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ABSTRACT Webshell is a kind of backdoor programs based on Web services. Network-based detection
could monitor the request and response traffic to find abnormal behaviors and detect the existence of
Webshell. Some machine learning and deep learning methods have been used in this field, but the current
methods need to be further explored in discovering new attacks and performance. In order to detect large-
scale unknownWebshell events, we propose aWebshell traffic detectionmodel combining the characteristics
of convolutional neural network and long short-term memory network. At the same time, we propose a
character-level traffic content feature transformation method. We apply the method in our proposed model
and evaluate our approach on a Webshell detection testbed. The experiment result indicates that the model
has a high precision rate and recall rate, and the generalization ability can be guaranteed.

INDEX TERMS Webshell, character level, convolutional neural network, long short term memory.

I. INTRODUCTION
In recent years, a series of network security incidents have
been widely concerned, most of which are closely related
to the security of web website, such as Struts2 Leak and
Prism Gate. According to the annual safety report issued by
National Computer Network Emergency Response Technical
Team/Coordination Center of China (CNCERT/ CC), the
invasion behavior related to website is drastically increasing
every year [1]. Among various security threats, the backdoor
of the website is extremely serious. The backdoor of the
website is also called Webshell, which is a backdoor program
based on web services. A webmaster can use the webpage to
upload files, view the database, and execute OS commands
through the browser. At the same time, malicious user can
also initiate attacks by the Webshell tools such as China
Chopper.

Malicious Webshell detection methods can be divided into
two types: host based detection and network based detec-
tion [2]. The former includes regularization feature matching
approach, statistical feature thresholding approach (such as
NeoPI [3]). This kind of detection method is intuitive, which
make it is easy to be circumvented by attackers. The network
based detection methods mainly use communication traffic to
detect Webshell attacks. The traditional network-layer-only

security controls such as firewalls and signature-based intru-
sion prevention and detection systems have little role to play
in detecting Webshell. Webshell as a script file has several
static features and dynamic features.
Contribution: The main motivation of this paper is to

discover Webshell attacks, especially unknown attacks, from
network traffic. In order to achieve this goal, we consider the
advantage of deep learning in generalization ability. We pro-
pose a deep learning model architecture combining Convo-
lutional Neural Network (CNN) [4], [5] with Long Short
Term Memory (LSTM) [6], [7]. CNN is applied to extract
local key field features, and the features of text sequences are
captured by LSTM. The combination of these two methods
can mine patterns of Webshell malicious traffic. The main
contributions of this paper can be summarized as follows:
• We propose the character level method to transform
Webshell content feature, which can completely retain
the sequential pattern characteristics of traffic content.
At the same time, the dimension can be reduced, and the
effect of the model detection is improved. In the actual
case, there are a better performance in the hundreds of
millions of traffic items.

• We propose a deep learning detection model struc-
ture combining CNN with LSTM. By splicing
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the LSTM layer into the hidden output results of
CNN layers, we can achieve a comprehensive extraction
of local features and sequence features. The combined
model detection is more effective than the single CNN
model and the single LSTM model.

• We evaluate our proposed approach on a testbed,
the results shows it has higher precision, higher recall,
and higher F1-score. It is feasible in real traffic detection
and has the ability to discover the unknown Webshell.

II. DATA PREPARATION
A. SELECTION OF WEBSHELL TYPES
According to the server-side environment, we can mainly
divide Webshell into PHP based Webshell, ASP based Web-
shell and JSP based Webshell, where PHP for Apache, JSP
for Tomcat, ASP for IIS. According to the size and function
of the scripting program, Webshell can be divided into big
Trojan, small Trojan and One Word Trojan. The introduction
of these three kinds of Webshell are as follows:
• Big Trojan, a common Webshell with comprehensive
function. It usually contains friendly operation interface,
which can carry on file operation, command execution
and database operation under the graphical interface.
The Trojan often has a large file, and the codes are
confused to prevent the detection. In addition, some big
Trojans will contain a login interface.

• Small Trojan, which contains only one function.
A small Trojan usually provides file upload or database
lifting. When the website has a limited file size,
the attacker will use small Trojan as an upload spring-
board. The small Trojan file size is often within 5KB,
and there is no password protection.

• One Word Trojan, which refers to a script code that
is confused or encoded, usually a command execution
code, such as the ‘‘eval()’’ function. It can be inserted
into the original web code.

In this paper, our motivation is to find Webshell attacks
from traffic, especially unknown attacks. So when analyzing
the traffic, we divide Webshell into two following types.
• Browser&Server (B&S) Based Webshell. This kind
of Webshell is mainly used in web-based application.
Hackers uploadWebshell files to target websites through
vulnerabilities such as file upload and establish connec-
tions with uploaded web shells through browsers. The
browsers use Postmethod to send command parameters,
the contents of the returned package are usually the con-
tents of the HTML structure returned after the execution
of the control command.

• Client&Server (C&S) Based Webshell. This kind of
Webshell is based on the client sending commands to the
server. Take the China Chopper as an example, the client
encodes the command execution scripts by Base64, and
connects the server to a One Word Trojan program,
the server uses the specified separator to separate the
instructions execution results and returns them to the
client. From the traffic point of view, the result of server

return is usually the result of command execution, rather
than the complete HTML page structure, moreover,
the request package contains more execution content.

These two kinds of Webshell pass request information
through URL and Post body. At the same time, it can contain
all kinds of Webshell categories mentioned above, such as
‘‘big Trojan, small Trojan, One Word Trojan’’.

B. DATA COLLECTION
The research object of this paper is malicious HTTP traffic of
Webshell. We collect massive website communication traffic
extracted from university network monitor system, including
normal traffic and anomaly traffic. After accumulating for
a long time, we obtain about 600,000 Webshell malicious
traffic which include request and response body. At the same
time, we simulate theWebshell attack in our lab environment.
The server environment includes Apache, Tomcat, IIS and so
on. The programming languages include PHP, JSP, and ASP.
We use the kali platform [8] to build the test environment that
provides Webshell environments such as Webacoo, Weevely
and so on. The server-side Webshell file type contains big
Trojan, small Trojan and One Word Trojan. We use spider
tools to obtain these kinds of communication traffic gen-
erated by these Webshell tools, including Post request and
Get request. After data processing, these Webshell malicious
traffic data and normal traffic data are regarded as training
data sets.

C. DATA CLEANING
We perform data cleaning operations on the collected
Webshell traffic, mainly including the following operations.

1) URL DECODE
We find that URL data often be encoded. For instance,
the URL entry is ‘‘http://www.oschina.net/search? scope=
bbs&q=∗&%5E%25$’’, after URL decode process, the
result is ‘‘http://www.oschina.net/search?scope=bbs&q= ∗
&^%$’’. In this way, we can obtain correct URL format.

2) BASE64 DECODE
For safe transmission or prevention detection, many Post
request packets are encoded by Base64 encode method. For
encoding methods, we need first identify the starting position
of the encoding and try to decode data with corresponding
method. Taking the China Chopperclient-side request traffic
as an example, the command code is generally encoded into
Base64 code to confuse traffic information, and the data is
decoded by Base64 decode method at the server-side, finally
the command is passed to theOne Word Trojan program.

3) ELIMINATING THE EFFECT OF ENCRYPTION
For encryption traffic, since we cannot carry out the cor-
responding decryption, we first identify the encrypted data
location, and then replace the corresponding part to the pre-
defined flags. It is helpful for reducing the interference to the
model prediction results.
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4) BINARY DATA STREAM
Considering file uploading, video streaming, and other sim-
ilar situations, the binary stream data in Post request body
does not contain semantic information, which is a disturbance
factor for model checking. Similar to the above method,
we first identify the location of the binary stream and replace
the data in the corresponding location with the predefined
flags. The replace entries are shown in Table 1.

TABLE 1. Characters replacement rules.

III. CHARACTER LEVEL CONTENT FEATURE OF
WEBSHELL TRAFFIC
We extract the characteristics of URL and Post body sep-
arately, and finally generate the feature vectors detection
model. Meanwhile, we divide these data into three sets: train-
ing set, verification set and test set.

A. CHARACTER LEVEL CONTENT FEATURE
TRANSFORMATION
For content feature, which includes URL and Post body,
we take these parts of information as natural language.
However, because of most parts of these content cannot be
divided into words by space, we need to use word segmen-
tation to quantify text data. Nowadays, word segmentation
based on N-Gram [11] is widely used in text categorization.
Considering the use of N-Gram segmentation method will
generate a huge dimension space of word dictionary, some
dimensionality reduction methods are proposed to extract
key information, thereby enhancing the effectiveness of the
model. Most widely used dimensionality reduction methods
are TF-IDF [12] and Word2Vec [13]. The introduction of
these methods are described as follows.

1) N-GRAM WITH TF-IDF
Assume N=3, after 3-ram process, we can get the words
list contains all words with length 3. To reduce the huge
dimension space, we drop useless words, such as ‘‘123’’,
and retain important words, such as ‘‘exe’’. The main idea
of TF-IDF [14], [15] is that if a word or phrase has a high
term frequency in an article and rarely appears in other
articles, it is considered to be important and it is extremely
suitable for classification. However, dimension remains at
least ten thousands after dimensionality reduction. What’s
more, the absence of data features exists after dimensionality
reduction.

2) N-GRAM WITH Word2Vec
Word2vec [13] was created by a team of researchers
led by Tomas Mikolov at Google. The algorithm has
been subsequently analyzed and explained by other
researchers [16]–[18]. Embedding vectors created using the
word2vec algorithm have many advantages compared to
earlier algorithms [19] such as latent semantic analysis. After
word embedding, each word can be represented as fix length
vector, the dimension can be reduced a lot. However, for
massive data processing needs, the model needs a lot of time
and resources for training and generating word vector [20].

3) OUR CHARACTER LEVEL METHOD
Considering the problem mentioned above, we propose char-
acter level [21] content feature transformation method to
transform content information to feature vector.

For long traffic content, we define a fixed length L. If the
content length is more than L, we truncate the data of
L length. If the content length is less than L, we repeat the
data in the front part to the end of the data until the data
length is equal to L, which is different from the complement 0
mentioned in most of the papers. In contrast, we have proved
that the method of intercepting the preceding data and filling
can get better model checking results.

For each entry, we transform character sequence into corre-
sponding ASCII value sequence. If encountering non ASCII
visible characters, such as Chinese characters, we drop these
characters and finally the feature vectors is formed.

For example, the request content is ‘‘/1.qaz.jsp chopper=
i&z0=gb2312’’, the length of content is 30, the correspond-
ing ASCII vector is [47, 49, 46, 113, 97, 122, 46, 106, 115,
112, 32, 99, 104, 111, 112, 112, 101, 114, 61, 105, 38,
122, 48, 61, 103, 98, 50, 51, 49, 50]. The part of less than
L supplemented the previous contents.

B. FEATURE ANALYSIS
For request packets, we splice URL and Post body to gen-
erate the original data. After analysis the content feature of
Webshell traffic, we find that the distinctive features are as
follows.

1) URL Feature
Webshell files are often located in sensitive directories such
as ‘‘images/’’, ‘‘css/’’. These files are often named with
sensitive names, such as ‘‘dama.jsp’’, ‘‘shell.php’’. The file
suffix name is generally php, asp, and jsp. There also exists
confused file suffix such as ‘‘.asp;png’’ to avoid file upload
validation.

2) POST BODY FEATURE
Take the China Chopper as an example. The Post
body content is like this: ‘‘c=@eval (base64_decode
($_post[z0]));&z0=∗∗∗∗∗∗∗∗∗∗∗∗’’, we find that some PHP
system call command is embedded into Post body values after
being encoded by Base64. What’s more, the key command
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code is encoded with Base64, which is very different from
normal traffic. Some examples of Webshell request traffic are
shown in Table 2.

TABLE 2. Webshell request traffic example.

After feature analysis, we determine the length of the fixed
length sequence and the specific character replacement rules.
The string length distribution of the original data box diagram
is shown in the Fig.1. The ‘‘len’’ label denotes the length
of URL and Post body after stitching. The ‘‘urllen’’ and
‘‘postlen’’ labels denote the length of URL and Post body
respectively. We can find that the 3/4 score is approximately
300 bytes. That is to say, 75% of data are less than 300 bytes.
After the statistic, we define the fixed length of sequence
vector equal to 300 bytes. Finally, as the data preparation
module mentioned before, we can obtain ASCII sequence
vector for each request traffic sequence.

FIGURE 1. Data length distribution.

IV. WEBSHELL DETECTION MODEL BASED ON
DEEP LEARNING
The model is based on Convolution Neural Network (CNN)
[4], [5] and Long Short-Term Memory Network (LSTM)
[6], [7]. The main reason for model selection is that CNN
can get local features, and can identify key malicious code
fragments. After that, we input the hidden output vector into
LSTM layers. In this layers, sequence pattern feature can be
learned. The model architecture is shown in Fig.2.

We transform request data into input tensor, feed tensor
into then three layers of one dimensional convolution

FIGURE 2. Webshell detection model structure.

neural network. Then we feed the hidden output into LSTM
layer. After the output flatten, we feed the output vector into
the fully connection layer. Finally, the softmax classifier is
used to output the two classification results.

It is necessary to note that the actual convolution kernel
number and other hyperparameters need to be set according
to the actual problem. In this study, we determine that the
number of convolution kernels are 24, 48, 64, the LSTM
units we set are 64, and the number of fully connected layer
neurons is 128. The core layers are described as follows.

3) CONVOLUTION AND ReLU [22]
We suppose the filter, where h is the filter window width.
In our research, hmeans the length of filter words, we define
h = 3 after experiment contrast. At position i of the input
vector X , the length of X is n, the result of convolution
is Ci:

Ci = f (W · Xi:i+h−1 + b) (1)

Where b is the bias and f is the nonlinear rectify function.
The convolution result of the whole sentence is a feature
vector, we use the same padding, so the length is n, and the
result is C .

C = [C1,C2, . . . ,Cn] (2)

We use the ReLU activation function, which is an element-
wise operation. This activation function can get better gradi-
ent in back-propagation.

4) MAX-POOLING
Amax-pooling operation on the feature map (result of convo-
lution) is applied to obtain the maximum value from Ci to Cj,
the feature map size in our research is 2, so we can get Ci,i+1
as the feature corresponding to the particular filter size 2.

Ci,i+1 = max (Ci,Ci+1) (3)

It captures the most important value (the highest value)
for each feature map. Besides, this operation can naturally
deal with variable sentence lengths. Then, the max-
pooling results are concatenated to get a feature vector
Z = [Ci,i+1,Ci+2,i+3, . . . ,Cn−1,n].

5) BATCH NORMALIZATION [23]
Traditional neural networks only standardize the X before
entering the sample X into the input layer to reduce the differ-
ence between the samples. On this basis, batch normalization
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not only standardizes the input data X of the input layer, but
also standardize the input of each hidden layer. We find that
after convolution process, the hidden layer output data are
not satisfied with normal distribution. We use batch normal-
ization to improve the model effect. Experimental results in
section 5 show that after batch normalization entry, the effect
of the model has been significantly improved.

6) LONG SHORT-TERM MEMORY
Recurrent Neural Networks (RNNs) [6], [7], which can
exploit information both from the past and the future to
improve the prediction performance and learn the complex
patterns in HTTP requests better. In our research, we use
LSTM to learn the hidden embedding vector pattern gen-
erated from Convolution layers. Given embedding vector
{v11, v12, v13, . . . , v1z} of content sequence of request Ri,
the forward LSTM Ef reads the input sequence from v11
to v1z, and calculates a sequence of forward hidden states
(Eh11, Eh12, . . . , Eh1z)(Eh1i ∈ Rp and p is the dimensionality of
hidden states). After that, the output vector of the LSTM layer
is fed into next layer.

7) DENSE
After flatten layers, the convolution result can be feed into
dense layer, the output of the dense layer is D.

D = [D1,D2, . . .Dj, . . . ,Dl] (4)

Dj = f (
∑H

k=0
Wkj ∗ Xk + bj) (5)

The flatten output result with lengthH , and the dense layer
units with count l, Wkj represent the weight vector for Xk in
j-th dense unit, bj represent the bias of j-th dense unit. For
each unit we can get output alias asDj, finally we concatenate
each units output to get the dense result D.

8) DROPOUT [24]
Before mapping to the binary output, in training process,
a dropout layer is appended. Dropout is an important strategy
to suppress overfitting problem. It drops the output weights
of each hidden units randomly.

9) SOFTMAX
The softmax function can compress a vector of aK dimension
containing any real number to another K dimensional vector,
in which each element fall in (0, 1), and the sum of all the
elements is 1. We use the output of softmax function as our
classification layer output. The probability that the sample
vector x belongs to the j-th classification is:

P(y = j|x) =
ex

Twj∑K
k=1 e

xTwk
(j = 1, 2, . . . ,K ) (6)

We get the class label by the argmax function. Finally,
we can get the classification result.

V. EVALUATION
A. WEBSHELL TRAFFIC DETECTION TESTBED
We evaluate the models of this paper on a testbed, as shown in
Fig.3. We can see that the whole detection process is divided
into three stages.

FIGURE 3. Webshell traffic detection testbed.

The first stage is data collection. We adopt a variety of
methods to build data sets, including campus network traffic
collection, traffic monitoring system to collect traffic, using
crawler tools to crawl webshell request packets in the test
environment, running a variety of types in the sandbox envi-
ronment, and the traffic of Webshell scanned by the scan-
ner. The data is then divided into training set, test set and
validation set.

The second stage is the data preprocessing stage. We adopt
3-gram [11] with TF-IDF [12] method, 3-gram [11] with
word2vec [13] method and character-based vectorization
method, and output the data preprocessing results to the
model for use.

At last, we adopt a multi-model comparative experiments,
including several machine learning models and deep learn-
ing models. The deep learning model mainly depends on
Tensorflow/Keras in the underlying environment and the
machine learning depends on Scikit-learn in the underly-
ing environment. The server hardware environment is com-
posed of 256G memory, 8 core E5-2600v2 series, NVIDIA
GTX1080TI public version and 14T hard disk. Operating
system is Ubuntu Server 16.04 LTS.

B. DATASET
Train Dataset Distribution: For Webshell traffic, we collect
data from real traffic monitor system and simulate Webshell
attack in local environment. In addition, other Webshell traf-
fic are collected byWebshell vulnerability scans under exper-
imental environment. The normal traffic is captured from
HTTP traffic packets via the network gateway. We perform
manual verification and tagging for these data. The number
of dataset is 949807, including 634969 normal traffic data
and 314838 Webshell traffic data. Among these traffic data,
125036 entries adaptPostmethods, others adapt Getmethods.
The distribution of dataset is shown in Table 3. It should
be noted that data type represents the different behaviors
of Webshell and different types of Webshell. Such as ‘‘scan
shell file’’ response to the scanning behavior for requesting a
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TABLE 3. Type of webshell traffic dataset.

shell file. Other types response to Webshell data beyond the
scope of the rule recognition.

According to the Fig.3, we divide the dataset into three
parts, including training set, test set and validation set. The
corresponding ratio are 60%, 20% and 20%.

C. MODEL COMPARISON
We compare model effect with different models. The num-
ber of test dataset is 189965, including 126707 normal and
63258 Webshell traffic, the result is shown in Table 4.

TABLE 4. Result comparison.

Firstly, we compare the model effects between machine
learning methods, including Logistic Regression, Naive
Bayes, Support Vector Machine, and Multilayer perceptron.
We use the participle method of 3-grams and extract the
first 100 thousand words according to TF-IDF to generate
the word vocabulary. The results show that machine learning
methods do not perform well on F1-score indicators. In other
words, machine learning methods cannot achieve the equilib-
rium of precision and recall.

Secondly, we compare the performance of deep learning
methods including CNN, LSTM and CNN_LSTM. We sum-
marize that no matter what embedding method applied,
including the word2vec based feature extraction method and
the character level feature extractionmethod, the combination
method CNN_LSTM has a better performance on the test
set, has higher F1-score than other methods. Additionally,
the character level feature transform methods has a positive
influence on model accuracy.

Especially, we compare the speed of convergence in train-
ing stage between three kinds of character level deep learning
models. The result is shown in Fig.4, we train three models
in 5 epochs and record the accuracy and loss values of each

FIGURE 4. Model convergence speed comparison.

epoch in validate set. The results show that the CNN_LSTM
model has the fastest speed of convergence compared with
CNN model and LSTM model.

D. PARAMETER TUNING
In the process of optimization of the proposed model,
we adjust the values of different hyperparameters and carry
out comparative experiments in order to determine the cor-
responding values of each hyperparameter under the optimal
effect of the model.

1) CONTENT PADDING TYPE
We contrast our proposed text padding method with zero
padding method to determine the optimal filling method. The
text padding means that for text whose length is less than
the specified length, we intercept the front part of the text
and add it to the back. The detection is based on Charac-
ter_CNN_LSTM model. The different performances of the
two methods on the test set are shown in Fig.5.

FIGURE 5. Model performance on padding methods.

What needs to be pointed out is the AUC means the area
under the receiver operating characteristic curve. We can find
that text padding perform better than zero padding in each
evaluation standard.

2) DATA LENGTH
We contrast our model effects with different input data length,
the optional length are 200 bytes, 300 bytes, 400 bytes,
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the comparison result is shown in Fig.6. As shown in the
figure, when the length is set to 300 bytes, the value of recall,
F1-score and AUC is higher.

FIGURE 6. Model performance on data length.

3) BATCH NORMALIZATION
We adopt the idea of Batch Normalization in hidden layer
output. In our proposed model, we add Batch Normalization
layer after the Max-Pooling layer. The model performance
result is shown in Fig.7.We find that the Batch Normalization
play an important role on the effect of themodel. In particular,
with batch-normalization, the recall of the model has been
greatly improved. This shows that the model has a stronger
ability to detect abnormalities.

FIGURE 7. Model performance on batch normalization.

E. DETECTION SPEED CONTRAST
Considering the huge volume of traffic data, the detection
speed is also the key factor of the feasibility of the model in
the real environment. We compared the difference of training
and detection speed between the deep learning model and
the machine learning model through experiments. We extract
200,000,000 traffic entries of from the traffic testbed. The
size of the traffic data is 2.86T. The training dataset is shown
in Table 3. Each model uses the same test environment of
software and hardware. The environment information is as
described above, we test the time required for each model to

complete all training and detection task, and the results are
shown in Fig.8. and Fig.9. We can find that the character-
based deep learning model has faster training and prediction
speed than word2vec-based deep learning model, especially
the advantage of speed in training is more obvious. The main
reason is that word2vec-based deep learning model needs to
construct word vector model, while character-based model
does not. We can also find that machine learning model cost
more time in test stage compared with time costed in train
stage, the main reason is that deep learning model train multi-
epochs in training stage.

FIGURE 8. Training time of different models.

FIGURE 9. Test time of different models.

F. GENERALIZATION ABILITY VERIFICATION
In order to verify the generalization ability of the model in
mass traffic detection in real environment, we have done
some experiments. Considering the fact that the actual traffic
volume is large and without labels, so it is difficult to test
its generalization ability. In our experiments, we use the rule
based baseline result to assist manual verification.
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TABLE 5. Units for magnetic properties.

We extract an unlabeled dataset with 10 million traffic
entries from http traffic monitor. Firstly, we feed these data
into Webshell rule based detection system to generate a base-
line result. The Webshell types generated from rule based
detection system include One Word Trojan(OWT), China
Chopper(CC), Execute Shell Command(ESC) and Scan Shell
File(SSF). The result is shown in Table 5.
Wefind that the character level CNNcombinedwith LSTM

model maintain a good generalization ability in actual traffic.
We manually checked the malicious traffic detected out by
each models, which can evade the detection engine based
on rules. It should be pointed out that malicious percent
represents the proportion of all data outside the rules that are
manually verified asWebshell requests to all out-of-rule data.
For example, the character-based CNN_LSTM model detect
38,289 out-of-rule abnormal traffic, and manual tests show
that 75% of those are Webshell traffic entries. For compar-
ison, using word2vec based CNN_LSTM model, detection
number is 31,339, of which only 54% are Webshell requests,
the other are model misjudgment requests, which show that
character-based model is superior to word2vec based model
in recall rate and precision rate. So we can find that the model
we proposed is available in real environment. At the same
time, it contains the ability to discover unknown Webshell
threats.

VI. RELATED WORK
Many works have been done in Webshell detection and diag-
nose. The research work can be divided into two directions,
one is based on the host, and the other is based on network
traffic.

Host based detection usually uses eigenvalues and hazard
functions to detect Webshell files [16], [25]–[28]. If a rea-
sonable rule is found, this method could achieve high success
rate of detection with easy operations, and quickly detect the
presence ofWebshell. Kong et al. [26] proposed theWebshell
detection method based on SimHash algorithm [29]. They
build up a SimHash fingerprint library based on Webshell

code reuse, which combining with the idea of Webshell code
reuse in building up SimHash fingerprint library, can be
applied to small and medium size website for real-time detec-
tion and alarm. The PHP opcode(operation code) sequences
are important features applied for PHP basedWebshell detec-
tion [27]. A PHP Webshell detection model based on a com-
bination of fastText [30] and random forest algorithm [31]
is proposed to learn the opcode sequences features [27].
Ying and Yong [19] proposed a Webshell detection method
based on correlation analysis according to the obfuscation
statistical characteristics of Webshell.

However, such matching method only achieves high suc-
cess rate with some existing Webshell, for some of the latest
Webshell, the recall rate will be relatively low, and it almost
couldn’t detect 0day Webshell. What’s more, because this
method is specific to the hosts, it cannot meet the detection
requirements of large-scale Webshell events.

Network based detection could monitor the request and
response traffic generated in the communication activities,
system commands, and status changes, to find abnormal
behaviors and detect the existence of Webshell [2], [17],
[32], [33]. Ye et al. [2] analyze the structural and textual fea-
tures of pages, use bag-of-words model to extract keywords,
and then use the SVMmethod to classify and detectWebshell.
Sun et al. [33] analyze the different features of a page and pro-
pose a novel matrix decomposition based Webshell detection
algorithmwhich canmake predictions on the unknown pages.
Tian et al. [17] propose a new malicious Webshell detection
approach based on word2vec representation and convolu-
tional neural network (CNN). The effectiveness of model
checking and practical application can be further optimized.

VII. CONCLUSIONS
In this paper, we analyzeWebshell attacks from traffic and try
to find unknown Webshell attacks. We propose a character-
based feature extraction method for sequential content. Based
on this method, we obtain feature vectors as the input of the
combined model of CNN and LSTM proposed in this paper,
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we construct testbed in a variety of experimental scenarios
and verify that the feature extraction and model in this paper
have a good performance in precision, recall, F1-score, AUC,
and generalization ability. This paper does not analyze the
Webshell behavior pattern, this is our next step.
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