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ABSTRACT Chaff centroid jamming released by vessel causes the indicated angle of radar seeker of anti-
ship missile to deviate from the target. The failure to track the target is catastrophic for the radar seeker. In this
paper, the angle estimation of the target in the presence of chaff centroid jamming is investigated. In the
circumstance of chaff centroid jamming, the jamming is usually in the same range and angle resolution cells
as the target. Under these circumstances, the essence of this problem is to estimate two unresolved targets’
angles in the main beam of the radar seeker. To this end, two alternative methods are proposed to estimate
the direction of arrival of the target in this paper. First, we present a maximum likelihood (ML) method
implemented by a 2-D numerical search, which has high estimation accuracy but large computational load.
Subsequently, considering both the accuracy and computational load, an improved ML (IML) method is
developed. Based on the ML method, the proposed IML method adopts a search optimization processing by
moment estimation. Furthermore, the effects of some key factors on the estimation performance are analyzed.
The accuracy of the proposed methods is compared with the existing methods and the Cramer Rao lower
bound as well.

INDEX TERMS Monopulse radar, electronic counter-countermeasures, maximum likelihood estimator,
direction of arrival (DOA), chaff centroid jamming.

I. INTRODUCTION
Chaff has been playing an important role in electronic war-
fare [1]. Releasing chaff centroid jamming is a common
measure employed by a vessel when the vessel realizes the
anti-ship missile has been tracking it [1], [2]. When the chaff
centroid jamming is present, the indicated angle of radar
seeker obtained by the in-phase monopulse ratio can wander
far beyond the target and points to the centroid of the target
and jamming [1]. If there are no effective countermeasures,
the missile will eventually be induced by the chaff centroid
jamming and miss the target. Therefore, the study on counter-
measures against the chaff centroid jamming has significant
value for the military.

The open literature on countermeasures against chaff cen-
troid jamming can be typically divided into two research
aspects. The first aspect is to detect the presence of chaff
centroid jamming, and it is the premise and foundation for
eliminating the catastrophic effect of the chaff centroid jam-
ming. Based on the Neyman–Pearson algorithm, a detection
method for chaff centroid jamming aided by Global Posi-
tioning System and Inertial Navigation System (GPS/INS)

has been investigated by Yang et al. [2]. The second is to
suppress the jamming or strengthen the target signal while
suppressing the jamming, and then obtain the indicated angle
by the traditional in-phase monopulse ratio. In this case,
a typical approach is to use a polarization oblique projection
to suppress the chaff centroid jamming of a radar seeker [3].
However, the sophisticated polarization system and the accu-
rate priori polarization knowledge of the jamming are needed
for the method proposed in [3].

In the circumstance of chaff centroid jamming, the chaff
clouds must expand rapidly because it must present a cross
section larger than the vessel while the vessel is still within
the same resolution cell [1]. It is suggested that the vessel and
jamming are two unresolved targets (i.e., occupying the same
range and angle resolution cells) for the radar seeker, and
the key to countermeasures against chaff centroid jamming
is to estimate the angles of the vessel and jamming. The
problem of angle estimation for two unresolved targets by
utilizing a monopulse system has been addressed in several
methods [4]–[11]. These methods fall into two categories:
deterministic and statistical. Deterministic methods generally
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use one or two pulses to estimate angle and are not restricted
by the target model [4]. Sherman used two consecutive pulses
to estimate the angles of two nonfluctuating or slowly fluc-
tuating targets which are in the same resolution cell [5].
Afterward, Lee et al. presented an important improvement
on Sherman’s method by using an algebraic method [4].
However, the fast fluctuating targets (e.g., Swerling IV tar-
gets) may limit the use of the approaches in [4] and [5].
Zheng et al. [6] presented a closed-form solution for the
angles of arrival of returns from two unresolved targets,
and aiming at the proposed method in [6], a mathematically
equivalent algorithm that has a marginally lower computa-
tional complexity has been presented byCrouse et al. [7]. It is
worth noting that, if the elevation angles of the two targets are
nearly equal, the azimuth angle estimates have large variances
for the proposed methods in [6] and [7]. For chaff centroid
jamming, elevation angles of the target and jamming are the
same in most cases [1], [2]. In this condition, the proposed
methods in [6] and [7] may be ineffective.

The statistical methods may achieve a more accurate solu-
tion than deterministic methods, because this technique gen-
erally uses multiple pulses [4]. Vincent et al. [8] presented an
approximate unconditional maximum likelihood (ML) direc-
tion of arrival (DOA) estimation method for two unresolved
targets. However, considering the limitation of space of the
platform itself, the antenna configuration of a uniform linear
array in [8] may not be suitable for the anti-ship missile.
In addition, Blair and Brandt-Pearce [9] used the statistics of
the in-phase and quadrature monopulse ratios to develop a
DOA estimation method for two unresolved Rayleigh (Swer-
ling I) targets. Sinha et al. [10] presented the numerical
ML estimator for both Swerling I and Swerling III models.
Subsequently, the ML computation has been made explicit
for two unresolved Swerling I targets by Wang et al. [11].
However, the statistical methods stated above may not be an
optimal estimator for countering the chaff centroid jamming
by radar seeker. Because the targets considered in [8]–[11]
are all the same targets (i.e., both Swerling I or Swerling III
targets), whereas the radar seeker is more likely to be faced
with two different types of targets [2]. The study on the angle
estimation methods for the two different types of unresolved
targets in a standard monopulse radar has not been reported in
the open literature. So, this paper is the initial trial to fill this
knowledge vacancy. In addition, some literature [12]–[14]
proposed the use of wideband monopulse radar to estimate
the angle of a target (i.e., extended target). This monopulse
radar may or may not eventually become the standard, but in
the present day many radars use traditional monopulse [11].
Therefore, we consider narrowband monopulse radar, and
suppose that the target and jamming are point targets.

The rest of this paper is organized as follows. In Section II,
the problem is formulated, and the statistical properties of the
vessel and chaff are reviewed. In Section III, the maximum
likelihood estimator in the presence of chaff centroid jam-
ming is derived, and the numerical calculation method of the
Cramer Rao lower bound (CRLB) is presented. In Section IV,

FIGURE 1. Diagram of the chaff centroid jamming for an amplitude
comparison monopulse system.

an improved maximum likelihood (IML) method is pro-
posed. The search optimization processing and computational
complexity analysis of the IML method are presented. In
Section V, the influences of some key factors on the DOA
estimation of the target are analyzed. The accuracy of the
proposed methods is compared with the existing methods and
the CRLB by the Monte Carlo trials. The conclusions are
drawn in Section VI.

II. MODEL
In a typical amplitude comparison monopulse radar, the radar
uses four squinted sub-beams to estimate the target azimuth
and elevation angles. For the chaff centroid jamming, eleva-
tion angles of the target and jamming are usually the same,
angle difference mainly exists in azimuth [1], [2]. Hence,
we will mainly consider the estimation of target azimuth
angle in this paper.

When the chaff centroid jamming is present, the target and
jamming are in the same range and angle resolution cells,
shown in Fig. 1. Then, at time t , the sum and difference
signals can be expressed as follows [15]

S (t) =
2∑
j=1

√
κAiG2∑ (

θj
)
p (t) cos

(
ωct − φj

)
+ NS (t)

D (t) =
2∑
j=1

ηj
√
κAip (t) cos

(
ωct − φj

)
+ ND (t) (1)

where S refers to sum signal, and D denotes difference sig-
nal. NS and ND indicate the receiver noises in the sum and
difference channel, respectively. κ is constant proportional to
transmitted power. A1 and A2 are voltage amplitudes of the
target and jamming, respectively. G∑ (

θj
)
is the sum channel

voltage gain at angle θj (j = 1, 2). θ1 and θ2 are the off-
boresight angles of the target and jamming, respectively. η1
and η2 are the DOAs of the target and jamming, respectively.
p (t) is the envelope of transmitted pulse, and ωc is the carrier
frequency (in radians per second) of transmitted pulse. φ1 and
φ2 are the phases of the vessel and jamming, respectively.
The sum and difference signals are demodulated and

passed through the matched filter. Then, the in-phase and
quadrature components of the sum and difference channel can
be given by [10], [15]

sI = α1 cosφ1 + α2 cosφ2 + nsI
sQ = α1 sinφ1 + α2 sinφ2 + nsQ
dI = η1α1 cosφ1 + η2α2 cosφ2 + ndI
dQ = η1α1 sinφ1 + η2α2 sinφ2 + ndQ (2)
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where s refers to the sum signals, d denotes the difference sig-
nals, and n indicates the receiver noises. The subscripts I and
Q represent the in-phase and quadrature components, respec-
tively. αj =

√
κAiG2∑ (

θj
)
p0, p0 is the receiver matched filter

gain.
When denoting αj cosφj by xj and αj sinφj by yj (in-phase

and quadrature signal components), it leads to

sI = x1 + x2 + nsI
sQ = y1 + y2 + nsQ
dI = η1x1 + η2x2 + ndI
dQ = η1y1 + η2y2 + ndQ (3)

where the random variables x1 and y1 are the returns from the
vessel, and x2 and y2 are from the jamming. For a standard
amplitude comparison monopulse system, the relationship
between theDOA and the angle θj can be approximately given
by ηj = kmθj within one-half of a beamwidth of antenna
boresight, where km denotes the average error slope [16].
Since it is easy to obtain the DOA ηj by the angle θj, here
we only consider the DOA estimates.

In this paper, the receiver noises including the sea clutter
and the thermal noise will be seen as Gauss white noises
with zero mean [2]. This assumption can be justified by
the following argument: in a monopulse radar system, there
are many situations where the clutter (e.g., ground or sea
clutter) can be removed by the signal processing methods
along the range of the target [5]. Following [5], [9]–[11],
[15], [16], and many others, here, we assume that the Gauss
white noises of in-phase and quadrature components of the
sum and difference channel are independent with each other,
andwith known variances, which can be estimated reasonably
well [11]

Var [nsI ] = Var
[
nsQ

]
= σ 2

s

Var [ndI ] = Var
[
ndQ

]
= σ 2

d (4)

where Var (·) is stand for variance operation.
Assuming that radar cross-section (RCS) of the vessel

obeys Swerling IV model [2], with uniformly distributed
phase φ1 within [0, 2π ] [9]–[11], the probability density
function (PDF) of x1 can be expressed as [10]

p (x1) =
4

√
2πa31

(
x21 +

a21
4

)
exp

(
−
2x1
a21

)
(5)

where, E
(
x21
)
= a21/2, a

2
1 = E

(
α21

)
, E (·) denotes the

expected value. Further, considering that the RCS of the chaff
clouds obeys the Swerling II model [2], similarly, the PDF of
x2 can be written as

p (x2) =
1√
2πa22

exp

(
−
x2
2a22

)
(6)

where E
(
x22
)
= a22, a

2
2 = E

(
α22

)
/2. Furthermore, for

quadrature components, y1 and y2 have the same PDFs as x1
and x2, respectively.

III. MAXIMUM LIKELIHOOD ESTIMATOR IN THE
PRESENCE OF CHAFF CENTROID JAMMING
A. DERIVATION OF LIKELIHOOD FUNCTION
Using the statistical characteristics of the observation model
in Section II, the two DOA estimates of the target and jam-
ming are obtained by maximizing the corresponding likeli-
hood function[

η̂1, η̂2
]
= argmax

η1,η2

{L (η1, η2)} (7)

where

L (η1, η2) = p
(
sI , sQ, dI ,dQ|η1, η2

)
(8)

In (8), considering that the independence of the in-
phase and quadrature channels [11], the likelihood function
L (η1, η2) can be written as

L (η1, η2) = LI (η1, η2)× LQ (η1, η2)

= p (sI , dI |η1, η2)× p
(
sQ, dQ|η1, η2

)
(9)

Substituting (3), (4), (5) and (6) into (9), then we can obtain
the function LI (η1, η2) of η1 and η2 as

LI (η1, η2)

=
4

2πa31a2
√
b1b2 − l2

exp
[
−

1
2R

(
s2I σ

2
d + d

2
I σ

2
s

)]

× exp

[
c21b2 + c

2
2b1 − 2c1c2l

2R
(
b1b2 − l2

) ]
×

(
f I1 (η1, η2)+ f

I
2 (η1, η2)

)
(10)

where

R = σ 2
s σ

2
d

b1 = σ 2
d + η

2
1σ

2
s + 4σ 2

s σ
2
d /a

2
1

b2 = σ 2
d + η

2
2σ

2
s + σ

2
s σ

2
d /a

2
2

c1 = sIσ 2
d + η1dIσ

2
s

c2 = sIσ 2
d + η2dIσ

2
s

l = σ 2
d + η1η2σ

2
s (11)

f I1 (η1, η2) =
l2

b21

(
σ 2
x2 + µ

I
x2

)
+
a21
4

f I2 (η1, η2) =
c21
b21
+

R
b1
−

2c1l
b1

µIx2 (12)

σ 2
x2 =

Rb1
b1b2 − l2

µIx2 =
c2b1 − c1l
b1b2 − l2

(13)

A detailed derivation is available in Appendix. In addition,
the function LQ (η1, η2) (see (51) in Appendix) has similar
PDF with LI (η1, η2).

For two unresolved Swerling I targets, the ML method
proposed in [10] has been made explicit by Wang et al. [11].
However, for unresolved Swerling IV and Swerling II targets
(i.e., mixed targets), no closed-form solutions for the likeli-
hood function in (9) are available, and one feasible method is
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FIGURE 2. Contour plot of the log-likelihood function of η1 and η2 for
different search steps. (a) Search step is 0.02 rad, and the DOA estimation
of the target is 0.26 rad; (b) Search step is 0.1 rad, and the DOA
estimation of the target is 0.2 rad.

to use a grid search to find estimates of η1 and η2 [10]. The
typical contour plot of the log-likelihood function of η1 and
η2 of two targets is shown in Fig. 2, for 25 dB signal-to-noise
ratio (SNR) of the target and −4 dB signal-to-interference
ratio (SIR). The actual values of η1 and η2 are 0.25 and
−0.15 rad, respectively. In Fig. 2, there are two maximum
estimations due to the uncertainty of the relative size of η1
and η2 [10]. Thus, we need to reject the false one using prior
knowledge (i.e., relative size of η1 and η2), and this prior
knowledge can be obtained by the method in [2].

It is worth noting that, for the grid search method, if the
grid partition of the search is very accurate, there will be a
large computational load, which is not practical for real-time
processing. Otherwise, the estimation accuracy of the target’s
DOAwill be decreased. For instance, in Fig. 2, the simulation
parameters in Fig. 2 (a) and Fig. 2 (b) are the same, except
that the search steps in Fig. 2 (a) and Fig. 2 (b) are 0.02 and
0.1 rad, respectively. It is found that the estimation error of the
target’s DOA in Fig. 2 (a) is small but the computational load
on search is larger than that in Fig. 2 (b), while the DOA of
the target has a greater error in Fig. 2 (b) than that in Fig. 2 (a)
due to the low grid accuracy. To analyze quantitatively the
effect of the grid layout on the DOA estimation of the target,
the relationship between the root mean square error (RMSE)
of η1 estimation and the search step is shown in Fig. 3. For
different search steps (i.e., 0.01, 0.05, 0.1, 0.15 and 0.2 rad),
the RMSE of η1 estimation is calculated by 5000Monte Carlo

FIGURE 3. Relationship between the RMSE of η1 estimation and the
search step.

trials in Fig. 3. It is clear that the higher the grid accuracy
is, the smaller the RMSE (i.e., better estimation accuracy)
is. Therefore, when the high estimation accuracy is required,
we need to consider the grid partition.

B. CRLB OF DOA ESTIMATION
The likelihood function in (9) for two unresolved mixed
targets are infinite polynomials of sI , dI , sQ and dQ. Thus,
the closed-form solutions for the calculation of the CRLB are
not available. However, the CRLB can be obtained by evalu-
ating the expectation numerically using the law of large num-
bers [10]. To this end, taking the logarithm in (9), the Fisher
information matrix (FIM) for DOA estimates can be given by

J ∼= E
{[
∇η log (L (η1, η2))

]T [
∇η log (L (η1, η2))

]}
(14)

where, the operation ∼= indicates that the left terms are esti-
mated by the expressions on the right. The symbol T and ∇
denote transpose and gradient operation, respectively.

Using the law of large numbers, it leads to

J ∼=
1
M

M∑
m=1

[
∇η log (L (η1, η2))

]T
m

[
∇η log (L (η1, η2))

]
m

(15)

where the subscript m means the value of the gradient
obtained in the mth realization, i.e., for the mth set of values
of sI , dI , sQ and dQ. The larger M is, the closer the result
in (15) is to the theoretical FIM in (14).

Furthermore, ifN subpulses at distinct frequencies are used
(i.e., sI , dI , sQ and dQ are independent with each other [9]),
the FIM for η1 and η2 estimates is then given by

JN = NJ (16)

When inversing of the matrix JN in (16), the CRLB of η1
and η2 is obtained finally.

IV. IMPROVED MAXIMUM LIKELIHOOD METHOD
From Section III (A), the ML method has the contradiction
between estimation accuracy and real-time performance due
to its two dimensional numerical search. To solve this con-
tradiction, in this section, we develop an IML method that is
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efficient in accuracy and computational load. Based on the
ML method, the IML method adopts a search optimization
processing. The relationship between η1 and η2 is deduced by
moment estimation, which transforms the two-dimensional
numerical search into one-dimensional numerical search,
thus improving the computational efficiency. The processing
in detail is as follows.

A. SEARCH OPTIMIZATION PROCESSING
Based on the observation model in Section II, it is reasonable
to assume that x1, x2 and nsI are independent with each other.
According to (4), (5) and (6), we can obtain the second-
moment of the in-phase component of the sum channel sI

E
(
s2I
)
= a21/2+ a

2
2 + σ

2
s (17)

Similarly, we can also obtain the second-moment of the in-
phase component of the difference channel dI

E
(
d2I
)
= η21a

2
1/2+ η

2
2a

2
2 + σ

2
d (18)

From Section II, it is noted that sQ has the same PDF
as sI and dQ has the same PDF as dI . Therefore, the
second-moment of sQ and dQ are the same as (17) and (18),
respectively. Moreover, the second-moment of the in-phase
component of the sum and difference channel can be
expressed as

E (sIdI ) = η1a21/2+ η2a
2
2 (19)

For N subpluses at distinct frequencies, on the other hand,
the second-moments in (17), (18) and (19) can be estimated
as

E
(
s2I
)
= E

(
s2Q
)
∼=

1
2N

N∑
i=1

{
s2I (i)+ s

2
Q (i)

}
=

B2 + 2Nσ 2
s

2N
(20)

E (sIdI ) = E
(
sQdQ

)
∼=

1
2N

N∑
i=1

{
sI (i) dI (i)+ sQ (i) dQ (i)

}
=

B1
2N

(21)

E
(
d2I
)
= E

(
d2Q
)
∼=

1
2N

N∑
i=1

{
d2I (i)+ d

2
Q (i)

}
=

B0 + 2Nσ 2
d

2N
(22)

where the definitions of B2, B1 and B0 are

B2 =
N∑
i=1

{
s2I (i)+ s

2
Q (i)

}
− 2Nσ 2

s

B1 =
N∑
i=1

{
sI (i) dI (i)+ sQ (i) dQ (i)

}
B0 =

N∑
i=1

{
d2I (i)+ d

2
Q (i)

}
− 2Nσ 2

d (23)

According to (17), (19), (20) and (21), a21 and a22 can be
expressed in matrix form[

1/2 1
η1/2 η2

] [
a21
a22

]
=

[
B2/ (2N )
B1/ (2N )

]
(24)

In (24), applying Cramer’s rule [17], we have

a21 =
B2η2 − B1
N (η2 − η1)

(25)

a22 =
B1 − B2η1

2N (η2 − η1)
(26)

Similarly, according to (17), (18), (20) and (22), a21 and a
2
2

can be written as

a21 =
B1η2 − B0

η1N (η2 − η1)
(27)

a22 =
B0 − B1η1

2η2N (η2 − η1)
(28)

Combining (25) and (27), we get

η1 = g (η2) =
B1η2 − B0
B2η2 − B1

(29)

According to (26) and (28), we have

η2 = g (η1) =
B1η1 − B0
B2η1 − B1

(30)

Equations (29) and (30) are equivalent and can be
expressed for each other. In (29) and (30), it is found that
the relationship (i.e., η1 and η2) can be revealed through esti-
mating the second-moment of the signal echoes. Therefore,
based on the MLmethod, we can reduce the two-dimensional
likelihood function (9) into one dimension (only including
variable η1) by (30). In other words, based on theMLmethod,
the IML method optimizes the search algorithm by second-
moment estimation, and this is the main idea for the IML
method. Then, for N subpulses at distinct frequencies, we
have the overall log-likelihood function of η1

η̂1 = argmax
η1

{
N∑
i=1

log L̃ i (η1)

}

= argmax
η1

{
N∑
i=1

log L̃ iI (η1)+
N∑
i=1

log L̃ iQ (η1)

}
(31)

where

L̃ iI (η1) =
4

2πa31a2
√
b1b̃2 − l̃2

× exp
[
−

1
2R

(
s2I (i)σ

2
d + d

2
I (i)σ

2
s

)]

× exp

c21b̃2 + c̃22b1 − 2c1c̃2 l̃

2R
(
b1b̃2 − l̃2

)


×

(
f̃ I1 (η1)+ f̃

I
2 (η1)

)
L̃ iQ (η1) =

4

2πa31a2
√
b1b̃2 − l̃2
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FIGURE 4. Flowchart of the DOA estimation of target for the IML method.

× exp
[
−

1
2R

(
s2Q(i)σ

2
d + d

2
Q(i)σ

2
s

)]

× exp

d21 b̃2 + d̃22b1 − 2d1d̃2 l̃

2R
(
b1b̃2 − l̃2

)


×

(
f̃ Q1 (η1)+ f̃

Q
2 (η1)

)
(32)

and

b̃2 = σ 2
d + g

2 (η1) σ
2
s + σ

2
s σ

2
d /a

2
2

c̃2 = sI (i)σ 2
d + g (η1) dI (i)σ

2
s

d̃2 = sQ(i)σ 2
d + g (η1) dQ(i)σ

2
s

l̃ = σ 2
d + η1g (η1) σ

2
s (33)

f̃ I1 (k1) =
l̃2

b21

(
σ̃ 2
x2 + µ̃

I
x2

)
+
a21
4

f̃ I2 (k1) =
c21
b21
+

R
b1
−

2c1l
b1

µ̃Ix2

f̃ Q1 (k1) =
l̃2

b21

(
σ̃ 2
x2 + µ̃

Q
x2

)
+
a21
4

f̃ Q2 (k1) =
c21
b21
+

R
b1
−

2c1l
b1

µ̃Qx2 (34)

σ̃ 2
x2 =

Rb̃1
b1b̃2 − l2

µ̃Ix2 =
c̃2b1 − c1 l̃

b1b̃2 − l̃2

µ̃Qx2 =
d̃2b1 − d1 l̃

b1b̃2 − l̃2
(35)

Similarly, if necessary, we can first obtain the likelihood
function of η2 and then get η1 according to (29).
Moreover, in our implementations, we estimate a21 and a

2
2

from the observed signal echoes with a known value of the
relative radar cross section (RRCS) γ [9]–[11].

â21 =
2

1+ γ

(
1
2N

N∑
i=1

{
s2I (i)+ s

2
Q (i)

}
− σ 2

s

)

â22 =
γ

1+ γ

(
1
2N

N∑
i=1

{
s2I (i)+ s

2
Q (i)

}
− σ 2

s

)
(36)

where

γ =
E
(
α22

)
E
(
α21

) = 2a22
a21

(37)

Discussions above have presented the key procedures to
estimation the target’s DOA in the IML method (as shown
in Fig. 4). Now, it is appropriate to make a summary of the
main workflow in the following steps.

Step 1. Estimate a21 and a
2
2 from the observed signal echoes.

Step 2. Calculate the DOA estimate of in-phase monopulse
ratio η = A1/A2, and determine the relative size of the
values of η1 and η2. The priori information of the relationship
between η1 and η2 can be obtained by the method in [2].
Step 3. Construct likelihood function. We obtain the rela-

tionship between η1 and η2 through estimating the second-
moment of the signal echoes. If η ≥ 0 and η1 > η2
(maybe η < 0 and η1 < η2), the likelihood function of
η1 is constructed. In other cases, we construct the likelihood
function of η2.
Step 4. Search for η̂1. Especially, when the likelihood

function of η2 is constructed, we first search for η̂2, and then
obtain the η̂1 by (29).

B. COMPUTATIONAL COMPLEXITY ANALYSIS
Recall that the likelihood function (9), the maximization
of (9) is performed by a two-dimensional grid search on
the portion of the η1 − η2 plane that agrees with the prior
information. To compare the computational complexity of the
ML and IML methods, without loss of generality, suppose
that the expected value of η1 > η2 is known. To this end, for
each ηjs (j = 1, 2), it is further assumed the search interval is
divided into Mequal parts (i.e., the number of grid partitions
is M ). For the ML method, we perform the search in that
portion of η1 − η2 plane where η1 − η2 > 0 [10], and
need to search M (M − 1) /2 times to obtain η̂1. While for
the IML method, if η ≥ 0, we only need to search for
η̂1 in the interval [η, ηbw], where ηbw denotes the one-way,
half-power DOA point on the antenna gain pattern in the
sum channel [9]. If η < 0, first of all, we search for η̂2
in the interval [−ηbw, η], then, we can acquire η̂1 by (29).
Perhaps the worst case is η = 0, and if so, we need to search
floor ((M − 1) /2) times, where the operator floor (·) denotes
round down. It is assumed that η is uniformly distributed
over the interval [−ηbw, ηbw]. In this case, the average search
is floor ((M − 1) /4) times for acquiring η̂1. Therefore,
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TABLE 1. Comparison of computational complexity of the ML and IML methods.

FIGURE 5. Sketch map of the relative position of the target and jamming.

compared with the ML method, the average search of the
IMLmethod is reduced by 2M times. The comparison results
of computational complexity of the ML and IML methods
are shown in Table 1. Obviously, the worst search need only
80 times in the IML method, which effectively improves the
computation efficiency.

V. SIMULATION RESULTS
In this section, we first compare the estimation performance
of the ML and IML methods discussed in the Section III
(A) and Section IV. In the simulation, 5000 Monte Carlo
trials are carried out, and the antenna gain issue is omitted
for simplicity. The values σ 2

s = 1 and σ 2
d = 1 are used.

For a typical monopulse system, the average error slope km
in beamwidths is km ≈ 2ηbw [9]. So, for all the cases in
this work, let ηbw = 0.8 rad [9]. For a set of positions of
the target regarding the antenna boresight of the radar beam,
the RMSE of DOA estimate of the target is calculated. We
set η1 − η2 = 0.4 and the step rate of η1 is 0.038 rad. The
simulation starts with the target on one side of the antenna
boresight (η1 = 0 rad or η2 = −0.4 rad) and ends the
jamming on the other side of the antenna boresight (η1 = 0.4
rad or η2 = 0 rad). The sketch map of the relative position of
the target and jamming in the simulation experiment is shown
in Fig. 5. If η1 = 0.2 rad, this would imply that the target and
jamming symmetrically placed in the antenna boresight.

The RMSE of the estimation of the target’s DOA for
different values of the number of subpluses N , SNR and
SIR is studied. The notation ML refers to the method dis-
cussed in Section III (A), IML to Section IV, and Square
root of CRLB to the computational method introduced in
Section III (B). The search step is 0.01 rad in theML and IML
methods. The RMSE of η1 estimation for different values
of N is shown in Fig. 6. For each N , let SNR = 20 dB,
SIR = −4 dB. In Fig. 6 (a), it is noted that the efficiency

FIGURE 6. The estimation performance of the target’s DOA for different
values of N . (a) Given different N , RMSE in the estimation of the target’s
DOA for SNR = 20 dB and SIR = −4 dB; (b) RMSE in the estimation of the
target’s DOA versus square root of CRLB.

of each DOA estimate generally improves (i.e., the RMSE
is getting smaller) as the number of subpulses N increases
from 4 to 12. The RMSE of the two methods remains almost
constant over the range of η1, and the RMSE of IML has
slightly higher value than that of ML in conditions of the
same number of subpulses N . Specifically, as the number of
subpulses N increases, the estimation performance of IML is
more and more close to ML. In Fig. 6 (b), the RMSE of η1
estimated by the IML algorithm is compared to the square
root of the CRLB, and the CRLB is obtained by the result
of 1000 realizations. It can be seen from Fig. 6 (b) that the
accuracy of the DOA estimation improves when increasing
the number of subpulses N at distinct frequencies in a radar
pulse.

The RMSE of η1 estimation versus square root of the
CRLB as a funciton of SNR is studied. Here we assume SIR
= −4 dB, and N = 8. The RMSE versus square root of the
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FIGURE 7. RMSE of the estimation of the target’s DOA versus the square
root of the CRLB as a function of SNR.

FIGURE 8. RMSE of the estimation of the target’s DOA versus the square
root of the CRLB as a function of SIR.

CRLB is investigated when choosing different values of η1
in Fig. 7. When η1 = 0 rad, the antenna boresight is pointed
at the target. Similarly, when η1 = 0.2 rad, the antenna
boresight is pointed at the middle of the target and jamming,
and the antenna boresight is pointed at the jamming for η1 =
0.4 rad. It is observed that the IML method offers almost
the same estimation performance for different η1, and the
RMSE of η1 estimation is more and more close to the square
root of the CRLB as the SNR increases. In addition, it is
also noted that the estimation performance of η1 has been
improved considerably when SNR > 20 dB. For anti-ship
applications, according to the scattering coefficient of the sea
surface in [18], it can be calculated that the SNR of a given
vessel is usually greater than 20 dB under the three-level
sea state [2], [19]. Under this circumstance, the RMSE of η1
estimation is less than 0.083 for the IML method in Fig. 7.

The effect of SIR on DOA estimation is also studied. For
N = 8, SNR = 20 dB and different values of η1 (i.e., η1 =
0, 0.2 and 0.4 rad), the RMSE of η1 estimated by the IML
methods and the square root of the CRLB are shown in Fig. 8.
In the given range of SIR (i.e. [−7 dB, −3 dB]), it is shown
in Fig. 8 that the RMSE and the square root of the CRLB have
a slight improvement with the increase of SIR. For instance,
when η1 = 0.2 rad, the RMSE of η1 estimation for SIR =
−3 dB is only improved by 0.006 than that for SIR=−7 dB.
Thus, compared with the number of subpulses N and SNR,
SIR has little effect on the estimation of the target’s DOA.

FIGURE 9. Relationship between the RMSE of η1 estimation and the
parameter 1γ .

According to the previous theoretical analysis, the actual
RRCS γ is assumed to be known. This is an ideal situa-
tion, and it serves as a performance bound with the reality.
Therefore, in the following, the effect of γ estimation on
the RMSE of η1 estimation is quantitatively analyzed. In the
circumstance of chaff centroid jamming, for the anti-ship
missile, the RCS of the chaff clouds is generally 2 ∼ 3 times
that of the vessel [1], [2]. So, in the simulation experiment,
the range of the RRCS can be set γ ∈ [2, 3] (i.e., SIR ∈
[−4.8 dB, −3 dB]). Suppose that the estimated RRCS is γe,
and let 1γ = |γ − γe|. Then, when γe ∈ [2, 3], we have
1γ ∈ [0, 1]. The relationship between the RMSE of η1
estimation and the parameter 1γ is shown in Fig. 9, for
N = 8, SNR = 25 dB and η1 = 0.2 rad. From Fig. 9, it is
observed that the RMSE of η1 estimation for γ = 2 (i.e., SIR
= −3 dB) is slightly smaller than that for γ = 3 (i.e., SIR =
-4.8 dB) when 1γ = 0. However, with the increase of 1γ ,
the effect of γe on the RMSE of η1 estimation for γ = 2 is
greater than that for γ = 3. In other words, the high SIR is
more sensitive to 1γ than the low SIR.

In practical application, if the actual RRCS γ cannot be
obtained, a feasible way is to find one γe ∈ [2, 3] and
ensure that the effect of the estimated γe on the RMSE of η1
estimation is least when γ is equal to either boundary value
(i.e., γ = 2 or γ = 3). Combining with the conclusion
in Fig. 9, research shows that we can select γe = 2.1.To
this end, Fig. 10 presented the quantitative analysis results for
SNR = 25 dB and SIR = −4 dB. From Fig. 10, we note that
when γ = 2 or γ = 3, the differences of the RMSE between
the case 2 and case 1 are 0.0171 and 0.0167, respectively.
Further, when γ = 2 or γ = 3, the differences of the
RMSE between the case 3 and case 1 are only 0.0018 and
0.0023 respectively, which can be regarded as some very
small errors. It is implicated that we can increase the number
of subpulses at distinct frequencies to improve the estimation
performance if the actual RRCS is not available.

The method for estimating the RRCS mentioned in the
previous paragraph is based on the empirical value. Another
feasible method is to estimate the RRCS through GPS/INS.
The main idea of this method is illustrated as follows. If the
chaff centroid jamming just shapes at the current moment,
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FIGURE 10. RMSE in the estimation of the target’s DOA for γ = 2, γ = 3
and γe = 2.1. Unmarked lines represent results for the case 1 that actual
RRCS γ is known and N = 8; � marked lines represent results for the
case 2 that estimated γe is 2.1 and N = 8;© marked lines represent
results for the case 3 that estimated γe is 2.1 and N = 12.

the target azimuth angle with respect to the main beam of
the radar seeker at the current moment can be then estimated
by utilizing the measured information of GPS/INS, and the
detailed process can refer to the literature [2]. To this end,
assuming that the DOA of the target obtained by GPS/INS
at the current time is _

η1, then, according to (20)∼(22), the
estimated RRCS γe can be given by

γe =

(
B1 − B2

_
η1

)2
B2B0 − B21

(38)

It is worth noting that, in the circumstance of chaff centroid
jamming, the statistical RCS of vessel and chaff clouds are
usually stable (i.e., γ is stable). This assumption is mainly
based on two aspects. Firstly, the chaff clouds must expand
rapidly since it must present a cross section larger than the
vessel, and the disperse time of chaff clouds released by
the vessel is usually within a short time (on the order of
10−1 s [2]). The average RCS of chaff clouds after diffu-
sion is generally stable [20]. Secondly, for tactical purposes,
the vessel commonly goes fast away from the jamming in
the adverse direction of wind, and the attitude angle of the
vessel changes very small with respect to the main beam of
the radar seeker (i.e., the average RCS of the vessel is stable).
Therefore, for the anti-ship missile, γ is generally stable
when the vessel and jamming are in the same range and angle
resolution cells. Under these circumstances, assuming that _η1
is accurate, the effect of the estimated RRCS by GPS/INS on
the RMSE of η1 estimation is shown in Fig. 11. Similar to
Fig. 10, it is also suggested that the estimation performance
of η1 can be improved with the increase of the number
of subpulses N , even though SIR and SNR remain fixed.
Furthermore, the estimation performance of η1 in Fig. 11 is
comparable to that in Fig. 10, which indicates that the both
methods are feasible and effective.

Next, the effect of1η (i.e., the separation between the tar-
get and jamming) on DOA estimation is studied. The RMSE
of η1 estimation is shown in Fig. 12 for various values of η1
and 1η = 0.4, 0.6 and 0.8 rad. We set N = 8, SNR = 25 dB

FIGURE 11. Effect of the estimated RRCS by GPS/INS on the RMSE in the
estimation of the target’s DOA. Unmarked red line represents result that
actual RRCS γ = 2 is known and N = 8; ∗ marked green line represents
result that estimated γ by GPS/INS and N = 8; � marked blue line
represents result that estimated γ by GPS/INS and N = 12.

FIGURE 12. Given different 1η, RMSE in the estimation of the target’s
DOA for SNR = 25 dB, SIR = −4 dB and N = 8.

and SIR = −4 dB. It is obviously seen that the RMSE of
η1 estimation decreases with the increase of 1η. However,
in the circumstance of chaff centroid jamming, releasing chaff
clouds by the vessel downwind andmoving upwind is usually
the tactical strategy. For radar seeker, the angle between
the vessel and jamming (i.e., 1η) is increasing as the time
changes. In this case, although the estimation performance of
the target’ DOA decreases, meanwhile, the accuracy require-
ment of DOA estimation for tracking is also reduced as the
increase of 1η [9]. It is worth pointing out that, according to
the previous conclusion, increasing the number of subpulses
at distinct frequencies or enhancing the SNR can improve
the decrease of the estimation performance caused by the
increase of 1η.

Finally, we compare estimation performance of the pro-
posed methods in this paper with other methods. To compare
the performance of different methods for various values of
N , SNR and SIR, three data sets are given in the simulation
experiments. In the first case, N = 4, SNR = 20 dB, SIR
= −4.8 dB, are set. In the second, N = 8, SNR = 25 dB
and SIR= −4 dB are set. In the third situation, N = 12,
SNR = 30 dB and SIR = −3 dB are given. In the simulation
experiment, it is assumed that the RRCS is known. The nota-
tion ML, IML and Square root of CRLB are the same as the
previous definition. The notation Blair refers to the method
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FIGURE 13. Compare the estimation performances of different methods.
(a) N = 4, SNR = 20 dB and SIR = −4.8 dB; (b) N = 8, SNR = 25 dB and
SIR = −4 dB; (c) N = 12, SNR = 30 dB and SIR = −3 dB.

described in [9], and Wang to the NM2 method presented
in [11].

To verify the real-time character of the proposed methods,
a test of running time of the program for different meth-
ods is presented on a personal computer. For each method,
assuming that the echo data has been generated, the pro-
gram runtime begins with processing the echo data and ends
with obtaining the target’s DOA. The configuration of the
computer has 3.2GHz clock frequency and 16GB random-
access memory. 10000 Monte Carlo trials were carried out
and the average running time of the program was calculated.
In three data sets, the running times (seconds) for the different
methods are presented in Table 2. Furthermore, the RMSE
comparison of η1 estimated by different methods is shown
in Fig. 13. From Table 2 and Fig. 13, we can draw the
following conclusions. Firstly, compared with other methods,

TABLE 2. Comparison of different methods in real-time character.

the ML method has a slightly larger computational load, but
the estimation accuracy is the best. Secondly, although the
estimation performance by the IML is slightly lower than that
of the IML, the real-time character of the IML is good than
the ML method. Thirdly, the RMSE of η1 estimated by the
Blair methods fluctuates over the range of η1. And finally,
similar to the IML, although theWangmethod provides stable
estimation performance over the range of η1, its performance
is lower than that of the ML and IMLmethod in conditions of
the same SNR, SIR and N . This is because the Wang method
is the closed-form solution of the ML function for two unre-
solved Swerling I targets. However, for two unresolvedmixed
targets (i.e., Swerling IV and Swerling II targets), it is not
optimal compared to the ML and IML method. In addition,
the RMSE of η1 estimated by the proposed methods are more
and more close to the square root of the CRLB as the number
of subpulses N and SNR increase. In a word, the estimation
performance of the proposed methods in this paper is better
and more stable that of the other methods. In particular,
in practical applications, the ML method or the IML method
can be selected according to different requirements of real-
time performance and estimation accuracy.

VI. CONCLUSION
In this paper, two alternative methods are proposed to esti-
mate the DOA of the target when the chaff centroid jamming
is present. The ML method has high estimation accuracy but
large computational load, and the IML method is a compro-
mise between computational load and accuracy. Therefore,
in practical applications, if the ML method is satisfies the
requirements of real-time performance and estimation accu-
racy, we select the ML method to estimate the DOA of the
target. If not, then we can choose the IML method. In addi-
tion, when the actual RRCS is not available, two approaches
of estimating RRCS are presented, i.e., estimating the RRCS
based on the empirical value and estimating the RRCS by
GPS/INS. The first approach is to take a trade-off over the
range of RRCS, and the effect of estimated γe on the RMSE of
η1 estimation can be restricted least when γe = 2.1 was used.
Simulation analysis shows that the two approaches of estimat-
ing the RRCS are feasible and effective. Finally, we compared
the methods proposed in this paper with the existing methods.
Theoretical analyses and simulation experiments indicate that
the overall estimation performance of the proposed methods
in this paper was better and more stable than that of existing
methods. Especially, the performance of the ML and IML
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method are more and more close to the square root of the
CRLB as the number of subpulses N and SNR increase.

In the circumstance of chaff centroid jamming, the vessel
is tracked by the anti-ship missile at first, and then when
the vessel realizes the anti-ship missile has been tracking,
for self-protection, the vessel will release the chaff centroid
jamming. In real application, some factors will affect the
accuracy of angle estimate for the radar seeker, such as sea
clutter, multipath and target glint. These interesting problems
will be further studied in future.

APPENDIX
For two overlapping Swerling IV and Swerling II targets,
the function LI (η1, η2) of η1 and η2 is given by
After simplification, the integral (39), as shown at the top

of the next page can be rewritten as
where

R = σ 2
s σ

2
d

b1 = σ 2
d + η

2
1σ

2
s + 4σ 2

s σ
2
d /a

2
1

b2 = σ 2
d + η

2
2σ

2
s + σ

2
s σ

2
d /a

2
2

c1 = sIσ 2
d + η1dIσ

2
s

c2 = sIσ 2
d + η2dIσ

2
s

l = σ 2
d + η1η2σ

2
s (41)

The integral (40), as shown at the top of the next page can be
written as a product of two integrals

LI (k1, k2) = C0

∫
x2
I1 exp

[
−

1
2R

(
x22b2 − 2x2c2

)]
dx2

+C0

∫
x2
I2 exp
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−

1
2R

(
x22b2 − 2x2c2

)]
dx2

(42)

where
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(43)

Substituting (43) into (42), then we have

LI (η1, η2)

= = C0

√
2πR
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c21

2Rb1

)

×

∫
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)

× exp
[
−

1
2Rb1

((
b1b2−l2

)
x22−2 (b1c2−c1l) x2

)]
dx2

(44)

Similarly, the function (44) can be written as a product of
three integrals

LI (η1, η2) = C0

√
2πR
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c21

2Rb1

)
(I3 − I4 + I5) (45)

where
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From the above, the function LI (k1, k2) in (39) can be
expressed as

LI (η1, η2)
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2πa31a2
√
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1
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where
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σ 2
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I
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c21
b21
+

R
b1
−

2c1l
b1

µIx2 (48)

σ 2
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LI (η1, η2) =
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Similar to the previous derivation, we can also obtain the
function LQ (η1, η2)

LQ (η1, η2)

=
4

2πa31a2
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2
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d1 = sQσ 2
d + η1dQσ

2
s

d2 = sQσ 2
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