameters in the network to provide
an approximate sparse representation on a given dataset. The network
can be trained supervisedly with only the encoder and unsupervisedly
using both encoder and decoder.

Algorithm 3WISTA
Input: data x, dictionary D, proper parameters λ and α.
Restriction: α > largest eigenvalue of DTD
Initialization: t = λ

α
1, z(0) = 0, k = 0.

Main iteration: increase k by 1
z(k) = πt(z(k−1) − 1

α
DT(Dz(k−1) − x))

t = λ
α
|z(k)|p−1

Stopping rule: stop if z(k) has converged
Output: z = z(k)

function as an lp norm. Namely, the sparsity constraint can be
reformed as follows:

λ‖z‖pp = λ
n∑
i

|zi|p ≈ λ
n∑
i

|z(iteration−1)i |
p−1
|zi|. (8)

Because the component-wise weighted part from the pre-
vious iteration can be considered constant during the iter-
ations, the algorithm is transformed to a sequence of
weighted l1 minimization problems from the lp minimization
problem [17], which is convex for the calculation. The detail
of WISTA is shown in Algorithm 3, and the diagram is
presented in Fig. 3(a).

Different from [17] and [18], where the gradient descent
method is applied for the optimization, the proximal oper-
ator is applied in WISTA. Based on the difference in the
sparse constraint, the form of soft thresholding operator πt in
WISTA is slightly different from the one in ISTA, in which

the input vector z is handled with vector t component-wise
during the iterations, as defined in equation (9).

[πt(x)]j = sign(xj) max {|xj| − tj, 0} (9)

III. DEEP NEURAL NETWORK STRUCTURED
SPARSE CODING
In the conventional deep learning [35], the training data,
which comprise of pairs of feature and label, are used to learn
the parameters of a deep neural network to predict unknown
labels using the new given features. Typically, a Recurrent
Neural Network (RNN) receives features and subjects them
to a deep structure of many layers for processing, where
each layer consists of a linear transformation followed by a
component-wise nonlinearity transformation. The unfolded
ISTA is shown in Fig. 1 with unfolded IHTA (Fig. 2) and
unfolded WISTA (Fig. 3); they hold similar structures to
RNN, which enables the use of the parameter training meth-
ods in deep learning to train a DNN-SC algorithm. However,
we should be clear about the differences between the two
structures. The deep neural networks can be divided into two
main types by their purposes, classification and regression.
In a classification DNN, labels are generally discrete, e.g.,
when features are images, the labels will be their classes
{dog, cat, ... , chicken}. In a contract, for a regression DNN
and DNN-SC, the labels are numerical values, which are
genearlly continuous and high-dimensional.

For the objective of building a DNN-SC algorithm, it is
essential to ensure that all functinos in the encoders are
continuous and overall differentiable throughout the net-
work structure, which provides the possibility of using
gradient-based learning methods to train network parameters.
For example, an overall differentiable structure ensure back
propagation provide gradients throughout.

In this paper, we would like to propose two novel
DNN-SC algorithms: DNN-structured IHTA (DNN-IHTA)
and DNN-structured WISTA (DNN-WISTA), which can be
trained to compute approximate sparse codes. The two algo-
rithms are based on IHTA and WISTA. We have applied
two training modes in our proposed encoders: supervised and
unsupervised.

A. SUPERVISED AND UNSUPERVISED LEARNING
To train a DNN that is formed from a truncated sparse coding
algorithm, referring to Fig. 1(b), with training data x as the
input, the encoder outputs z after the defined depth of the
DNN. We use the gradient decent to train the parameters
to minimize the loss function L(z), which is defined as the
squared error between the predicted code z from the DNN
forward-propagation result and the corresponding optimal
code z∗ [19], as shown in equation (10). In practice, z∗ can
be obtained from the converged results of the corresponding
sparse coding algorithms.

L(z) = ‖z− z∗‖22 (10)
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Algorithm 4 DNN-IHTA Forward propagation
Input: data x, dictionary D, proper parameters λ and α,
network layer T .
Restriction: α > largest eigenvalue of DTD
Initialization: t = λ

α
1, z(0) = 0,H = I− 1

α
DTD,W = 1

α
DT,

B =Wx.
For k = 1 to T
c(k−1) = B+Hz(k−1)

z(k) = ht(c(k−1))
End
Output: C = {c(0), ..., c(T−1)}, Z = {z(0), ..., z(T )}

Therefore, as the true answer z∗ is functioned as training
label, the loss function results in a supervised learning pro-
cedure. Then, for a T -layer DNN-SC, the gradient of z(T ) in
supervised learning is

δz(T ) =
∂L(z(T ))
∂z

= z(T ) − z∗. (11)

In comparison, unsupervised learning aims at training the
parameters in the DNN without requiring the true answers to
serve as the training labels, i.e., optimal code z∗ in DNN-SC.
By adding a decoder in the network, as shown in Fig. 1(c),
we change the output of the DNN to x̂ = Dz. Therefore,
we can use the general sparse representation loss function
to avoid using z∗ [22]. The loss function of unsupervised
learning and the corresponding gradient of z(T ) is shown
below.

L(z) = ‖x− Dz‖22 + λdp(z) (12)

δz(T ) =
∂L(z(T ))
∂z

= DT(Dz(T ) − x)+ λ
∂dp(z(T ))
∂z

(13)

Between two learning procedures resulted from different
loss function settings, the key difference concerns that prior
training is essential in supervised learning, which makes
it difficult to implement the supervised DNN-SC in online
processing and applications without training labels. On the
contrary, by avoiding using z∗, unsupervised learning enables
the learned DNN for online processing when the learned
DNN is efficient and learning procedure is fast enough.

B. DNN-STRUCTURED IHTA
By unfolding the iterations of IHTA fromAlgorithm 2,we can
construct neural network structures. The algorithm can be
rewritten as a network structure as follows, and the unfolded
network structure is shown in Fig. 2(b).

In the network, W, H, and t are parameters to train. After
the forward propagation with determined network layer T ,
C and Z of each layer in the IHTA network are saved for
the back-propagation parameter training. The gradient-based
parameter learning schedules of the network are shown in
Algorithm 5. The learning procedure can be either adapted to
supervised or unsupervised learning by respectively choosing
δz(T ) from equation (11) or equation (13).

Algorithm 5 DNN-IHTA Back propagation

Input: x, D, δz(T ), Z, C, B, H, t, λ and α.
Initialization: δt(T ) = 0, δB(T )

= 0, δH(T )
= 0.

For k = T − 1 down to 0
δt(k) = δt(k+1) + δht((c)(k))

δt δz(k+1)

δc(k) = δht(c(k))
δc δz(k+1)

δB(k)
= δB(k+1)

+ δc(k)

δH(k)
= δH(k+1)

+ δc(k)z(k)T

δz(k) = HTδc(k)

End
δW = δB(0)xT

Output: δW, δH(0), δt(0)

Algorithm 6 DNN-WISTA Forward propagation
Input: data x, dictionary D, proper parameters λ and α,
network layer T .
Restriction: α > largest eigenvalue of DTD
Initialization: t(0) = λ

α
1, z(0) = 0, H = I − 1

α
DTD, W =

1
α
DT, B =Wx.

For k = 1 to T
c(k−1) = B+Hz(k−1)

z(k) = πt(k−1) (c
(k−1))

t(k) = λ
α
|z(k)|p−1

End
Output: C = {c(0), ..., c(T−1)}, Z = {z(0), ..., z(T )}

Algorithm 7 DNN-WISTA Back propagation

Input: x, D, δz(T ), Z, C, B, H, T, λ and α.
Initialization: δB(T )

= 0, δH(T )
= 0.

For k = T − 1 down to 0
δt(k) =

δπt(k) ((c)
(k))

δt δz(k+1)

δc(k) =
δπt(k) (c

(k))
δc δz(k+1)

δB(k)
= δB(k+1)

+ δc(k)

δH(k)
= δH(k+1)

+ δc(k)z(k)T

δz(k) = HTδc(k) + λ(p−1)|z(k)|p−2sign(z(k))
α

δt(k)

End
δW = δB(0)xT

Output: δW, δH(0), δt(0)

C. DNN-STRUCTURED WISTA
Using the schedule in the previous section, by unfolding the
iterations of WISTA from Algorithm 3, we can also construct
a neural network structure with linear transformations and
a simple nonlinear transformation in each layer, as shown
in Fig. 3(b).

In this network, W, H, and t are targeted trainable
parameters. After the forward propagation with determined
network layer T , C and Z of each layer in the WISTA
network are saved for the back-propagation parameter train-
ing. The gradient-based parameter learning schedules of
the two networks are shown in Algorithm 7. The learn-
ing procedure can be either adapted to supervised learning
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FIGURE 4. Average sparse representation errors and Hoyer sparsity convergence graph of different sparse coding algorithms.

by defining δz(T ) as equation (11) or unsupervised learning
referring to equation (13).

IV. EXPERIMENTS
A. SYNTHETIC DATA EXPERIMENTS
In this section, we present our experiment results of the pro-
posed algorithms in finding the ground truth sparse represen-
tations. Synthetically generated data were used throughout
the experiments, which were built by randomly generated
ground true dictionaries. All experiments were performed
withMatlab R2016a, and the programs were run on a PCwith
a 3.4 GHz Intel core and 64 G of RAM.

There are two main parts that we would like to show
in synthetic data experiments: comparison of performances
among the ISTA, IHTA and WISTA and the performances
of different DNN-SC algorithms. In the synthetic data sim-
ulation experiments, we first formed the dictionary Dorig,
which is sized as a 250× 500 matrix, generated by randomly
drawing value from a normal distribution N (0, 1) and finally
column-normalized. In every sparse representation vector,
non-zero values were set in random positions determined by
the Bernoulli distribution of possibility 0.05. The random
values were selected from the normal distribution N (0, 1).
There were 100 ground truth-generated sparse representation
vectors Zorig = (zorig1, ..., zorig100) in the experiments. Cor-
respondingly, data set Xorig had 100 samples, which were
generated byDorig and Zorig based on equation (2), The noise
vectors n were added based on Gaussian random entries with
20 dB signal-to-noise ratios (SNR).

1) PERFORMANCES OF SPARSE CODING ALGORITHMS
The sparsitymeasurement used theHoyermeasure [36] based
on the relationship between the l1-norm and the l2-norm,
which can provide a well-defined sparsity. Hoyer sparsity

FIGURE 5. Index versus value of the recovered sparse
representation (blue) compared with the original one (red) of ISTA, IHTA,
WISTA0.9, WISTA0.7, and WITA0.5 (from top to bottom).

measure is formulated as follows:

Hoyer sparsity(z) =
√
n− (

∑
|zi|)/

√∑
zi2

√
n− 1

, (14)

where n is the dimension of z; when the value of the equation
is closer to 1, the z vector approaches a sparse vector.

Fig. 4 and Fig. 5 show the ability of recovering accurate
sparse representations using the three sparse coding algo-
rithms. Three p values are used in our proposed algorithm
WISTA, which is referred by the number after WISTA.
The sparse representation error use the relative norm error
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FIGURE 6. Average sparse representation accuracies and relative norm errors of different algorithms in a range of λ.

compared to Zorig, which is defined in equation (15).

Relative norm error(zi) =
‖zorigi − zi‖22
‖zorigi‖22

(15)

Fig. 4 shows that all algorithms can achieve convergence
results with small error and high sparsity in reasonable itera-
tions. ISTA tends to converge most rapidly with a larger rela-
tive norm error than the other algorithms. With decreasing p,
WISTA converges slower and result in a smaller relative error.
When p = 0.7, WISTA surpasses IHTA in both converge
speed and relative error. Fig. 5 shows that all algorithms
can generally find accurate and sparse representations but
ignore several small values compared to the ground true
representation (red). ISTA has the largest amount of small
value mistakes, so it has a larger relative error than the other
algorithms. For WISTA, the number of support mistakes,
where the blue points do not overlap with the red ones, tend to
diminish when p decreases from 0.9 to 0.7; one small mistake
in support reappears in WISTA0.5, which indicates that an
appropriate lower p value can help finding sparser and more
accurate results.

Fig. 6 shows the performance variation in a range of λ
values. The sparse representation accuracy is defined in equa-
tions (16) and (17), which can indicate how accurate the
sparse coding algorithms can recover the positions of those
non-zero values.

S = Support{z} (16)

Accuracy(z) =
|Sorig ∩ S|

n
× 100% (17)

The definition of support is a set containing information of
zero and non-zero positions in z. Therefore, the accuracy
is the percentage of how a given z meets the ground truth
considering whether the values are zero. In the two figures,
different algorithms have different ranges of effective λ.
While deciding the optimal λ regions, we find that the λ value
with the smallest relative norm error is always smaller than

the λwith highest accuracy for all algorithms. In detail, ISTA
has the worst performance in dislocating the optimal regions.
The accuracy is smaller than 90% when ISTA reaches the
lowest relative norm error, which results from the those sup-
port mistakes with small values in Fig. 5. Again, all other
algorithms tend to perform better than ISTA in finding more
accurate sparse representations. WISTA surpasses IHTA in
both relative norm error and accuracy when p = 0.7 and 0.5.
With decreasing p, WISTA tends to achieve smaller relative
errors, whereas p = 0.7 likely results in the highest accuracy.

2) PERFORMANCES OF DNN-STRUCTURED SPARSE CODING
ALGORITHMS
In the synthetic data experiment of DNN-SC algorithms,
the DNN structures with various layers are used in different
algorithms to show the performance of the combination of the
sparse representation and DNN.

Fig. 7 shows the performances of different original sparse
coding algorithms and their DNN-structured versions when
there are 15 layers. The initial letter ‘L’ refers to supervised
learned DNN, and the initial letter ‘T’ refers to unsupervised
learned DNN. In general, except the DNN-structured IHTA,
all other DNN-structured algorithms can reach similar per-
formances to the converged results of their original sparse
coding algorithms, which indicates that those learned DNN
can accelerate 5-10 times in this experiment. Similar to the
previous sparse coding experiment results, DNN-structured
WISTA can perform better than DNN-structured ISTA when
there are 15 layers.

Fig. 8 shows the result convergence performances
of different original sparse coding algorithms and their
DNN-structured versions in a range of DNN layers. In gen-
eral, we find four points. 1) Except DNN-structured IHTA,
all DNN-structured algorithms can nearly reach converged
performances of their original algorithms when there are
more than 13 layers in this simulation; 2) the performances
of the DNN-structured algorithms tend to improve with the
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FIGURE 7. Comparison between 15-layer DNN-SC algorithms and the original sparse coding algorithms in terms of the average sparse representation
relative norm errors and Hoyer sparsity.

FIGURE 8. Comparison between the DNN-SC algorithms and the converged results of their original algorithms in terms of the average sparse
representation relative norm errors and accuracy in a range of number of layers.

increase in number of layers; 3) DNN-structured WISTA
can perform better than DNN-structured ISTA; and 4) the
supervised DNN tends to obtain better relative norm error
than the corresponding unsupervised ones.

Specifically, LISTA and TISTA have the best robustness
against the decrease in number of layer in this data simu-
lation. Through the selected range of number of layer, both
LISTA and TISTA can reach similar relative norm errors
compared to the converged ISTA, and LISTA and TISTA
have better accuracy than ISTA when there are more than
15 layers. For WISTA, decreasing p in the DNN-structured
WISTA algorithms tends to increase their minimum layer
requirement to have similar performances to the converged
WISTA, which may indicate that a smaller p value increases

the difficulty to learn an appropriate network. Although
supervised WISTAs have equivalent or better relative norm
error than the unsupervised ones, the unsupervised versions
have obvious advantages in finding more accurate positions
in sparse representations, which implies that the supervised
DNN can hardly avoid small support mistakes in sparse repre-
sentations, which do not greatly affect the relative norm error
but reduce the position accuracy.

B. GRAPHIC DENOISING EXPERIMENTS
In this section, we present the performance of our proposed
algorithms with real-world data. There are two main parts.
First, we want to show the performance of the algorithms in
the image-denoising task. Then, we present the potential of
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FIGURE 9. Image-denoising result: (a) Original image; (b) Noised: 20.17 dB; (c) ISTA: 29.13 dB; (d) WISTA0.9: 29.88 dB; (e) WISTA0.7: 30.79 dB;
(f) WISTA0.5: 31.01 dB; (g) IHTA: 31.00 dB; and (h) OMP: 30.93 dB (from top left to bottom right)

applying DNN-SC algorithms in real-time video-denoising
tasks.

1) IMAGE-DENOISING EXPERIMENTS
To present the denoising performance, we applied the afore-
mentioned algorithms in image denoising in comparison with
sparse coding algorithm OMP [3], [9], which performs well
in this task. The details of the image-denoising experiment
are described below. We selected the image named ‘Lena’ as
the target, which is a 512 × 512-pixel gray-scaled portrait
photograph. Random white noise was added to the image to
generate a noised image of Peak signal-to-noise ratio (PSNR)
20.17 dB. Referring to the signal model in equation (2),
we generate a 144×256 overcomplete Discrete Cosine Trans-
form (DCT) distributed dictionary for the denoising task. The
image was separated into 12×12-pixel small patches with an
interval of 2 between patches to form the input data set X ∈
R64×62009. All DNN-SC algorithms use 10-layer network
structures in this experiment. The denoising results of the
original sparse coding algorithms and their DNN-structured
versions are presented below.

TABLE 2 and figure 9 show that all sparse coding
algorithms can recover the noised image from 20.17 dB to
approximately 30 dB, whereas all iterative shrinkage sparse
coding algorithms tend to have several times higher compu-
tation time than OMP. In detail, IHTA and WISTA0.5 obtain
the highest PSNR among these algorithms with PSNR over
31 dB. In this image-denoising task, we observe an obvi-
ous increase in PSNR and denoising time when p decreases

TABLE 2. Denoising results of the sparse coding algorithms from a
20.17-dB noised image

TABLE 3. Denoising results of DNN-SC algorithms from a 20.17-dB noised
image.

among all iterative shrinkage sparse coding algorithms, which
may indicate that a smaller p value is more suitable for the
overcomplete sparse denoising model. To resolve the exces-
sive computation cost of the iterative shrinkage sparse coding
algorithms, the DNN-SC algorithm can be a solution that
the learned DNN has shown 5-10 times acceleration in the
previous synthetic data simulation.

First, TABLE 3 and Fig. 10 show that all DNN-SC algo-
rithms can recover the noised image from 20.17 dB to approx-
imately 30 dB, which is the same level of their original sparse
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FIGURE 10. Image-denoising result with DNN-SC algorithms: (a) LISTA: 29.71 dB; (b) TISTA: 29.37 dB; (c) LWISTA0.9: 29.89 dB; (d) TWISTA0.9:
29.69 dB; (e) LWISTA0.7: 30.45 dB; (f) TWISTA0.7: 30.47 dB; (g) LWISTA0.5: 30.68 dB; (h) TWISTA0.5: 30.76 dB; (i) LIHTA: 30.82 dB; and (j) TIHTA:
30.80 dB (from top left to bottom right).

coding algorithms. Furthermore, the learnedDNNs can accel-
erate the denoising procedure, the sum of denoising and DNN
learning time remains at least 45 times faster than the denois-
ing time cost of their corresponding sparse coding algorithms.
In detail, the unsupervised learned DNNs have similar PSNR
values to their supervised versions, which proves that unsu-
pervised learning can function in the graphic denoising task.
Among all DNNs, DNN-structured WISTA and IHTA are
better than the others: the PSNRs of the denoised image using
their original sparse coding algorithms are approximately
0.25 dB slightly better, but the results remain reasonably good
because DNN-structured WISTA0.5 can be over 10 times
faster than OMP.

2) VIDEO-DENOISING EXPERIMENTS
In this section, we propose a procedure to apply the DNN-SC
algorithm to real-time video denoising. The details of the
video-denoising experiment are described below.We selected
two videos from the dataset created by Gygli et al. [37]
to test the denoising performance. The first video, which
is named ‘Fire Domino’, is a 360 × 480-pixel gray-scaled
video captured by a fixed camera; ‘Fire Domino’ is composed
of 1612 frames at a rate of 25 frames/s (FPS). The second
video, which is named ‘Statue of Liberty’, is a 360×480-pixel
gray-scaled video captured by people in daily life; ‘Statue of
Liberty’ has 1500 frames in total at a rate of 25 FPS. Random
white noise was added to the two videos to generate noised
videos with PSNR of approximately 20 dB. Referring to the
signal model in equation (2), we generated a 225× 256 over-
complete DCT distributed dictionary for this video-denoising
task. Each video frame was separated into 15×15-pixel small
patches with an interval of 10 between patches to form the
input data set X ∈ R225×1645. All DNN-SC algorithms used

TABLE 4. Average denoising results of the DNN-SC algorithms from the
first noised video ‘Fire Domino’ with an initial PSNR of 20.17± 0.02 dB

4-layer network structures in this experiment. Video stream-
ing was input into the DNN frame by frame, which implies
that the DNNs learn from one frame and finish denoising
before processing the next frame. The denoising results of
unsupervised DNN-SC algorithms are presented below.

TABLE 4, TABLE 5, Fig. 11 and Fig. 12 show that all
unsupervised DNN-SC algorithms can successfully recover
noised video streaming from 20 dB to approximately 30 dB
with reasonable fast denoising time. More importantly, both
TISTA and TWISTA can restrict the sum of denoising and
DNN learning time to 0.04 s/frame, which implies that
these two DNN-SC algorithms can conduct real-time video
denoising for a 25-FPS 360 × 480-pixel gray-scaled video.
In detail, we observe that TISTA continues being the fastest
algorithm in processing, but its PSNR is relatively the worst.
TIHTA achieves the highest PSNR among these algorithms,
but its processing time is nearly twice that of TWISTA.
TWISTA0.5 is the best algorithm, which restrains the pro-
cessing time in the frame internal of a 25-FPS video. Further-
more, the denoising time of the videowith identical resolution
may vary depending on the video; thus, the average denoising
time of different algorithms for the second video is approxi-
mately 75% compared to the time cost for the first video.
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FIGURE 11. Denoising results of one frame in the video ‘Fire Domino’
from the initial PSNR of 20.19dB. (a) Noised:20.19dB. (b) TISTA:31.35dB.
(c) TWISTA0.9:32.00dB. (d) TWISTA0.7:32.71dB. (e) TWISTA0.5:32.89dB. (f)
TIHTA:32.44dB.

TABLE 5. Average denoising results of DNN-SC algorithms for the noised
video ‘Statue of Liberty’ with the initial PSNR of 20.17± 0.01dB

C. DISCUSSION
Throughout the conducted experiments, there are two points
for discussion.

1) DNN-IHTA, which fails in giving a close approx-
imation of the converged IHTA in synthetic data
experiments, can function well in graphic denoising
experiments.
In Fig. 8, DNN-IHTA can hardly approach the results of
IHTA in synthetic data experiments for all tested DNN
layers, but TABLE 3, TABLE 4 and TABLE 5 show that
TIHTA can work well and achieve similar results to the
converged results of IHTA. The key difference is the
data set. In the synthetic data experiments, data were
randomly generated and obey the normal distribution
N (0, 1), but in denoising experiments, the data were
extracted small patches from an image or a video,

FIGURE 12. Denoising results of one frame in the video ‘Statue of Liberty’
from the initial PSNR of 20.17dB. (a) Noised:20.19dB. (b) TISTA:31.35dB.
(c) TWISTA0.9:32.00dB. (d) TWISTA0.7:32.71dB. (e) TWISTA0.5:32.89dB. (f)
TIHTA:32.44dB.

i.e., the data may have certain continuity and depen-
dence among the data columns. Fig. 8 also shows that
DNN-structured WISTA requires more DNN layers to
achieve the converged results ofWISTA as p decreases,
whereas DNN-structured ISTA does not have this prob-
lem. One possibility is that the problem is caused by
the nonconvex feature in IHTA and WISTA, which
makes the back-propagation failed in finding the global
optimal in random meaningless data set.

2) In both image and video denoising, the DNN learning
time is small.
TABLE 3, TABLE 4 and TABLE 5 show that all
DNN-SC algorithms only require tens of millisecond to
complete their learning procedure, which ensures that
thee DNN update is sufficiently fast for online process-
ing. The reason is that the DNNs in these experiments
only use a small number of patches from the image until
the learning procedure converges, which is not possible
for the learning procedure of synthetic data experi-
ments. In the synthetic data experiments, the DNN
learning should pass several epochs of all input data
to make the learned DNN converge and effective. The
possible answer may again be the difference in data set.
All image patches have identical standard white noise
levels on a continuous and repeating graphic signal,
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whereas the synthetic data put white noises on random
generated signals, which are also the Gaussian distribu-
tion. Thus, the denoising procedure for each patch may
have certain similarities that the learned DNN from a
small number of patches can stand for the entire image.

V. CONCLUSION
In this paper, we have proposed twoDNN-SC algorithms. The
first algorithm applies deep learning approaches to WISTA,
which is a modified sparse coding algorithm of ISTA pro-
posed in this paper. WISTA considers to approximate the
lp norm sparse coding problem by joining the information
of the sparse representation from the previous iteration. The
‘weighted’ idea enables one to enjoy the advantages of the
lp norm sparse constraint while maintaining the convex opti-
mization model. The second approach combines IHTA [14]
with deep learning, which is an l0.5 norm sparse coding algo-
rithm. We state the differences between two DNN learning
schedules for DNN-SC algorithms: supervised and unsuper-
vised. The benefit of unsupervised DNN learning is that it
does not require input signals associated with labels, which
enables one to apply DNN-SC algorithms to image denois-
ing, video denoising and other applications that lack paired
training samples.

The synthetic data experiments show that WISTA can
outperform both ISTA and IHTA in terms of the relative
norm error and accuracy. In addition, WISTA can retain the
advantages of supervised and unsupervised DNN versions.
We also find that unsupervised DNNs can achieve similar
performance to their corresponding supervised ones. How-
ever, DNN-IHTA can hardly learn the appropriate parameters
to yield a close approximation of the converged IHTA in
synthetic data. Furthermore, it is difficult for DNN-WISTA
to train the parameters when there are few layers, but all
DNN-WISTAs can function well with at least 15 layers,
which remains reasonable.

Then, we have applied the proposed algorithms to image
and video denoising, which benefit from the unsupervised
learning procedure and fast DNN learning time for graphic
processing. The denoising results show that the DNN-SC
algorithms can accelerate the denoising procedures at least
45 times while maintaining reasonably good performances
from 20 dB to approximately 30 dB. Then, we conducted
denoising experiments on two videos. Using TISTA and
TWISTA, the total processing time for each frame can be
restricted to 0.04 s/frame, which indicates that TISTA and our
proposed TWISTA can be applied in real-time video denois-
ing for a 25-FPS video with good denoising results. Although
we only conduct experiments for 25-FPS 360 × 480-pixel
gray-scaled videos, the future work may extend to higher
FPS, higher resolution and colored videos.
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