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ABSTRACT This paper presents a novel approach for the detection of tables present in documents,
leveraging the potential of deep neural networks. Conventional approaches for table detection rely on
heuristics that are error prone and specific to a dataset. In contrast, the presented approach harvests the
potential of data to recognize tables of arbitrary layout. Most of the prior approaches for table detection
are only applicable to PDFs, whereas, the presented approach directly works on images making it generally
applicable to any format. The presented approach is based on a novel combination of deformable CNN
with faster R-CNN/FPN. Conventional CNN has a fixed receptive field which is problematic for table
detection since tables can be present at arbitrary scales along with arbitrary transformations (orientation).
Deformable convolution conditions its receptive field on the input itself allowing it to mold its receptive field
according to its input. This adaptation of the receptive field enables the network to cater for tables of arbitrary
layout. We evaluated the proposed approach on two major publicly available table detection datasets:
ICDAR-2013 and ICDAR-2017 POD. The presented approach was able to surpass the state-of-the-art
performance on both ICDAR-2013 and ICDAR-2017 POD datasets with a F-measure of 0.994 and 0.968,
respectively, indicating its effectiveness and superiority for the task of table detection.

INDEX TERMS Deep learning, representation learning, convolutional neural networks, object detection,
deformable convolution, table detection, table spotting, faster R-CNN, FPN.

I. INTRODUCTION
Paper based documents are still the most prevalent form of
documents. With the presence of these paper based docu-
ments, there is an increasing demand for accurate detection
of tabular data embedded in those documents for automated
extraction of relevant information. Table detection and recog-
nition is of particular interest to the document analysis com-
munity [1] due to its importance in sectors like finance
where large statement sheets are formulated containing hun-
dreds of values whose precise extraction is of prime impor-
tance, or business documents where the administration has to
deal with thousands of documents on daily basis, or even dig-
itization of archives where large amount of data is embedded
in tabular form.

Table detection is a step towards the solution to the com-
plete table understanding and analysis problem which is of
prime importance to the end-users. Despite of significant
efforts, generic analysis of tables with arbitrary layouts is
extremely difficult. The problem of table detection is chal-

lenging due to the high intra-class and low inter-class vari-
ance. High intra-class variance is a result of presence of tables
with arbitrary layouts, where some of the tables contains the
ruling lines, while others don’t carry any such information.
Low inter-class variance between tables, figures, graphics,
code listings, structurally laid out text, or flow charts also
poses a significant challenge for successful detection of tables
and reduction of false positives [2]. These challenges makes
it particularly difficult to devise heuristics for table detection
which are reliable and robust to changes [1].

Differentmethods have been proposed in the past for detec-
tion and analysis of tables but most of these methods are only
applicable to digital-born PDFs where they exploit additional
meta-data which aids and simplifies the analysis [3], [4].
Furthermore, heuristics are devised on top of the extracted
information whose applicability is limited to a particular
dataset or relies on assumptions which are not generally true.
There have been only a limited number of attempts for the
development of methods leveraging raw images directly for
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the problem of table detection and recognition which makes
the problem significantly harder to tackle [5]–[7]. Despite of
the recent advancements in the domain of computer vision
and document analysis, and a range of different methods
proposed for this purpose, perfect recognition of tables with
arbitrary layouts is still not a reality.

This paper presents an end-to-end system for the detection
of tables in document images. The proposed deep learning
based method automatically discovers features which are
useful for the detection of tables in a wide and diverse range
of documents. This representation learning based approach
eliminates the requirement of defining custom heuristics
which are very limited in their applicability. These heuristics
were a major drawback of prior methods proposed for this
task. The presented system is applicable to all types of docu-
ments such as born-digital PDFs as well as scanned document
images. We leverage deformable convolution instead of the
conventional convolution operation due to its dynamic recep-
tive field which enables the network to detect tables present
at arbitrary scales along with arbitrary transformations. Due
to the lack of availability of large amount of data to train a
network from scratch, we utilized pretrained deep networks
on ImageNet as the backbone leveraging the advantages of
transfer learning.

In particular, following are the contributions of this publi-
cation:
• We introduced a novel table detection framework lever-
aging the potential of deformable convolutional neural
networks. The proposed method was able to achieve
state-of-the-art performance on two well-known pub-
licly available table detection datasets.

• We propose a combination of different datasets for cre-
ating a significantly large table detection dataset.

• We demonstrated the effectiveness of this methodology
by testing on ICDAR-13, UNLV and Mormont dataset
without using even a single image from these datasets
for training, highlighting the generalization capabilities
of the system in the real-world.

This paper is structured as follows: Section II provides a
brief history of the literature already present on the topic of
table detection. Section III discusses the models and ideas
used in our experiments. Section IV provides details regard-
ing the publicly available datasets employed for the corre-
sponding experimentation. Section V presents the achieved
results along with a comprehensive analysis. Finally, con-
cluding remarks along with the possible future work is pre-
sented in section VI.

II. RELATED WORK
There has been a wide range of literature available on the
topic of table detection and understanding. TINTIN (Text
INformation-based Text INquiry) [3] utilized custom heuris-
tics to extract structural elements from text and filter out
tablular regions. T-Recs [8] is also a rule based system which
isolates cells within a tabular structure and clusters cells
to form rows and columns. PDF-TREX [4] is an extension
of the T-Recs system for detection and extraction of tables

from PDF documents by leveraging heuristics for align-
ment and grouping of elements. This approach does not
rely on visual or linguistic features. TARTAR (Transforming
ARbitrary TAbles into fRames) [9] is able to transform arbi-
trary tables (HTML, PDF, EXCEL etc.) into logical structure.
This method uses a hierarchy of token types to discover
functional type of each cell, which are then used to determine
the orientation of the table using similarity of cells and their
geometric positions. These cells are then arranged into logical
units forming different regions of the table. We refer readers
to [1], [2], [10]–[12] for a more detailed summarization of
these conventional approaches.

Cesarini et al. [13] (2002) made one of the first attempts
to incorporate machine learning techniques for the table
detection task. The proposed method, Tabfinder, first con-
verts a document into a MXY tree representation and then
searches for blocks surrounded by horizontal or vertical lines
for hypothesizing the presence of a table. This hypothe-
sis is verified afterwards by identification of perpendicular
lines or white spaces within the hypothesized region. Since
the method relies on presence of ruling lines, it is not appli-
cable to tables without such information.

Silva et al. (2009) [14] also presented a data-driven
approach based on Hidden Markov Models (HMMs) mod-
eling the joint probability distribution over sequential obser-
vations of visual page elements and the hidden state of a
line regarding whether it is associated with a table or not.
Silva et al. [15] (2010) built on top of their earlier findings and
emphasized the importance of probabilistic models and the
combination of multiple approaches over brittle heuristics.
Since this method also relies on ruling lines, it is also limited
to cases where this information is present.

Kasar et al. [16] (2013) computed a set of hand-crafted
features for training the SVM classifier. Despite of being
based on generic features, the method’s area of applica-
tion is limited due to its reliance on visible ruling lines
making it unadaptable for table layouts without any such
information.

Fan and Kim (2015) [17] utilized an unsupervised learning
of weak labels for each line in the document as well as the
textual information extracted from a region for the detection
of tables. They trained an ensemble of generative and dis-
criminative models to detect the tables in documents. Since
their method relies on hand-crafted features, this again limits
its applicability.

Tran et al. [18] (2015) proposed a method based on regions
of interest and the spatial arrangement of extracted text
blocks. As opposed to most other conventional methods, their
method worked directly on images. There is no informa-
tion present regarding which parts of the ICDAR-2013 table
dataset were utilized for the design of the algorithm, ruling
out a direct comparison to our method. Follow up work from
Tran et al. also suffers from the lack of information regarding
the dataset split.

There has been some recent attempts for the application
of deep learning techniques for the task of table detection.
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FIGURE 1. DeCNT - The proposed system pipeline.

The first technique was proposed by Hao et al. [19] (2016)
but was limited to only PDF documents. The authors utilized
self-defined heuristics, meta-information from PDF along
with the features learned by the deep model to reach a final
prediction.

An image based deep learning table detection method has
been proposed by Schreiber et al. [5] (2017) where they
utilized Faster R-CNN for detection of documents achieving
state-of-the-art performance on ICDAR-2013. Their model
was pretrained on the Pasval-VOC dataset. They utilized
the pretrained ZFNet [20] and VGG-16 [21] while all our
experiments are based on a much more powerful base model
(ResNet-101). Their method also relies on raw images for the
detection of tables.

Another deep learning method has been proposed by
Gilani et al. [6] (2017) which is also based on Faster R-CNN
for the detection of tables. Instead of feeding in the raw image
pixel values, their system relies on distance transforms as
tabular structures contains a well-defined spacing pattern.
The authors claimed to utilize the whole ICDAR-13 dataset
for evaluation but no information regarding the training
dataset was present in the paper. This evaded the possibility
for a direct comparison with their methodology. A very recent
work powered by deep learning came to our attention towards
the finalization of this project by Kavasidis et al. [7] (2018).
The proposed system generates saliency maps using
Fully-Convolutional Networks (FCN) [22] and uses
Conditional-Random Fields on top of it to apply additional
constraints towards the generated masks. C binary classifiers
(where C was the number of classes) were trained to supple-
ment the saliency network performance. They used dilated
convolutions as proposed by Yu and Koltun [23] (2015) to
increase the effective receptive field of the layers without
any loss of resolution. Their method was trained on a large
corpus of 50,442 randomly crawled images from the Internet,
thus supporting our claim of increase in performance with the
increase in the dataset size. The method was able to obtain
state-of-the-art performance but required multiple training
steps for the complete pipeline making the process overly

complicated without any significant boost in the desired
metrics.

III. DECNT: THE PROPOSED APPROACH
The proposed framework is comprised of a novel combination
of deformable CNN with Faster R-CNN/FPN [24] as illus-
trated in Fig. 1. Convolutional neural networks are automatic
feature extractors equipped with the ability to automatically
discover features which are useful for the task at hand. This
automatic extraction of features is based on a hierarchy of
layers where initial layers extract primitive features like edges
and gradients while layers on top of the hierarchy extracts
very abstract features like complete objects or some promi-
nent parts of it [25]. This traversal in hierarchy results in an
increase in the effective receptive field of a particular neuron
in the original input image. The conventional 2-D convolution
operation can be represented mathematically as:

(F ∗ I )(i, j) =
K∑

m=−K

K∑
n=−K

F(m, n)× I (i− m, j− n)

∀i = 1, . . . ,H , ∀j = 1, . . . ,W (1)

where ∗ denotes the convolution operation, F is the filter, I
is the image, K is defined as bFilterSize/2c, H is the image
height, W is the image width, and i, j defines the location
where the convolution operation is performed.

The effective receptive field of all neurons in a
given convolutional layer is the same. This property
is problematic for layers located on top of the hier-
archy where different objects may appear at arbitrary
scales along with arbitrary transformations. The presence
of these transformations demands the ability to dynam-
ically adapt the receptive field of a neuron based on
its input. Therefore, we equip the Faster R-CNN/FPN
model with a deformable CNN instead of the conventional
CNN. Deformable convolutional layers were proposed by
Dai et al. [26] (2017) where the neurons were not limited
to a predefined receptive field. Each neuron can alter its
receptive field according to its input via generating explicit
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FIGURE 2. Deformable convolutional layer.

offsets which are themselves dependent on the preceding
feature maps. This allows the convolutional layer filters to
adapt to different scales and transformations by conditioning
its receptive field on the input itself. This deformable con-
volutional layer is illustrated in Fig. 2 where a set of con-
volutional layers are added to generate filter offsets for each
position in the image. As tables can be present at arbitrary
scales along with arbitrary transformations (orientation etc.),
deformable convolution operation is particularly useful for
the task of table detection. The deformable 2-D convolution
operation contains additional offsets which can be expressed
mathematically as:

(F ◦ I )(i, j) =
K∑

m=−K

K∑
n=−K

F(i, j)

× I (i− m+ δverticali,j,m,n , j− n+ δ
horizontal
i,j,m,n )

∀i = 1, . . . ,H , ∀j = 1, . . . ,W (2)

where we use ◦ to denote the deformable convolution opera-
tion such that all mutual parameters are same. δverticali,j,m,n defines
the vertical offset while δhorizontali,j,m,n defines the horizontal off-
set. These vertical and horizontal offsets are produced by
another convolutional block consuming the feature maps pro-
duced by the preceding layer (Fig. 2). This conditioning of the
offsets on the input features makes the offsets adaptable to
local scale and transformations. The offsets can be fractional
and are implemented via bilinear interpolation.

Furthermore, ROI-pooling is a core component for all
region based detection methods [24], [27], [28]. The pooling
layer converts feature maps of arbitrary size to a fixed volume
to be fed to the final classification head which expects a fixed
size input. However, we have a similar problem as the one
in a conventional CNN i.e. fixed-receptive field. Deformable
receptive field can also be introduced for the pooling layer
in order to allow it to cater for the arbitrary scales and
transformations.

Given a feature map F , the top-left corner of ROI (i0, j0),
and a ROI of size w × h, the ROI-pooling layer converts the
ROI to a fixed size of k × k . The ROI-pooling operation can
be represented mathematically as:

ROI − Pool(F,m, n)

=

∑
F(i0 + i, j0 + j)/nm,n,

∀i = {1, . . . , h|bm× (h/k)c ≤ i < d(m+ 1)× (h/k)e},

∀j = {1, . . . ,w|bm× (w/k)c ≤ j < d(m+ 1)× (w/k)e}

(3)

where nm,n is the number of pixels in the bin (m, n). If there
are C input feature maps, the overall output from the layer
will be k× k×C which will be fed to the classification head.
Deformable ROI-pooling, just like the convolution coun-

terpart, adds an offset to the ROI-pooling layer so that the
layer can adapt its receptive field given the input. This can be
written as:

DeformableROI − Pool(F,m, n)

=

∑
F(i0 + i+ δverticalm,n , j0 + j+ δhorizontalm,n )/nm,n,

∀i = {1, . . . , h|bm× (h/k)c ≤ i < d(m+ 1)× (h/k)e},

∀j = {1, . . . ,w|bm× (w/k)c ≤ j < d(m+ 1)× (w/k)e}

(4)

where all mutual parameters are the same. δverticali,j defines the
vertical offset while δhorizontali,j defines the horizontal offset.
The offsets in this case can also be fractional and are again
implemented via bilinear interpolation.

Since we generate explicit offsets in a deformable convo-
lutional layer for translation of each neuron’s receptive field,
we visualized the receptive field of a particular deformable
convolutional layer in Fig. 3. The red point indicates the filter
center while the blue points are obtained after addition of
the generated offset. The receptive field of a conventional
convolution operation is uniformly distributed on a 2-D grid.
On the other hand, in the deformable convolution case, it is
evident from the figure that each neuron adapted its receptive
field based on its input. The receptive field expanded to
cover up the complete table when close to a tabular region
(Fig. 3(a), Fig. 3(c)), but remained compact at other locations
(Fig. 3(b), Fig. 3(d)).

A. DEFORMABLE ARCHITECTURES
We equipped two different object detection models with
deformable convolution for experiments. The first model
is a deformable Faster R-CNN which is comprised of a
deformable base model along with replacement of con-
ventional ROI-pooling layer with deformable ROI-pooling
layer. We refer to this model in the paper as Model A.
The second model is a deformable Feature Pyramid Network
(FPN) which adapts the FPN framework [29]. In deformable
FPN, we again use the deformable base model along with
replacement of position-sensitive ROI-pooling layer with
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FIGURE 3. Deformable convolution receptive field at different image locations.

deformable position sensitive ROI-pooling layer. We refer to
this model in the paper asModel B.
In all our experiments, we used the base model of

ResNet-101. Since deformable convolution is a memory
intensive operation due to generation of explicit offsets for
each location in the feature maps, we just replaced three
higher level layers in the ResNet-101 model to convert it
into its deformable counterpart (deformable receptive field
is primarily helpful for the layers on top of the hierar-
chy). These layers are res5a_branch2b, res5b_branch2b and
res5c_branch2b. For the FPN case, we additionally replaced
the layers res3b3_branch2b and res4b22_branch2b with
their deformable counterparts to aid the multi-scale feature
extraction.

Since we had insufficient amount of data to train the model
from scratch, we leveraged transfer learning to train our
model. As we were using deformable ResNet-101, we ini-
tialized the offsets for the deformable convolutional layers
to zero (zero offsets translate to fixed receptive field mak-
ing it equivalent to the conventional convolution operation).
As the network was fine-tuned on the new dataset, the offsets
adapted in order to cope with the scale and transformations
of the tabular structures.

It is important to note that the only significant change that
we incorporate into the object detection models is the use
of deformable base model (deformable ResNet-101) and the
use of deformable ROI-pooling instead of the conventional
ROI-pooling. This transforms the conventional object detec-
tors to their deformable counterparts. In order to establish a
comparison, a ResNet-101 model equipped with the conven-
tional convolution operation was also trained for the task at
hand. We refer to this non-deformable model asModel C.

B. HYPERPARAMETERS
For training the model A (deformable faster R-CNN),
we used three different anchor ratios (0.5, 1 and 2) and five
different anchor scales (2, 4, 8, 16 and 32). For training the
model B (deformable FPN), we used the same anchor ratios

TABLE 1. Datasets.

(0.5, 1 and 2) but only one anchor scale (8) since FPN is
additionally equipped with a top-down pathway for multi-
scale detection. The model was optimized with an initial
learning rate of 0.000125 (×NumGPUs in case ofmulti-GPU
training) for the first 250 iterations. A learning rate of 0.00125
(× NumGPUs in case of multi-GPU training) was then used
with learning rate decay steps at 4, 16, and 32 epochs. The
model was optimized for 50 epochs. The maximum image
size was limited to 1280 × 800. Images exceeding this size
were resized keeping the aspect ratio intact.

IV. DATASETS
We used four famous publicly available table detection
datasets for our experiments. The details for each dataset are
mentioned below and summarized in Table 1.

A. ICDAR-13
ICDAR-2013 [30] is one of the most famous datasets for
the task of table detection and structure recognition. The
dataset is comprised of PDF files which we converted to
images to be used within our system. This was required as
our system is only applicable to images as opposed to most
other methods which relies on meta-information available
in the PDF documents. The dataset also contains structure
information for table structure recognition task. The dataset
contains 238 images in total. Since most of the prior work on
this dataset uses a threshold of 0.5 for IoU to compute the
F1-measure [5], we also evaluated our model based on this
threshold.
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B. ICDAR-17 POD
A recent dataset has been released for a competition
(ICDAR-2017 POD)1 focusing on the task of table, figure and
mathematical equation detection from images. The dataset
is comprised of 2417 images in total. The training set is
comprised of 1600 images while the rest of the 817 images
are used for testing. We only evaluated the system for the task
of table detection which was the focus of our work. Since
all of the submissions in the competition were evaluated for
two different IoU thresholds of 0.6 and 0.8, we report our
performance on both of these thresholds.

C. MORMOT
The largest publicly available dataset for table recognition
is Mormot2 published by the Institute of Computer Science
and Technology (Peking University) and further described
in [31]. The total number of images in the dataset is 2000.
The ratio of positive to negative images is approximately 1:1
for both sets. There were many instances of incorrect ground-
truth annotations in the dataset. Therefore, we used the
cleaned out version of the dataset for our experiments by
Schreiber et al. [5] (2017). The cleaned version of the
dataset was comprised of 1967 images which we used in our
experiments.

D. UNLV
UNLV dataset is comprised of a variety of documents which
includes technical reports, business letters, newspapers and
magazines etc. The dataset contains a total of 2889 scanned
documents where only 424 documents contains a tabular
region. We only used the images containing a tabular region
in our experiments.

V. EVALUATION
The performance of deep learning models improves with the
increase in the amount of data [33]. Since all of the evaluated
methods were data-driven, there was a need for a sufficiently
large dataset. In order to improve the generalization capabil-
ities of the system, we combined different available datasets
for training our models. To validate the generalization capa-
bilities, we performed testing by following the leave-one-out
scheme. We left out a complete specific dataset at the time
of training and used that complete dataset for testing except
for ICDAR-17 where we used its training set in all of our
experiments.

Following the evaluation protocol defined for
ICDAR-17 POD, we first compute the number of true pos-
itives, false positives and false negatives from the entire
test set. These numbers are then in turn used to compute
the precision, recall and F-Measure which are the most
commonly reported metrics in the literature. This evaluation
scheme is different from [5], [30] where they first compute

1http://www.icst.pku.edu.cn/cpdp/ICDAR2017_PODCompetition/
index.html

2http://www.icst.pku.edu.cn/cpdp/data/marmot_data.htm

the precision, recall and F-Measure for every document
followed by the averaging over the entire test set. However,
in our case, the numbers have negligible difference for the
ICDAR-13 dataset, therefore, we stick to the ICDAR-17 eval-
uation scheme which is much more general.

Table 2 compares the performance of the proposed
approach with the prior work on ICDAR-2017 POD and
ICDAR-2013 datasets. For the sake of completion, we also
report results on UNLV and Mormot but these datasets were
not a focus of our work. It is important to mention that the
systems relying on PDF documents are not directly compara-
ble with our system, as they make use of meta-data included
in the PDF files, while our approach relies on just raw images
with no additional meta-data. This makes the problem much
more challenging. For the sake of completion, we also report
the results from these methods.

We performed 7 scale testing where we perform the detec-
tion at 7 different scales (3 smaller scales, the original scale
as well as 3 larger scales). We kept all detections having
at least three votes from the 7 different scales. This helped
in mitigating simple false positives. The initial detections at
every scale were thresholded at a confidence of 0.75 followed
by the combination. The final detections obtained after voting
were thresholded at a confidence of 0.95. The red bounding
box highlights the detected tabular region while the green
bounding box highlights the ground-truth in all figures.

A. ICDAR-13
The ICDAR-2013 dataset is comprised of 238 images con-
taining 156 tables. We used all of the images in the dataset
for testing without any of them being used in the training. The
system was able to correctly identify all of the tabular regions
present in the dataset except one resulting in 99.4% recall.
Similarly, the system incorrectly labeled only one region as
belonging to tables (false positive) resulting in a precision
of 99.4%. Representative examples of correct and incorrect
detections from ICDAR-13 dataset including true positives,
false positives, and false negatives are presented in Fig. 4.
With the achieved F-Measure of 99.4%, we were able to
outperform the previous state-of-the-art method on ICDAR-
2013 dataset comprehensively.

Schreiber et al. [5] used a Faster R-CNN based approach
which is based on the conventional convolution opera-
tion. Since their backbone is based on ZFNet [20] and
VGG-16 [21], their model is not directly comparable. There-
fore, we added experimental results for model C which is
equipped with conventional convolution operation with the
same ResNet-101 backbone. The results clearly indicates
that deformable convolution comprehensively outperforms
its conventional counterpart.

B. ICDAR-17 POD
The ICDAR-2017 POD challenge was comprised of
817 images containing 317 tables. All the entries in the
competition were evaluated on two different IoU thresh-
olds of 0.6 and 0.8 for calculation of the relevant metrics.
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TABLE 2. Table detection performance on different datasets.

FIGURE 4. DeCNT results on the ICDAR-13 Table competition dataset. (a) True Positive. (b) False Negative. (c) False Positive.

The deformable Faster R-CNN (model A) performed well
on this task for an IoU threshold of 0.6 achieving 96.8%
F-Measure with 97.1% recall and 96.5% precision. The

deformable FPN (model B) achieved state-of-the-art results
for an IoU threshold of 0.8 achieving F-Measure of 95.3%
with 93.1% recall and 97.7% precision. Representative

VOLUME 6, 2018 74157



S. A. Siddiqui et al.: DeCNT

FIGURE 5. DeCNT results on the ICDAR-17 POD dataset. (a) True Positive. (b) False Negative. (c) False Positive. (d) Low IoU.

FIGURE 6. DeCNT results on the Mormot dataset. (a) True Positive. (b) False Negative. (c) False Positive. (d) Under-Segmented.

FIGURE 7. DeCNT correct detection results on the UNLV dataset.

examples of correct and incorrect detections from ICDAR-
17 POD dataset including true positives, false positives, and
false negatives are presented in Fig. 5. With the achieved
results, we were able to outperform all other ICDAR-
2017 POD challenge participants on the task of table detec-
tion for both IoU thresholds of 0.6 and 0.8.

Analysis of the incorrect results on ICDAR-2017 revealed
that most of the mistakes were related to IoU. The reason
being that different datasets combined had different annota-
tions in terms of distances to the table border. To the extreme,
there were some cases where empty cells within the table
were not considered a part of the tabular region.

We again compared our results with the conventional con-
volutional counterpart. The difference between deformable

and its conventional counterpart was also consistent in this
case.

C. MORMOT
The Mormot dataset is comprised of 1967 images containing
a total of 1348 tables. The deformable Faster R-CNN trained
on the rest of the three datasets except Mormot was able
to correctly detect 1275 table instances. The system also
produced 226 false positives and 73 false negatives resulting
in recall of 94.6% and precision of 84.9%. This led to the final
F-Measure of 89.5%. Representative examples of correct
and incorrect detections from Mormot dataset including true
positives, false positives, and false negatives are presented
in Fig. 6.
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FIGURE 8. DeCNT incorrect detection results on the UNLV dataset. (a) False Negative. (b) False Positive. (c) Over-Segmented.
(d) Under-Segmented.

FIGURE 9. Confusion between tabular structure and structurally laid out equations.

D. UNLV
UNLV dataset in the same way is comprised of 424 images
containing a total of 558 tables. The deformable Faster R-
CNN trained in the same leave-one-out scheme was able to
correctly detect 418 table instances. The system also pro-
duced 114 false positives and 140 false negatives resulting
in recall of 74.9%, precision of 78.6%, and final F-Measure
of 76.7%. Examples of correctly classified tabular regions for
UNLV are presented in Fig. 7 while the incorrectly classified
tabular regions are visualized in Fig. 8.
Manual inspection of the failure cases on all datasets

revealed ambiguity between tables and figures in some cases
due to high overlap in terms of layout. There were even confu-
sions in cases where the equations were laid out in a sequen-
tial order. Two sample cases of such ambiguity are visualized
in Fig. 9. In order to mitigate these issues, we also utilized
the annotations provided in the ICDAR-2017 POD dataset
for formula and figures to train the network to disambiguate

between these distinct entities. Therefore, all the results that
we report uses these formula and figure annotations.

With the obtained results, it is evident that the system was
able to detect tables with arbitrary layouts through the pro-
posed data-driven methodology. The system was evaluated
in a leave-one-out scheme to test the situations which are
encountered in the real-world. The model generalized well
to a wide range of different documents types indicating its
generality.

VI. CONCLUSION
This paper presented a novel end-to-end table detection
method based on region-based deformable convolutional neu-
ral networks. It is evident from the extensive evaluation
of the proposed methodology that the deep architectures
developed for the task of object detection in natural scenes
supplemented with the deformable property can outper-
form their non-deformable counterparts comprehensively.
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Our extensive evaluation on the publicly available datasets
of ICDAR-2013, ICDAR-2017 POD, UNLV and Mormont
shows superior or comparable performance to existing meth-
ods, even though in some cases, the different methods are
not directly comparable due to extensive use of PDF meta-
data, or different use of evaluation metrics.

A promising direction for future work could be to eval-
uate the performance of the deformable convolutional neu-
ral networks for table structure recognition which is much
more challenging due to high intra-class variability and poor
data availability. The structure recognition task is essential
in terms of its applicability in business and finance due to
presence of a large amount of tabular data in documents.
Due to lack of available datasets in that direction, a very
significant contribution could be made by introducing new
datasets for the structure recognition task. The deformable
network could also be supplemented with CoordConv [34]
introduced very recently to improve network’s localization
capabilities by explicitly adding the location coordinates.
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