
Received October 20, 2018, accepted November 10, 2018, date of publication November 21, 2018,
date of current version December 27, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2882644

Experimental Characterization of
Millimeter-Wave Indoor Propagation
Channels at 28 GHz
GUOJIN ZHANG1, KENTARO SAITO 2, WEI FAN 1,
XUESONG CAI1, PANAWIT HANPINITSAK2, (Student Member, IEEE),
JUN-ICHI TAKADA 2, (Senior Member, IEEE),
AND GERT FRØLUND PEDERSEN 1
1Antennas, Propagation and Millimetre-Wave Systems Section, Department of Electronic Systems, Faculty of Engineering and Science, Aalborg University,
9220 Aalborg, Denmark
2Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo 1528550, Japan

Corresponding author: Wei Fan (wfa@es.aau.dk)

This work was supported by Huawei Technologies and the VIRTUSUO Project funded by the Innovation Fund Denmark. The work of
W. Fan was supported by the Danish Council for Independent Research under Grant number: DFF611100525.

ABSTRACT The increasing requirement for the mobile data traffic accelerates the research of millimeter-
wave (mm-wave) for future wireless systems. Accurate characterization of the mm-wave propagation
channel is fundamental and essential for the system design and performance evaluation. In this paper,
we conducted measurement campaigns in various indoor scenarios, including classroom, office, and hall
scenarios, at the frequency bands of 27–29 GHz. The spatial channel characteristics were recorded by
using a large-scale uniform circular array. A high-resolution parameter estimation algorithm was applied
to estimate the mm-wave spherical propagation parameters, i.e., the azimuth angle, elevation angle, delay,
source distance, and complex amplitude of multipath components. With the same measurement system,
the channel parameters including decay factor, delay spread, angular spread, and line of sight power ratio
are investigated thoroughly in individual indoor scenarios and compared in different indoor scenarios.
Furthermore, the impact of the furniture richness level and indoor geometry on the propagation parameters
are also investigated.

INDEX TERMS Decay factor, delay spread, angular spread, LOS power ratio, millimeter-wave, channel
sounding.

I. INTRODUCTION
The utilization of millimeter-wave (mm-wave) frequencies
for the fifth generation communications (5G) and beyond has
gained considerable interest in both academic and industrial
community recently due to the spectrum scarcity at the sub-
6GHz frequency bands [1]–[4]. Mm-wave frequency bands
have been identified as the promising candidate frequencies
for future cellular networks [2]. However, themm-wave prop-
agation characteristics are very different from that observed
in the sub-6GHz frequency bands. Accurate understanding
of the mm-wave propagation channels are essential and have
attracted increasing attention recently [5]–[7].

Extensive measurement campaigns have been conducted
at mm-wave frequency bands [8]–[15]. In [8] and [9], mea-
surement campaigns were conducted in high-speed trains sce-
narios, and extensive ray tracing simulations were applied to

understanding the propagation mechanisms. In [10], the mea-
surement was performed at 81−86GHz (E-band) in a street
canyon scenario, and a geometry-based single-bounce chan-
nel model was developed for investigating the characteris-
tics in the delay domain. Considerable efforts have been
devoted to study the channel characteristics at 60GHz fre-
quency bands [11]–[13], which have been exploited for unli-
censed wireless HD and Wireless Gigabit Alliance (WiGig)
WLAN applications [14] with Gbps transmission in short
range indoor communications. In addition, several radio
channel sounding campaigns were performed at 60GHz
and 70 GHz frequency bands in various short-range sce-
narios, including offices, shopping mall and station in [15].
Furthermore, various investigations for the propagation chan-
nels at the frequency bands of 28GHz have been con-
ducted [16]–[18]. Channel characteristics such as path loss,
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TABLE 1. Measurement setup.

signal outage [16], reflection coefficients, penetration losses
caused by common building materials [17] and angular
characteristics [18] have been thoroughly analyzed. More
recently, in [19], measurements in two important cellu-
lar scenarios, i.e., an urban microcell and an open indoor
hall, were conducted at the frequency bands of 28 GHz,
with a focus on spatio-temporal channel characteristics
parameters.

Although extensive measurement efforts have been taken
to understand the propagation channels, most of them were
performed in a single scenario, e.g. the indoor scenario or the
outdoor scenario. Furthermore, the frequency bands andmea-
surement configurations differ in these works. This poses
challenge on understanding the influence of different sce-
narios on the mm-wave propagation characteristics. To the
authors’ best knowledge, the comparison among the mm-
wave propagation characteristics observed in several different
scenarios with the same measurement system and frequency
band applied has not been investigated so far. Moreover, it is
usually expensive and difficult to carry out channel measure-
ment at mm-wave frequency bands. Thus, simulation tools
such as ray tracing have been widely exploited to predict the
channel behaviors. However, the simulation accuracy relies
on the realistic modeling of the various objects existing in the
environment, i.e. the detailed database of electrical properties
for the structure and random minor objects. This also neces-
sitate the measurement-based investigation for the impact of
the furniture richness level and indoor geometry on the radio
propagation parameters.

In this paper, the mm-wave propagation channels in dif-
ferent indoor scenarios including classroom, office and hall
are recorded by using the same measurement system. The
measurement system is based on the virtual antenna array
scheme to sound the mm-wave channel at the frequency band
of 27GHz-29GHz. Channel characteristics, including power
delay profiles (PDPs), decay factor, delay spread, angular
spread and line of sight (LOS) power ratio are thoroughly
investigated in individual scenarios and compared among
different scenarios. Moreover, we also gain insights into the

impact of the indoor geometry, materials and furniture rich-
ness level on the channel characteristics.

The rest of the paper is organized as follows. Section II
describes four measurement campaigns. Section III briefly
describes the post-processing for extracting the parameters
of interest. The resulted channel models are discussed in
Section IV. Finally, Section V concludes the paper.

II. MEASUREMENT CAMPAIGN
In this section, the measurement scenarios and setup of the
four indoor measurements are detailed. The scenarios include
two classroom scenarios, an office scenario and a hall sce-
nario, with measurement settings specified in Table 1.

A. MEASUREMENT SETUP
Themeasurement system is a vector network analyzer (VNA)
based virtual array channel sounding system. Readers can
refer to [20] and [21] for details. Two types of biconical
antenna are used in the measurements, which are commer-
cial biconical antenna SZ-2003000/P (marked as A) [22]
and homemade biconical antenna (marked as B) [23]. Both
biconical antennas are wideband and omnidirectional in the
horizontal plane and has narrow elevation patterns in ele-
vation plane. The antenna gains of commercial and home-
made biconical antennas are 6 dB and 4.8 dB at 28 GHz,
respectively. The biconical antenna is rotated clockwise on
a rotating pedestal with a pre-set radius (as shown in Table 1)
with 1 degree rotating steps to form a UCA for the four
measurement campaigns. In the measurements, the channel
propagation from 27-29 GHz was swept by using the VNA,
giving a delay resolution of 0.5 ns. 750 frequency points were
collected, limiting the maximum delay to 375 ns.

B. MEASUREMENT SCENARIO
1) R1-CLASSROOM
The measurement was performed in a typical small class-
room [20] as shown in Fig. 1, where three sides of the room
are covered by the concrete walls and three windows on
the other side. The height of the tables is 0.74 m. A total
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FIGURE 1. (a) The sketch of R1-Classroom with 20 Tx locations. (b) The
photograph of R1-Classroom and Tx (left), Rx (right) antennas.

of 20 spatial snapshots (i.e. locations) were measured by
moving the Tx antenna between the tables. Each Tx location
in each row was spaced 0.8 m apart. An illustration of the
classroom and antennas used in R1-Classroom are presented
in Fig. 1.

2) R2-CLASSROOM
The measurements were performed in the same classroom as
R1-Classroom, where the Tx antenna was fixed at the corner
and Rx antenna set in the center of the classroom, as shown
in Fig. 2. In the measurement, we removed four tables and
chairs in the classroom and repeated the measurements for
each step (in 5 steps). Then we restored and brought back
two or four tables and chairs and repeated the measurements
for each step (in 5 steps). The classroom is full of tables and
chairs in step 1 and 10, and totally empty in step 4 and 7. The
last measurement was conducted with the classroom totally
empty and all blind windows open as shown in Fig. 2(c). The
objective is to investigate the impact of tables and chairs on
the channel characteristics.

3) R3-OFFICE
To study the impact of furniture richness level on the chan-
nel characteristics, we performed measurements in a typical
office scenario, which is equipped with metallic shelves and
loaded with books, as shown in Fig. 3. In the measurement,
we removed the contents on the shelves one by one from step
2 to step 6 and then removed shelves from step 7 to step 11.

FIGURE 2. (a) The sketch of R2-Classroom with 12 tables. (b) The
photograph of R2-Classroom and Tx/Rx antennas location with all room
furniture removed. (c) The photograph of empty R2-Classroom with blind
windows open.

A total of 11 measurements were performed in the campaign,
starting from fully loaded shelves in step 1 and ending with
no shelves in the room in step 11.

4) R4-HALL
To investigate the channel characteristics in irregular large
indoor scenarios, the measurement was conducted in a hall
scenario, as shown in Fig. 4. The shape of the hall is irregular,
and the ceiling of the hall is 10m high. There is also a big table
and stairs along the south wall. The four big ventilation tubes
(shown as yellow circles) and six pillars (shown as white
circles) are located around the hall. The Rx was located near
the four big pillars in the west side of the hall, and the Tx
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FIGURE 3. (a) The sketch of R3-Office. (b) The photograph of R3-Office
and Tx (down), Rx (top) antennas.

was located at 20 different points distributed around the Rx,
as shown in Fig. 4. Each Tx location is 1 m apart from each
other.

III. PARAMETER ANALYSIS
A. POWER DECAY FACTOR
When modeling the radio propagation channel, the PDPs
are expressed as a combination of primary and decay
components [15], [24]. The primary component contains
the direct propagation and possibly first-order reflections,
and the decay component is from the specular spec-
trum and distributed diffuse scattering. The decay tail
of the power-delay profile can be typically modeled as
a tail with an exponential decay rate, defined as decay
factor β.

FIGURE 4. (a) The sketch of R4-Hall with 20 Tx locations. (b) The
photograph of R4-Hall and Rx (left), Tx (right) antennas.

As explained, the Rx antenna was mounted at uniform
angles around a circle to obtain a UCA with N = 360
elements, and M = 750 frequency points were recorded for
each frequency band. The Hanning window and the inverse
Fourier transom (IFT) computation are used to processing the
raw data in the frequency domain. The average power delay
profiles (APDPs) can be obtained by

Pm(τ ) =
1
N

N∑
n=1

∣∣hm,n(τ )∣∣2 (1)

where hm,n(τ ) represents the channel impulse response (CIR)
at m-th sample in delay domain, and n-th measured element.
For the accuracy of analysis, we need to define the fixed

range of the linear regression of the decay tail. The end time of
the regression line τnoise corresponds to the noise floor Pnoise.
The beginning of the linear regression fit line τ̄ can be defined
as [25]

τ̄ =

∑M
m=1 Pm(τ ) · τ∑M
m=1 Pm(τ )

, (2)

where Pm is the power value of the APDPs at m-th delay
sample.
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According to the regression line, we obtain the slope of the
decay tail and decay factor β, which can be described as [25]

β = −
10 log(e)

s
, (3)

where e is Eulers number, and s is the slope of the power
decay tail in APDPs, represented as dB/ns.

B. DELAY SPREAD
The delay spread of the channels is widely used for charac-
terizing the multipath components (MPCs) richness in the
wireless channel, which is calculated as the second-order
central moments of the APDPs [26]. The mean delay τ̄ is
defined in (2), and root mean square (RMS) delay spread στ
can be computed from the measured as [26]

στ =

√√√√∑M
m=1 Pm(τ ) · τ 2∑M
m=1 Pm(τ )

− τ̄ 2. (4)

C. ANGLE SPREAD
In this paper, we utilized the HRPE algorithm [27] to estimate
the mm-wave spherical propagation parameters of the UCA
channels, i.e. azimuth angle, elevation angle, delay, source
distance and amplitude of MPCs. Then the spatial-temporal
CIR h(τ, θ, φ, d) can expressed as

h(τ, θ, φ, d) =
L∑
l=1

αlδ(τ − τl)δ(θ − ϑl)δ(φ−ϕl)δ(d−dl),

(5)

where L is the number of spherical waves impinge into the
UCA, τl is the propagation delay, ϑl and ϕl represent the
azimuth and elevation angles of the l-th path, respectively.
αl denotes the complex amplitude, and dl is the propagation
distance between the UCA center and the last source point
during the propagation route of the l-th path, respectively.
As most of the estimated elevation angles are close to

90 degree, we only focus on the azimuth angles. Then
the spatial-temporal CIR can be expressed as h(τ, ϕ). The
circular angle spread σϕ can be calculated, as defined in
[27] and [28],

σϕ =

√√√√−2log(∣∣∣∣∣
∑L

l=1 exp(jϕl) · |h(τl, ϕl)|
2∑L

l=1 |h(τl, ϕl)|
2

∣∣∣∣∣
)
. (6)

D. LOS POWER RATIO
To figure out the dominant components of the channel,
the LOS power ratio K is defined as the ratio of the power
in the LOS component or most dominant component to the
power in the non-line of sight (NLOS) or the other MPCs
components [26]. LOS power ratio plays a vital role in esti-
mating statistics, which is identified as,

K =
PLOS(τ )
PNLOS(τ )

(7)

FIGURE 5. The channel characteristics of total 20 Tx locations observed at
27 GHz-29 GHz in R1-Classroom. (a) APDPs. (b) Decay factor. (c) Delay
Spread. (d) Angle Spread. (e) LOS power ratio.

where, PLOS(τ ) is the power of LOS path (i.e. in most domi-
nant component) and PNLOS(τ ) is the sum of the power of all
the MPCs components except the most dominant path.
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FIGURE 6. The PADPs of Tx position 12 at 27 GHz-29 GHz in R1-Classroom.

IV. MEASUREMENT RESULTS
A. R1-CLASSROOM
The calculated APDPs with corresponding decaying lines
at Tx positions 1, 12, and 19 at 27GHz-29GHz in
R1-Classroom are illustrated in Fig. 5(a) for an example.
It can be observed from Fig. 5(a) that, the strongest path
is contributed by LOS propagation, with power values of
−67.7 dB, −69.4 dB and −72.3 dB with Tx at position 1,
12 and 19, respectively. The power of the LOS path decreases,
as the distance between the Tx and Rx increases for the three
example locations. The noise level is about−100 dB, leading
to the dynamic range around 30 dB.

The characteristic parameters of total 20 Tx locations are
plotted in Fig.5(b)-5(e). It can be observed that the values
of decay factor β in Fig. 5(b), delay spread in Fig. 5(c)
and angle spread in Fig. 5(d) are relatively lower at posi-
tion 1-5 than other positions and the values of LOS power
ratio in Fig. 5(e) are higher than others. That is due to
the fact that dominant LOS path has less path loss and
strong reflections from the whiteboard and windows at
position 1-5.

It is also found that the values of decay factor β, delay
spread and angle spread are higher and the values of LOS
power ratio are lower at positions 16-20 than other positions.
That is probably due to the fact that the distance between
Tx and Rx antenna is much larger, and the Tx antenna is
much closer to the back wall with the distance of 0.6 m
at the positions 16-20, leading to the lower power of the
LOS path and richer multipath components from the back
walls.

The power angle delay profiles (PADPs) of position 12,
corresponding to the position with the highest angle spread,
is shown in Fig. 6. The large difference in angle spread
among locations is most likely caused by the difference in
path 1 (reflection from the windows) and path 2,3 (from the
whiteboard on the west wall) among locations.

FIGURE 7. The channel characteristics of 11 steps at 27 GHz-29 GHz in
R2-Classroom. (a) APDPs. (b) Decay factor. (c) Delay Spread. (d) Angle
Spread. (e) LOS power ratio.

B. R2-CLASSROOM
The APDPs with corresponding decaying lines of the mea-
surement step 1 and 11 measured in R2-Classroom at
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FIGURE 8. The channel characteristics of 11 steps at 27 GHz-29 GHz in
R3-Office. (a) APDPs. (b) Decay factor. (c) Delay Spread. (d) Angle Spread.
(e) LOS power ratio.

27GHz-29GHz are described in Fig. 7(a) for an example,
which show little relationship with the furniture moving out
and in on the decay lines. Two strongest paths with the

FIGURE 9. The channel characteristics of 20 positions at 27 GHz-29 GHz in
R4-Hall. (a) APDPs. (b) Decay factor. (c) Delay Spread. (d) Angle Spread.
(e) LOS power ratio.

same power values of about −66.7 dB are found in APDPs
shown in Fig.7(a). The two strongest paths are from LOS
propagation and probably strong reflection from the corner,
respectively. The strong reflection may be from the poles of
the blackboard, as they are aluminumwhich reflects the radio
wave well.

The characteristic parameters of total 11 steps are shown
in Fig. 7(b)-7(e). With removing the tables and chairs and
moving back in the classroom, the values of decay factor β
in Fig. 7(b) and delay spread in Fig. 7(c) remains stable. It can
be observed that, there is little influence on the propagation
channel for our measurements. One possible reason is that
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FIGURE 10. The PADPs of Tx positions 8 and 14 at 27 GHz-29 GHz in
R4-Hall. (a) Position 8 (b) Position 14.

the Tx and Rx antennas were located higher than the objects
in the room, resulting in little interaction between the objects
and multipath components. The elevation half power beam
width of commercial biconical is narrow, leading to the low
power of reflection and scattering from tables.

It is noticed that with blind windows open in step 11,
there will be small difference in the values of the decay
factor in Fig. 7(b), delay spread in Fig. 7(c) and angle spread
in Fig. 7(d), which is perhaps due to the strong reflections
from the open blind windows in the corner.

The similar tendency has been observed in Fig. 7(e) that
the values of LOS power ratio are distributed in the range
between −2 and −3 dB, indicating that the measurements in
the classroom are all not LOS dominated. That is because
of the strong reflection from the aluminous poles of the
blackboard near the Tx located, with almost the same power
of the LOS path propagation.

C. R3-OFFICE
Fig. 8(a) shows theAPDPswith corresponding decaying lines
of step 1, 6 and 11, which again shows slight relationship

with the furniture richness in the office. The strongest paths
of each step are from LOS path propagation, with the same
power values of −66.7 dB. As we remove the contents on
the shelves till with only shelves in step 6, the power level of
specular paths is higher than fully occupied in step 1 shown
in Fig. 8(a). When we continue to remove the shelves till
empty office in step 11, the power level of specular paths
remains stable, due to the fact that the surface of the shelves
is relatively small compared with the surface of the walls.

The characteristic parameters of total 11 steps measured
in R3-Office at 27GHz-29GHz are plotted in Fig. 8(b)-8(e).
The similar tendency has been observed in Fig. 8(b)-8(e),
with minor variations in the values of decay factor, delay
spread, angle spread and LOS power ratio, respectively. For
the measurement steps from 1 to 6, the values of decay factor,
delay spread and angle spread increase slightly and the values
of LOS power ratio decrease, mostly due to the fact that
less waves will be absorbed by the contents on the shelves,
as the contents are removed from the shelves one by one.
An explanation for the values of decay factor, delay spread,
angle spread remain stable from step 7 to 11, is that the
surfaces of the shelves are relatively small comparing with
the walls, leading to little impact on the MPCs components
in the office.

D. R4-HALL
The APDPs with corresponding decaying lines at position
1, 8, 15 measured in R4-Hall scenario at 27GHz-29GHz
are plotted in Fig. 9(a) for an example. It can be observed
that there is little diffuse spectrum in Fig. 9(a), due to the
large dimension of the hall scenario. In this case, it makes
no sense to study the decay factor in such large hall scenario,
since the multipath components are dominated by specular
components, with little diffuse components.

The characteristic parameters of total 20 Tx positions are
shown in Fig. 9(b)-9(d). It is observed that the values of
delay spread and angle spread are relatively low as shown
in Fig. 9(b) and Fig. 9(c), and the values of LOS power ratio
in Fig. 9(d) are small, because of the small Tx-Rx distance at
the position 7-9, 10, 17 and 18.

Especially, the large deviation in the values of delay spread,
angle spread, and LOS power ratio as shown in Fig. 9(b)-9(d)
at position 8 and 14, are mostly due to the distance between
Tx and Rx. According to PADPs of position 8 and 14 obtained
by the HRPE algorithm shown in Fig. 10, the main spec-
ular components after the LOS path are sparse. Besides
that, the strong reflections at position 8 are mainly from the
white pillars and yellow ventilation tubes nearby as shown
in Fig. 10(a) with small range of azimuth, while mainly from
the walls around at Tx position 14 in Fig. 10(b) with large
range of azimuth.

E. DISCUSSION
The channel characteristics summarized in Table 2 provide us
with the similarities and difference between the propagation
channels in different scenarios.
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TABLE 2. Summary of the characteristic parameters.

It can be found that the characteristic parameters are
closely related to the room size of the scenarios. The values
of the decay factor are similar in the same classroom of two
scenarios, while the values in R3-Office are much lower, due
to the small volume of the office. The diffuse spectrum can
be observed in small room size of R3-Office, while in large
dimension of R4-hall scenario, there is little diffuse spectrum
observed, resulting in no decay factor.

The large values of the delay spread are observed in
R4-Hall scenario, and smallest values of delay spread are
seen in R3-Office with small room size. The values of delay
spread in R1-Classroom are larger than that in R2-Classroom
with the same room size, because of strong reflection from
the poles of the blackboard in R2-Classroom. The LOS dom-
inance and specular components are most apparent in open
hall environment, according to the highest values of LOS
power ratio.

The results of the measurements with Tx antenna at differ-
ent positions in R1-Classroom and R4-Hall scenarios indicate
that the characteristic parameters are also associated with the
antenna locations in the scenario. The values of characteristic
parameters are significantly affected by the antenna locations,
due to the strong reflections from the objects, walls and
corners around the antenna. As the Tx antenna was located
in the corner of the R2-Classroom, there are strong reflection
components from the poles of the blackboard in the corner,
leading to the values of LOS power ratio in R2-Classroom
lower than the values in other scenarios, presenting the NLOS
dominance in R2-Classroom.

As ray tracing simulation mainly suffers from inaccurate
database and computational complexity. The room furniture
richness level on the characteristic parameters of the prop-
agation channel is also investigated. This is beneficial for
ray tracing simulation as detailed database description might
not be needed in some scenarios. Our observation is that
furniture richness might in some cases not relevant to the
channel parameters. Since the channel parameters derived
here may be dominated by the LOS path, the impact of
furniture richness on channels may be interesting to consider
the analysis in case of NLOS and obstructed-LOS as well in
the further.

V. CONCLUSION
In this contribution, four indoor measurements in class-
rooms, office and hall were conducted at the frequency band
of 27GHz-29GHz. Channel characteristics, i.e. decay factor,

delay spread, angle spread and line of sight (LOS) power
ratio, were investigated and compared in different scenarios.

The channel characteristics differ in different scenarios.
It is found that the values of the delay spread in R4-Hall
are much larger than that in R3-Office, and values of angle
spread in R4-Hall are much smaller than that in R3-Office.
It reveals that the size of the indoor scenarios has significant
impact on the channel characteristics. In individual scenarios,
the channel characteristics vary with respect to different Tx
locations, which can be seen from the apparent fluctuation
of the channel characteristics at different Tx position in
R1-Classroom and R4-Hall. Furthermore, in R2-Classroom
and R3-Office, little fluctuation of the channel characteris-
tics can be found with the furniture removing step by step,
which indicates weakly impact of the furniture richness in
indoor scenario on channel propagation. Generally speaking,
the LOS and specular propagation mechanisms are dominant
at 27GHz-29GHz mm-wave band, especially more apparent
in large R4-Hall scenario. In addition, it is interested to notice
the value of LOS power ratio in R2-Classroom is much lower
than that in R1-Classroom. That is caused by the strong
reflection from the aluminous poles of the blackboard in the
corner Tx located in R2-Classroom.
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