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ABSTRACT This paper proposes a two-stage decentralized optimal reactive power dispatch (D-ORPD)
framework, which considers the network partitioning influence in distributed optimization. The first stage is
to divide the distribution networks (DNs) into several high-intra-cohesion and low-coupling sub-networks
while the mathematical model is constructed based on partition indexes. This optimal partition designa-
tion reduces information exchange between adjacent sub-networks. Then, with the reduced information
exchange, the distributed computation would be accelerated. Based on the network optimal partition,
the D-ORPD model is constructed in a ‘‘decomposition-coordination’’ pattern during the second stage.
To enhance the consistency between distributed and centralized optimization, the D-ORPD is improved by
the proposed virtual load, which simulates the load characteristic of sub-networks. The alternating directions
method of the multipliers (ADMM) algorithm is utilized to solve the mathematical model effectively.
Moreover, case studies on the PG&E 69 bus test system and the IEEE 123 bus test system are executed
by the MATLAB platform to demonstrate the validity and effectiveness of the proposed method.

INDEX TERMS Network partitioning, reactive power dispatch, virtual load, distributed optimization.

I. INTRODUCTION
The integration of distributed generations (DGs) is one of the
key features in modern active distribution networks (ADNs).
DGs refer to small-scale generation units that are normally
located on the consumer’s side, such as rooftop solar pho-
tovoltaics (PV) and residential wind turbines (WT). These
devices provide sustainable electricity generation to supply
local demand. Besides, through proper design and schedul-
ing, DGs also can be an excellent resource in reactive power
control, which is known as effective in reducing power losses,
improving voltage stability, improving power quality, etc. [1].
To realize the control of reactive power optimally, the opti-
mal reactive power dispatch (ORPD) is proposed. Normally,
ORPD can be classified into centralized and decentralized
frames [2].

Various efforts have been made to solve ORPD and the
approaches based on convex relaxation have been researched
and utilized widely. Among these convex relaxation meth-
ods, second-order cone programming (SOCP) and semidef-
inite programming (SDP) are representative. In [3] and [4],

the SOCP was inverted into solve ORPD problem for dis-
tribution networks(DNs) and the exactness of relaxation has
been proven under relaxation conditions. In [5], the SDP
was utilized to solve non-convex optimization problem and
it has been proven that there is no duality gap for exact
relaxation. A centralized voltage/var optimization framework
was proposed in [6], where the problem was formulated as a
mixed-integer programming problem and solved by branch
and cut algorithm. In [7], a reactive power compensation
system was established, in which the reactive power dispatch
devices were controlled in a centralized way.

Theworks above are all about using centralized approaches
to support DNs operation by compensating reactive power.
As for the centralized optimal reactive power dispatch
(C-ORPD), the system data are collected and conducted by
the operation center. According to the high-level penetration
of intermittent and fluctuatedDGs, DNs are shown asmassive
controllable devices, complex operating status and flexible
operating conditions. Thus, the requirement of communica-
tion bandwidth, computation and storage resource increases
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sharply along with the expansion of DNs. The traditional
centralized optimization is uneconomical and limited in
large-scale high renewable-penetrated DNs. The distributed
optimization scheme known as high robustness, fast calcu-
lation speed and plug-in capability is a good solution to
large-scale optimization problem [8]. The alternating direc-
tion of method of multipliers (ADMM) is well-established
and effective in solving large-scale optimization problem
by decomposing the hard-solving original problem into sev-
eral easy-solving sub-problems. As for its applications in
D-ORPD, the original ADMM is utilized for OPF in unbal-
anced micro-grid [9], optimal reactive power control of DGs
in DNs [10], [11] and optimal tap setting for on-load tap
changer (OLTC) in DNs [12]. In [13], a fully distributed
algorithm was introduced by eliminating the global vari-
able in ADMM. A two-stage D-ORPD architecture which
controls reactive power support from local controllers and
neighboring controllers was proposed only relying on local
information in [14]. Reference [15] proposed a convex dis-
tributed approach for OPRD by utilizing a graph to describe
the information communication between local controllers.

In D-ORPD, the original centralized problem is decom-
posed into several sub-problems and this decomposition is
corresponding to DNs partitioning. The consistency between
D-ORPD and C-ORPD is ensured by the information
exchange between adjacent sub-networks. Normally, most
researches on D-ORPD only focus on distributed architec-
ture or distributed algorithm without considering the infor-
mation exchange between sub-networks. However, the speed
of distributed calculation is effected by the information
exchange [16], [17]. As in [16], it was pointed out that the
convergence speed related to the network nodes communi-
cation, the number of nodes, desired level of accuracy, etc.
Reference [17] illustrated the important influence of commu-
nication graph to convergence speed in distributed calcula-
tion. Due to the coupling existing in DNs, the information
communication between adjacent sub-networks relates much
to the DNs partition. Specifically, if the sub-networks are
featured of high intra-cohesion and low coupling, the opera-
tion state variation inside one sub-network would affect other
sub-networks slightly. Therefore, the information exchange
between adjacent sub-networks would be rare. On the con-
trast, if the DNs are portioned into several low intra-cohesion
and high coupling sub-networks, it normally needs lots of
information exchange during distributed computation. There-
fore, the network partitioning is a non-negligible factor in
distributed optimization.

For one arbitrary node, the voltage variation caused by
reactive power injections from any other nodes could be
illustrated by electrical distance (ED), thus ED is one typ-
ical networks partitioning standard [18]. K-means cluster-
ing algorithm, well-known for cluster analysis in data min-
ing is one heuristic approach and its clustering results are
featured of strong similarities in intra-class and weak sim-
ilarities between inter-class [19], [20]. Thus, K-means is
a prominent method in DNs partitioning [20]. In addition,

the systematic approach utilizing spectrum [21] and graph-
based algorithm [22] are also typical approaches in DNs
partitioning.

Considering the influence of information exchange on dis-
tributed computation, a novel D-ORPD approach based on
DNs partition is proposed. Themajor contributions are shown
as below.

(1) A novel two-stage D-ORPD framework which con-
siders the influence of information communication on dis-
tributed computation speed is proposed. In the first stage,
the DNs is partitioned optimally to reduce information
exchange between neighboring sub-networks. On the basis
of the DNs partition, the decentralized ‘‘decomposition-
coordination’’ optimization architecture is constructed on
the second stage.

(2) An optimal DNs partitioning method based on the
partition indexes and the binary particle swarm optimization
(BPSO) is developed. By applying this method, the original
network is divided optimally into several high intra-cohesion
and low coupling sub-networks.

(3) The D-ORPD model is improved by utilizing the
virtual load to simulate the load characteristic of the sub-
networks. This virtual load designation enhances the con-
sistency between centralized optimization and decentralized
optimization.

The reminder of the paper is shown as follows. Section II
analyzes the coupling features inside DNs and develops the
DNs partitioning approaches based on partition indexes and
BPSO. The D-ORPD mathematical model is established and
solved by ADMM in section III. Section IV shows the case
studies and the collusion is drawn in Section V.

II. DISTRIBUTION NETWORK OPTIMAL PARTITION
A. ELECTRICAL DISTANCE
During power flow calculation in Newton-Raphson algo-
rithm, the correlation equation is shown as[

1θ

1V

]
=

[
SθP SθQ
SVP SVQ

][
1P
1Q

]
(1)

where, 1θ , 1V, 1P and 1Q is the variation of voltage
angle, voltage magnitude, active power injection and reactive
power injection respectively, SθP, S

θ
Q, S

V
P and SVQ represents

the ‘‘voltage phase angle-active power injection’’ sensitivity,
‘‘voltage phase angle-reactive power injection’’ sensitivity,
‘‘voltage magnitude-active power injection’’ and ‘‘voltage
magnitude-reactive power injection’’ respectively.

The reactive power injection is the only controllable vari-
able in ORPD. Then only the ‘‘voltage magnitude-reactive
power injection’’ is considered and this sensitivity can be
described as

SVQ = ∂V/∂Q (2)

where, V is the voltage magnitude vector andQ is reactive
power injection vector.
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In power networks, one relationship exists between the
voltage magnitude variations of different nodes and this rela-
tionship is defined in an attenuation pattern.

The attenuation relationship is shown as

1Vi = ∂ij1Vj (3)

∂ij = [
∂Vi
∂Qj

]
/

[
∂Vj
∂Qj

] (4)

where, ∂ij is the attenuation parameter between node i
and node j, 1Vi and Vi represents the voltage magnitude
variation and voltage magnitude at node i respectively, 1Vj,
Vj and Qj represents the voltage magnitude variation, voltage
magnitude and reactive power injection at node j respectively.

Then, ED is defined as

dij = dji = −log(∂ij · ∂ji) (5)

where, dij is the electrical distance between node i and
node j.

B. PARTITIONING INDEXES
The ideal partitioning should show strong regional decou-
pling features, which are close electrical connection inside
each sub-network and sparse relationship between different
sub-networks. Then, the evaluation indexes of DNs parti-
tioning are constructed based on these regional decoupling
features. Referring to [20], four DNs partitioning evaluation
indexed are shown as below.

1) INTRA-SUB-NETWORK COHESIVENESS INDEX (ISCI)
The intra-sub-network cohesiveness index (ISCI) shows the
degree of intra-cohesion inside each sub-network. The intra-
ED is defined to describe the sum of ED between any two
buses belonging to the same sub-network. In D-ORPD, ECI is
measured by summing the intra-ED for all the sub-networks.

The ISCI is expressed as:

ISCI = 1−

∑n
i=1

∑
j∈SNi dij∑n

i=1
∑n

j=1 dij
(6)

where, SNi represents the subset describing the sub-
network containing i.

2) INTER-SUB-NETWORKS DECOUPLING INDEX (ISDI)
The inter-sub-networks decoupling index (ISDI) reflects the
sparsity between different sub-networks. And this index is
evaluated by ED between the buses which are separated into
different sub-networks. ISDI can be expressed as:

ISDI = 1−

∑n
i=1

∑
j/∈SNi

1
dij∑n

i=1
∑n

i6=j,j=1
1
dij

(7)

3) SUB-NETWORKS COUNT INDEX (SCI)
The sub-networks count index (SCI) is utilized to measure
the reasonability in the amount of sub-networks divided.
Normally, the clustering efficiency, the intra-cohesion and
the inter-decoupling are key factors in deciding the amount

FIGURE 1. Sub-networks count index of PG&E 69 bus test system.

of sub-networks. However, as DNs are industrial power net-
works, the communication cost, operation cost and invest-
ment should also be considered during networks partitioning.
And these two sides of requirement could be met by setting
the ideal count of sub-networks approximately and regulate
it during processions. The long-normal probability density
function is utilized to describe the SCI, shown as:

SCI = e−
(ln c−ln c∗)2

2σ2 (8)

σ = w ln(n) (9)

where, c is the count of sub-networks, c∗ is the advanced
setting count of sub-networks, w is the penalty factor. The
SCI of PG&E 69 bus system under different advanced setting
count is shown in Fig. 1.

4) PHYSICAL CONNECTION INDEX (PCI)
Different with some other complex networks, there is definite
physical connection between nodes in DNs. For each sub-
network, all nodes can be linked by branches within itself.
Then, to ensure this physical connection after partitioning,
the physical connection index (PCI) is constructed. PCI is
shown as below.

PCI =

{
0 subnet worksnot fully connected
1 otherwise

(10)

Based on the above four indexes, the fitness function which
evaluates the results of DNs partitioning is constructed as
below.

Fitness = (w1 · ISCI + w2 · ISDI + w3 · SCI ) · PCI (11)

where, w1, w2 and w3 reflects the weight of ISCI, ISDI and
SCI with w1 + w2 + w3 = 1.

C. NETWORKS PARTITIONING ALGORITHM BASED ON
BINARY PARTICLE SWARM OPTIMIZATION
1) PARTICLE CODING
In particle swarm optimization (PSO), each particle has the
properties as position and velocity while its position repre-
sents the possible solution and velocity determines the search-
ing direction. For particle i belonging to the swarm containing
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n particles in m dimensions, the coding strategy is shown as
below:

P i = [pi1, pi2, . . . , pim], 1 ≤ i ≤ n (12)

V i = [vi1, vi2, . . . , vim], 1 ≤ i ≤ n (13)

LPi = [lpi1, lpi2, . . . , lpim], 1 ≤ i ≤ n (14)

GP = [gp1, gp2, . . . , gpm] (15)

where, Pi represents the position of particle i and each
element of vectorPi represents the sub-network serial number
of the corresponding node, e.g., pim denotes the number
of sub-network that node m belongs to. Correspondingly,
Vi and LPi is the velocity and the current optimal position
of particle i. GP is the current optimal position of the whole
particle swarm.

2) PARTICLE VELOCITY RENEWAL
The particle vector renewal in conventional PSO is used to
modify the solution towards the optimum directly during
iteration. In DNs partitioning, there is not any explicit for-
mulation for the solution, thus the velocity drives the particle
towards through BPSO. Then, the signal function is estab-
lished as below,

sig(x) =

{
1 rand(0, 1) < sigmoid(x)
0 rand(0, 1) ≥ sigmoid(x)

(16)

sigmoid(x) =
1

1+ e−x
(17)

Based on the signal function, the particle velocity renewal
strategy is shown as:

vik (t + 1) = sig(wvik (t)+ c1r1(pik (t)⊕ xik (t))

+ c2r2(gk (t)⊕ xik (t))) (18)

1 ≤ k ≤ m (19)

where, t is the iteration time, w is the inertia weight, c1 and
c2 are the learning factors, r1 and r2 are the speed acceleration
coefficients, ⊕ reflects the ‘‘exclusive or’’ operation.

3) PARTICLE POSITION RENEWAL
In DNs partitioning, there are two features shown as follow-
ing. i) the physical connection of nodes assigned in the same
sub-network must be ensured, which is in corresponding with
PCI; ii) the adjacent nodes always belong to the same or adja-
cent sub-networks. Based on these two features, the particle
position renewal strategy is constructed, shown as below,

xik (t + 1) =

{
xik (t) vid = 0
C(rand(d↔k )) vid = 1

(20)

where, d↔k represents the nodes linked to node k directly,
C(rand(d↔k )) represents the sub-network serial number of
one random node belonging to the set described by d↔k .

FIGURE 2. Topology of simplified radial distribution network.

FIGURE 3. Decentralized optimal reactive power dispatch architecture.

III. DECENTRALIZED OPTIMAL REACTIVE POWER
DISPATCH MATHEMATICAL MODEL
A. THE MODEL OF DISTRIBUTION NETWORK
The general model of a radial distribution network is shown
in Fig. 2. Let N represent all the nodes and N̂ represent the
nodes except the feeder. For node i(i ∈ N), si, pi, qi and Vi
denotes the complex power injection, active power injection,
reactive power injection and voltage magnitude respectively.
The set of all branches is expressed by E, with (i, j) ∈ E
represents the branch pointing from node i to node j. Let
zij = rij+ jxij denote the complex impedance, Sij = Pij+ jQij
represent the sending-end complex power, and Iij expresses
the complex current. The variable vi and lij are inverted for
model construction while it exists vi = V 2

i and lij = IijI∗ij =∣∣Iij∣∣2. The set of nodes connecting with DGs is denoted
by NDG.

B. DECENTRALIZED OPTIMAL REACTIVE POWER
DISPATCH WITH VITURAL LOAD
The D-ORPD mathematical model is constructed in a
‘‘decomposition-coordination’’ architecture, in which the
original centralized problem is decomposed into several
sub-problems. Each sub-problem is corresponding with each
sub-network. The coordination is realized by information
communication between any two adjacent sub-networks. The
D-ORPD architecture is shown in Fig. 3.

The boundary conditions are utilized to exchange infor-
mation between adjacent sub-networks. As in Fig. 3, sub-
networkA connects with sub-networkB through the boundary
line (i, j). Correspondingly, the boundary conditions are the
state variables of the nodes and branch line of the boundary,
shown as Vi, Vj, Pij, Qij and Iij. Then, during the local
optimization such as for sub-network A, the node j and line
(i, j) also need to be inclusive. It is apparent that the load
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FIGURE 4. The augmented sub-networks with virtual load.

characteristic of the downstream sub-networks is not con-
sidered in the previous boundary conditions. However, to
guarantee the local optimization for sub-network A being
in full accord with the centralized optimization, not only
the load at node j, but also the existing active power and
reactive power exchange between node j and node k are
needed to be considered. These active power and reac-
tive power exchanges reflect the load characteristic of the
downstream sub-networks. To describe the necessary load
characteristic, the virtual load is proposed in this paper.
Thus, applying the virtual load, the consistency of local
optimization and centralized optimization is ensured. With
the virtual load, the augmented sub-networks are shown
in Fig. 4.

Based on above analysis, it can be inferred that the aug-
mented boundary variables for sub-network a is xab =
(Vi,Vj,Pij,Qij, Iij,PaVL ,Q

a
VL) and the boundary variables for

sub-network b is xba = (Vi,Vj,Pij,Qij, Iij,Pjk ,Qjk ). The
auxiliary variable is uab = (Vi,Vj,Pij,Qij, Iij,PVL ,QVL) and
the dual variable λ is inverted to dualize this model. Then,
the distributed objective function of sub-network a is shown
as

La(xa,ua,λa) = fa(xa)+
nsa∑
i=1

(λTabi · (xabi − uabi)

+
ρ

2
‖xabi − uabi‖22) (21)

fa =
∑

(i,j)∈Ea

rijlij (22)

ua = (uab1, . . . ,uabnz) (23)

λa = (λab1, . . . ,λabnz) (24)

where, Ea is the set of branches for sub-network a with
its corresponding boundary conditions, xa, ua and λa is the
local variable vector, auxiliary variable matrix and dual vari-
able matrix of zone a respectively, ρ is the penalty param-
eter, nsa is the number of sub-networks connecting with
sub-network a.

The mathematical model of D-ORPD is shown as

min
ns∑
a=1

La (25)

s.t. vj = vi + (r2ij + x
2
ij)lij − 2(rijPij + xijQij) ∀(i, j) ∈ Ea

(26)∑
(j,k)∈E

Pjk−
∑

(i,j)∈E

(Pij − rijlij) = pj ∀j ∈ N̂a (27)

∑
(j,k)∈E

Qjk−
∑

(i,j)∈E

(Qij − xijlij) = qj ∀j ∈ N̂a (28)

qmin
i,DG ≤ qi,DG ≤ q

max
i,DG ∀i ∈ NDG,a (29)

(Vmin
i )2 ≤ vi ≤ (Vmax

i )2 ∀i ∈ N̂a (30)∥∥∥∥∥∥
2Pij
2Qij
lij − vi

∥∥∥∥∥∥
2

≤ lij + vi ∀(i, j) ∈ Ea (31)

where, ns is the total number of sub-networks, N̂a repre-
sents the nodes of sub-networks a excluding feeder, NDG,a
represents the set of nodes connecting with DGs inside sub-
network a.

C. SOLUTION METHODOLGY
The primal variable is the original decision variable, which is
updated thorough following,

xk+1a = argmin
xa

La(xa,uka,λ
k
a) (32)

where,k+1 represents the (k+1)th iteration, uka,λ
k
a rep-

resents the values of auxiliary variables and dual variables
through the kth iteration. Correspondingly, the auxiliary vari-
able written through a simple pattern is shown as,

uk+1abi =
1
2
(xk+1abi + xk+1bai ) (33)

The dual variable renewing equation is shown as,

λk+1abi = λ
k
abi + ρ(x

k+1
abi − uk+1abi ) (34)

In accordance with alternating direction variable renew
during iterations, the stopping criteria is also established
based on the primal residual and the dual residual. The primal
and dual residuals are represented by

rk+1 = (xk+1ab1 − uk+1ab1 , . . . , x
k+1
abnz − uk+1abnz) (35)

sk+1 = −ρ(uk+1ab1 − ukab1, . . . ,u
k+1
abnz − ukabnz) (36)

Then, the residuals norms are shown as∥∥∥rk+1∥∥∥2
2
=

nz∑
i=1

∥∥∥xk+1abi − uk+1abi

∥∥∥2
2

(37)

∥∥∥sk+1∥∥∥2
2
= ns · ρ2

∥∥∥uk+1abi − ukabi
∥∥∥2
2

(38)

ADMM is sensitive to the penalty parameter, thus the
penalty parameter is not set as fixed value but as varying
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FIGURE 5. Flowchart of the ADMM solution method.

TABLE 1. Parameters of DGs in PG&E 69 test system.

parameter in this paper.

ρk+1 =


τ incrρk

∥∥rk∥∥22 > µ
∥∥sk∥∥22

ρk/τ decr
∥∥sk∥∥22 > µ

∥∥rk∥∥22
ρk otherwise

(39)

where τ incr , τ decr and µ are the parameters greater than 1,
and these parameters are set as τ incr = τ decr = 2, µ = 10 in
this paper.

ADMM achieves fast convergence through updating vari-
ables alternately during iterations, which is the reason of
its named alternating direction method. The flowchart of
the ADMM solution method is shown as in Fig. 5 and the
procedure is as follows:

IV. CASE STUDIES
The proposed two-stage D-ORPD is tested on the PG&E
69 bus test system [24] and the modified IEEE 123 bus
test system [25]. The simulations are conducted by Matlab
2016 utilizing the commercial solver GUROBI on a laptop
with 2.60 GHz CPU and 16.0 GB RAM.

A. NETWORK PARTITION OF PG&E 69 BUS TEST SYSTEM
In the PG&E 69 bus test system, 8 DGs are installed while
the detailed data are shown in Table 1. The permitted voltage
scope is set as [0.95, 1.05]. Based on the proposed DNs
partitioning approach, the PG&E 69 bus system is separated
into four different sub-networks. The topology of partitioned
test system is shown in Fig. 6. It can be seen that network

Procedure 1
1: Initialization:

Set the initial auxiliary variable u, the initial dual
variable λ, the convergence tolerance ε and the itera-
tion times k = 0.

2: Local Optimization:
The primary variable solution xk+1a is obtained
through the local optimization shown as below,

xk+1a = argmin
xa

La(xa,uka,λ
k
a)

3: Auxiliary variable update:
The auxiliary variable solution uk+1a is updated
through by the following,

uk+1abi =
1
2
(xk+1abi + xk+1bai )

4: Dual variable update:
Renew the dual variable solution λk+1a shown as,

λk+1abi = λ
k
abi + ρ(x

k+1
abi − uk+1abi )

5: Check for convergence:

If
∥∥rk+1∥∥22 ≤ εpri and

∥∥sk+1∥∥22 ≤ εdual terminate;
otherwise set k = k + 1 and go back to Step 2.

FIGURE 6. The topology of PG&E 69 bus system after partitioning.

partitioning is not a simple ‘‘equal quality decomposition’’,
such as 25 nodes in sub-network 1 while 9 nodes in sub-
network 5, forming a distinctive comparison.

B. D-ORPD OF PG&E 69 BUS TEST SYSTEM
The iteration procedure is shown in Fig.7-Fig.9. From Fig.7,
the primary residuals reached the convergence criterion
(1e-4) after 62 times iterations while the dual residuals need
60 times iterations.

It shows the virtual active and reactive loads values during
iterations in Fig.8. The VP 12 means the virtual active load
between zone 1 and zone 2 from the side of zone 1 while
VP 21 means the virtual active load between zone 1 and zone
2 from the side of zone 2. There is a similar way of naming
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FIGURE 7. The primary and dual residuals during iterations of PG&E
69 bus system.

FIGURE 8. The virtual loads values during iterations of PG&E 69 bus
system. (a) active virtual loads values; (b) reactive virtual loads values.

FIGURE 9. The uncontrolled and controlled power losses during iterations
of PG&E 69 bus system.

for VP14, VP41, VP23 and VP32. It can be seen that after
nearly 20 times iteration, each pair of the virtual load becomes
unification. The power losses of the whole-network, sub-
network 1, sub-network 2, sub-network 3 and sub-network
4 during iterations under D-ORPD are displayed in Fig. 9.
Besides, the power losses without control are also shown in
this figure. For the whole-network, the power losses reduce
from 108 kW to 69 kW with a reduction of 36% applying
D-ORPD.

C. NETWORK PARTITION OF IEEE123 BUS TEST SYSTEM
In this section, the balanced IEEE 123 bus test system is mod-
ified from the original unbalanced one. The voltage is limited
in [0.95, 1.05], and the locations and capacities of 10 installed
DGs are shown in Table 2. If without sub-network count
setting, the system will be partitioned into 8 sub-networks
while node 95 is set as one individual sub-network. However,
this is not economical in practical ORPD. With the ideal
amount of sub-networks is set as four, the whole system is
partitioned into four sub-networks shown as in Fig. 10.

TABLE 2. Parameters of DGs in IEEE 123 bus test system.

FIGURE 10. The topology of IEEE 123 bus system after partitioning.

FIGURE 11. The primary and dual residuals during iterations of IEEE
123 bus system.

FIGURE 12. The reactive power output of DGs during iterations of IEEE
123 bus system.

D. D-ORPD OF IEEE123 BUS TEST SYSTEM
The primary and dual residuals during iterations are shown
in Fig. 11. It can be seen that the D-ORPD converged fast
while the needed iterations are less than 60 times. The reactive
power supports of the 10 DGs during iterations are shown
in Fig. 12.

The virtual load values during iterations are shown
in Fig. 13 and it needs less than 10 times iterations for each
pair of virtual loads to be consistent. The uncontrolled and
controlled power losses during iterations are shown in Fig. 14.
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FIGURE 13. The virtual loads values during iterations of IEEE 123 bus
system. (a) active virtual loads values; (b) reactive virtual loads values.

FIGURE 14. The uncontrolled and controlled power losses during
iterations of IEEE 123 bus system.

FIGURE 15. The PV and load factor in 24 hours.

For the controlled ones, not only the whole-network, but
the power losses of each sub-network are also displayed.
Applying D-ORPD, the power losses of the whole-network
reduce from 60.15 kW to 24 kW with a reduction of 60.1%.

E. D-ORPD OF PG&E 69 SYSTEM ON 24 HOURS
The above test is only about the proposed method on a certain
operating point. Aiming to verify the applicability and prac-
ticability of D-ORPD, the case study on varying condition
scenario is conducted. PVs are selected as DGs, then the time-
series load factor and PV’s active power output factor are
shown in Fig. 15.

From this load curve, there are two load demand peaks
occurring on 11:00 am and 17:00 pm while the lowest load
demand is on 5:00 am. The PVs’ active power output meets
the normal distribution. In 24 hours, the improvement of
power quality and power losses are shown Fig. 16 and Fig. 17.

It can be seen that there is slight difference between
D-ORPD and C-ORPD, which implies the high accuracy
of D-ORPD. Besides, there is a large reduction in voltage
deviations and power losses after applying the ORPD. Thus,
this proposed approach is effective in both improving power
quality and system operation economy. The voltage profile

FIGURE 16. The voltage deviation of PG&E 69 bus system in 24 hours.

FIGURE 17. The power losses of PG&E 69 bus system in 24 hours.

FIGURE 18. The voltage profile of PG&E 69 bus system in 24 hours.

of the PG&E 69 system by applying D-ORPD is shown in
Fig. 18. It can be seen that the voltage level of all the nodes are
stable under a favorable level on most of the time in 24 hours.

V. CONCLUSION
A two-stage D-ORPD method has been proposed in this
paper. On the first stage, the distribution network has been
separated into several high intra-cohesiveness and low inter-
coupling sub-networks so as to reduce the information com-
munication and accelerate the distributed calculation. Based
on the developed partition indexes, the BPSO has been uti-
lized to divide the distribution network. On the second stage,
the D-ORPD mathematical model in a ‘‘decomposition-
coordination’’ architecture has been constructed. Further-
more, the virtual load which simulates the load characteristic
of sub-networks has been proposed to enhance the consis-
tency between distributed and centralized optimization. The
ADMM has been employed to solve the distributed math-
ematical model. In addition, simulation has shown the fast
convergence speed and reliable computation result of the two-
stage D-ORPD.
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