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ABSTRACT In this paper, an automatic tracking strategy based on a CCD image sensor is proposed to
achieve the real-time tracking of embryonic cells with the MR-6 micromanipulator. The optical character-
istics of the micro-vision sensor are systematically studied. Dark field is formed by the optical microscope
imaging principle under the low rate objective lens. The global information of the embryo cells is tracked
automatically using the improved Hungarian algorithm, so that the motion parameters of the batch of embryo
cells and the interested area can be obtained. Then, the detailed information of the interested area is obtained
in the bright field using the automatic conversation device. In addition, the feasibility of the algorithm is
further verified by automatic experimental research.

INDEX TERMS CCD image sensor, optical transfer function, micromanipulation, Hungarian algorithm.

I. INTRODUCTION
Micro vision sensor has been played an important role in
micromanipulation. The most of the current research is based
on static passive sensors [1], [2], which cannot change the
resolution of images [3], [4]. It is of significant importance to
track the trajectories of embryonic cells and study their move-
ment features during the process of embryonic development,
which help the medical researchers to treat highly diffusive
diseases and carry out the corresponding pharmacology stud-
ies [5]–[10]. Therefore, the real-time tracking and analysis
of the embryonic cells under the different resolution has
attracted much attention in the field of life science [11]–[14].
Amariglio indirectly evaluates the motion features of individ-
ual cell by establishing colony scratches for cells [15]. This
method is simple, but cannot be effective to track the trend
of overall movement for embryonic cells. So far, the study
on tracking the targets in real time at different resolutions is
really rare.

In this work, with a view of the real-time tracking, a track-
ing strategy based on CCD image sensor is proposed, which
makes it feasible to obtain multi-scale information in the
target tracking process. The MR-6 micromanipulation robot
system is applied for the migration tracking and analysis of
embryo cells. Themulti-scale automatic tracking strategy and

the optical characteristics of the microsystem are systemati-
cally studied. The organization of this paper is as follows.
A tracking strategy based on CCD image sensor in batch
embryos is introduced in Section II. Section III describes
the related automatic experiment. Conclusions are given in
Section IV.

II. THE AUTOMATIC TRACKING STRATEGY BASED ON
CCD IMAGE SENSOR IN BATCH EMBRYOS
Because cell migration is occurred after the cell receiving
the migration signal or feeling the concentration gradient
of certain substances, the cell cluster is bound to have a
consistent movement trend. At the same time, during the cell
movement, the single cell repeats the motion of extending the
synapse and pulling the rear cell to the forward. Observation
and analysis of the process are conducive to understanding
the mechanism of cell migration. During tracking the overall
movement of the cell cluster, the morphology of the single
embryo cell should be observed in real time. At the same
time, in order to obtain the overall movement trend of the cell
cluster, it is necessary to track the whole batch of embryo
cells. Furthermore, considering the living characteristics of
the embryonic cells, the tracking time should be as short as
possible to strengthen the tracking calculation. In addition,
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all the operations should be done automatically to reduce the
workload of the experimenters.

However, there is often a tradeoff between the acquisition
of the overall movement trend for the embryo cells and the
observation of the delicate structure of single particle under
high resolution. The increase in the visual field magnification
will reduce the observable space and introduce the visual
sampling error. On the other hand, the low magnification
reduces the visual sampling error, but the effective image
resolution of the target will be reduced as well. In addition,
the dark field microenvironment uses the Tyndall optical
effect to improve the contrast between the observed object
and the background, which is beneficial for observing the
moving objects but is bad for obtaining the details of the
object. Therefore, in order to obtain the accurate movement
trend of embryo cell cluster, it is preferable to observe the
targets under the low magnification in dark field while to
collect the morphology and structure of the single embryo
cell under the high magnification in bright field. On the other
hand, the automatic and real-time tracking of the batches of
cells is also a difficult problem. At present, the commonly
used trackingmethods can be roughly divided into four kinds:
the active contour based method [16]–[18], the region based
method [19], the model based method [20], [21] and the
feature based method [22]–[24]. The tracking algorithms of
moving targets in microscopic images are different from that
of the macro target since the deletion and fragmentation of
cell edge fragments, and the adhesion and overlap of cells are
large challenges [25]–[27].

During the tracking of embryo cells, the overall move-
ment trend of the cell cluster and the details of the single
cell are difficult to obtain at the same time. Thus; the dark
field of view is formed by using the optical microscope
imaging principle under the low rate objective lens, and the
embryo cells are automatically tracked with the improved
Hungarian algorithm. The global information of the cell is
used to obtain the motion parameters of the batch embryo
cells and identify the regions of interest, so as to realize the
automation for the analysis on the overall movement trend
of the embryonic cells. At the same time, the time slice is
allocated for different regions of interest (usually more than
1 minutes). The automatic switching between the dark field
and the bright field and the area of interest of the time film
can be achieved. The automatic transformation and focusing
is carried out by the MR-6 micromanipulation robot. The
simultaneous acquisition of the global view and the region of
interest for embryonic cells can be achieved. The algorithm
flow is shown in Figure 1.

A. IMAGE ACQUISITION IN DARK FIELD OF VIEW
In order to achieve the rapid and accurate tracking as well as
the location of multiple cells, it is necessary to improve the
contrast between embryonic cell and background. During the
light propagation, when the irradiated particles are smaller
than the wavelength of incident light, the light wave will

FIGURE 1. Algorithm flow of the tracking strategy based on CCD image
sensor in batch embryos.

surround the particles and radiate the scattered light around
them. Therefore, according to the principle of microscope
optical imaging, the dark field of view is used to complete
the global microscopic images for the migration and tracking
of low-rate embryo cells.

B. TRACKING STRATEGY FOR OBTAINING CELL
MOTION INFORMATION BASED ON THE
IMPROVED HUNGARIAN ALGORITHM
Cell matching is the key step for the migration and tracking
of batch cells. This paper proposes a tracking strategy based
on the improved Hungarian algorithm [28]–[30].

1) OBTAINING THE POINT SPREAD FUNCTION
IN THE PROCESS OF IMAGE IMAGING
Point spread function (PSF) smoothing model is used to real-
ize the PSF scale space under different scales by convolution.
PSF is an index used to describe the object space and image
space in optical sensor system. Deconvolution of the images,
captured by the microscope and the object, is used to get
the PSF.

2) REPRESENTATION OF PSF SCALES SPACE
As shown in formula one, the scale space of an image
L(x, y, σ ) is defined as the convolution of a variable scale
PSF function PSF(x, y, σ ) and the original image f(x, y).

L (x, y, σ ) = PSF (x, y, σ ) ∗ f(x, y) (1)

Where σ is a scale spatial factor. The smaller the σ value,
the smaller the image is smoothed out, and the smaller the
corresponding scale.
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3) CONSTRUCTING PSF PYRAMID AND
GETTING PSF DIFFERENCE IMAGE
The pyramid model of image refers to the model composed
of a series of images of different sizes, from large to small,
from bottom to top, by continuously reducing the order of the
original image to sample. The original image is the first layer.
PSF difference image is obtained with the formula two.

D (x, y, σ ) = (G (x, y, kσ)− G (x, y, σ )) ∗ f(x, y) (2)

4) DETECTION THE KEY POINT
The key points comprise the local extremum points of PSF
difference space (PDS).

Descriptors with Scale-invariant feature transform(STFT)
is used in detecting the key point. SIFT is a computer
vision algorithm for detecting and describing local features
of images. It searches for extreme points in spatial scale and
extracts their position, scale and rotation invariants. Descrip-
tion and detection of local image features can help identify
objects. SIFT features are based on interest points of some
local appearances of objects and are independent of image
size and rotation. Thus, the tolerance of light, noise and micro
angle changes is relatively high. Based on these characteris-
tics, it is highly significant and relatively easy to retrieve the
SIFT features. Based on a large number of feature databases,
it is easy to identify objects and rarely misrecognize them.
SIFT features the large amount of information and is suitable
for fast and accurate matching in massive data. Combining
with the optical characteristics of microscope, an improved
Hungarian algorithm is then proposed.

The initial detection of the key points is accomplished by
comparing the adjacent two layers of images in the same
group of PDS. In order to find the extremum of PDS function,
each pixel is compared with all its adjacent points to see if
it is larger or smaller than the adjacent points in its image
domain and scale domain. The intermediate detection point is
compared with its eight adjacent points of the same scale and
the 9∗2 points related to the upper and lower adjacent scales,
which are 26 points in total, to ensure that the extreme points
are detected in both the scale space and the two-dimensional
image space.

5) KEY POINT FEATURE DESCRIPTION
In order to determine the descriptor rotation invariant, it is
necessary to assign a reference direction to each key point by
using the local features of the image. The stability direction of
local structure is obtained using image gradient method. For
the key points detected in the PFS pyramid, the gradient and
direction distribution characteristics of pixels in the neighbor-
hood window of the Gauss pyramid image 3 are collected.
The modulus and direction of the gradient are as follows:
m (x, y)

=

√
(L(x+1, y)−L(x−1, y))2 + (L(x, y+1)−L(x, y−1))2

θ (x, y)

= tan−1(
L (x, y+ 1)− L (x, y− 1)
L (x + 1, y)− L (x − 1, y)

) (3)

Through these steps, each key point has information on
location, scale and direction. The next step is to create a
descriptor for each key point, using a set of vectors to describe
the key point, so that it does not have all kinds of changes,
such as lighting changes, perspective changes, and so on.
This descriptor includes not only the key points, but also
the pixels contributing to them around the key points. The
descriptor should have higher uniqueness in order to improve
the probability of correct matching of feature points.

6) MATCH THE KEY POINT IN EACH FRAME
USING THE HUNGARIAN ALGORITHM
Hungarian algorithm is based on a Euclidean distances
matrix that is obtained from the SIFT descriptor. The size of
matrix can vary over time according to the objects appeared
and disappeared. The Hungarian algorithm achieves target
matching between consecutive frames, and is used to iden-
tify vanishing targets and emerging targets in automatic
tracking.

Hungarian algorithm steps are as follows:
Step 0: Construct a cost matrix of n ∗ m. n is the number

of key points in one frame and M is the number of key
points in the next adjacent frame. If the number of columns
of the matrix is not consistent with the number of rows, it is
necessary to extend the matrix to k = min (n, m).
Step 1: Finds out the minimum value of every row in the

matrix and subtracts the minimum value from all values.
Step 2: Find the value of zero in the matrix. Find the value

of zero in the cost matrix. If there is no asterisked zero in the
rows and columns, add an asterisk to the zero in the position.
Step 3: Overlay each column with an asterisk of zero,

if there is a K column overwritten, then you can get the best
match, otherwise Step4;
Step 4: Looking for the uncovered 0 in the matrix, marking

it as 0’, if there is no other ∗ 0 in the row of 0’, proceed
directly to Step 5, otherwise cover the row of 0’, do not cover
the column of ∗ 0 in the row; if the uncovered area does
not contain 0 in the matrix, find the minimum value in the
uncovered area, proceed to Step 6;
Step 5:Construct a series of optional 0’s and ∗ 0 as follows,

let Z0 denote 0’in the uncovered region of Step 4, Z1 denote
∗ 0 in the column where Z0 is, Z2 denote ’’ in the row where
Z1 is, until there is no other ∗ 0 in the column where 0’
above is, then remove all ∗ 0’s ∗ and replace all ’’ in the matrix
with ∗. Cover the line back to Step3;
Step 6: Add the minimum value found in Step 4 to each

value of row coverage, subtract the minimum value for each
column of the uncovered area, and return Step 4.
Step 7: Find the best match, if the position of C (I, j) is ∗ 0,

then the corresponding row and column are the best match
respectively.

If n is greater than m, no matching (n-k) cells end tracking.
If n is less than m, no matching (m-k) cells are added to the
next tracking object group.

2.3 Automatic acquisition of detail information on region
of interest in microscopic images
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According to the characteristics of the alignment axis of
the microscope, the system realizes the automatic acquisition
of the detail information on the region of interest under the
low magnification in objective microscope image in the open
field.

III. EXPERIMENTAL RESEARCHES ON AUTOMATICALLY
TRACKING BATCH EMBRYO CELLS
Chicken has unique biological characteristics and thereby
become an important model organism for many biological
problems. The embryonic development of chicken can pro-
vide a lot of inspiration for researches on human and other
model animals. In the automation experiment, the chicken
embryo’s intestinal embryo formation was used as the exper-
imental research model, and the automation tracking method
of embryo cell migration was applied to the migration track-
ing experiment for chicken embryo cell. The automation
experiment of chicken embryo cell migration was carried
out using the micromanipulation robot system to obtain the
dynamic model of chicken embryo cell migration.

Cell images captured in the dark field of view have
the characteristics of black background and prominent con-
tour information. Compared with the light field microscopic
image, the dark fieldmicroscopic image weakens the interfer-
ence information of the background, so the target information
can be clearer, which is helpful to observe the cell movement
process, as shown in Fig.2.

FIGURE 2. Chicken embryonic cell in the dark field of view.

The OLYMPUS IX71 inverted microscope with the halo-
gen bulb of 12V100WHAL (PHILIPS7724) (IX2-ILL100
illumination column) was used to obtain the field of view
diaphragm by adjusting the aperture to the smallest and the
objective lens microneedle under 10 times focusing. After
focusing, the microneedle is removed using the high-speed
image recording system (GVMC01-BO5) which records the
image produced by point light source. In order to further
realize the automation of migration and tracking, the micro-
manipulator is equipped with an automatic field-of-view
conversion device and an automatic dimming device. The
positions of the two devices in the micro-manipulator micro-
scope are shown in Fig.3.

The parameters of 4- and 10-times eyepieces in the micro-
operating system are analyzed and the suitable objective

FIGURE 3. Mechanical structure of micro manipulation robot platform.

TABLE 1. The related parameters for ten-times objective.

FIGURE 4. Convolution kernel of PSF scale space.

is selected. The optical parameters of the 10-times objective
are calculated. The magnification M of the 10 times objective
is 10. The numerical aperture NA is 0.93.The wavelength
of the system light source and the cut-off frequency of the
digital imaging system, as well as the relative parameters
of 10-times objective lens can be obtained by calculation,
as shown in Table 1.

Similarly, 4-times of objective parameters can be calcu-
lated. Fig.4 is the convolution kernel of PSF scale space.
In two-dimensional space; the contours of the surface gen-
erated by this formula are concentric circles with normal
distribution from the center. The non-zero pixel convolution
matrix is transformed with the original image. The value of
each pixel is the weighted average of neighboring pixels. The
value of the original pixel has the largest PSF distribution
value and the largest weight. As the adjacent pixels are farther
away from the original pixel, their sizes gradually reduce.
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FIGURE 5. The Sift descriptors in the selected adjacent two images
randomly.

FIGURE 6. The vector of descriptors in the second image.

This fuzzy process preserves the edge effect, which is better
than other balanced fuzzy filters.

Fig.5 is the SIFT descriptors in the selected adjacent two
images randomly. 1643 descriptors are obtained from the
first image, and 1683 descriptors are obtained from the sec-
ond image. Fig.6 is the vector of descriptors in the second
image.

Then, the distance matrix is obtained and stored in a vector,
whose size is 1643∗1683.
The Hungarian algorithm realizes target matching between

consecutive frames, which is shown as follows:
The distance matrix is gives as A[m,n], and the number of

matched point is k, where k=min{m,n}.
If (k=m=n), then

A[k,k] = [1, 2, 3, 4, 2, 4; 4, 2, 1, 3, 3, 2; 2, 1, 2, 2, 4, 1;

2, 4, 1, 1, 2, 3; 2, 4, 1, 4, 1, 2; 1, 4, 2, 4, 3, 1];
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

The matched target map is shown in Fig.7.
If k is less than n, it indicates that some traced targets is

vanished. The experimental results are shown in Figure 8.
Vector ff stores items that do not match.

FIGURE 7. Matched target map.

FIGURE 8. Identify vanishing target.

If k is greater than n, it indicates that there are some new
traced objects. The procedure is shown as follows:

A[m,n] = [1, 3, 3, 4, 2, 4, 1; 4, 2, 1, 3, 3, 2, 3; 2, 1, 2, 2, 4,

1, 4; 2, 4, 1, 1, 2, 3, 4; 2, 4, 1, 4, 1, 2, 3;

1, 4, 2, 4, 3, 1, 4]

A[k,k] = [1, 3, 3, 4, 2, 4; 4, 2, 1, 3, 3, 2; 2, 1, 2, 2, 4, 1;

2, 4, 1, 1, 2, 3; 2, 4, 1, 4, 1, 2; 1, 4, 2, 4, 3, 1];

ff = [1; 3; 4; 4; 3; 4],

where ff stands for the new traced objects.
Fig.9 shows the cell tracing process of the Adjacency

frames in the multicellular tracking experiment.
The detail information acquisition process under high reso-

lution is as follows. Firstly, the pixel space coordinates of the
center point C(384, 288) are obtained according to the con-
stant window of the microscopic image with the resolution
of 768∗ 576. The region of interest is selected at low magni-
fication. Each pixel is measured at about 2.996 microns under
the quadratic objective. The distance at X and Y direction
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FIGURE 9. Tracked cell in image sequence.

from the center of the coordinate to the lower left corner of
the selected area is obtained from formula four.{

SX = 2.996(384− x1)
SY = 2.996(288− y1)

(4)

Where x1 is the X axis coordinates and y1 is the Y axis
coordinates of the Point A, which is the lower left cor-
ner of the selected area. According to the principle of
distance invariance, the distance between the center point
and the point in the lower left corner is invariable, so the
micro-manipulation platform can move the corresponding
distance at the X axis and Y axis directions according to
the distance from the lower left corner to the image space
coordinates. The lower left corner of the 4-times objective
is moved to the center of the high-power objective, and the
micro-manipulation platform is set to move to the right if
the value of SX is positive or to the left if the value of
SY is positive. Otherwise, the micro-manipulation platform
moves upward if SY is positive, and the micro-manipulation
platform moves downward, which enable the coordinates
of the lower left corner to move to a high position. Then,
according to the coordinates of point C (x2, y2), the distances
between point C and point A at the X, Y axis directions are
calculated respectively. Let SX1 be the distance difference
between point A and point C at the X direction, and SY1 be
the distance difference between point A and point C at the
Y direction. {

SX1 = 2.996(x2− x1)
SY1 = 2.996(y2− y1)

(5)

The distance difference between point A and point C at
the X and Y axis directions indicates the width and height of
the selected area. The scanning range at the X and Y axis
directions can be calculated in formula six, where s is the
distance of each movement of the electric vehicle platform
under the high magnification objective.{

SSx = X1/s
SSy = Y1/s

(6)

IV. CONCLUSION
Aiming at the challenge that the global view of multi-target
and the detail information of single target cannot be obtained

simultaneously during micro-target tracking, a tracking strat-
egy based on CCD image sensor is proposed. The global
information of the embryo cells can be tracked automati-
cally with Hungarian algorithm. Key points are established
based on optical scale space and SIFT descriptor .Hungarian
algorithm is used to identify vanishing targets and emerging
targets during automatic tracking. The interested area was
determined with the characteristics of the alignment axis of
the microscope. The trend of cell movement is analyzed,
and the feasibility of the algorithm is verified by automatic
experimental research. The results demonstrate that the strat-
egy proposed in this work can be of great significance for
the virtual cell modeling, which plays a positive role in the
realization of microbial transport mechanism, micro-cell seg-
mentation technology, high-speed motion tracking and other
aspects, making it widely used in biomedicine systems.
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