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ABSTRACT Chatter is an obstacle for achieving high-quality machining process and high production
rate in industries. Chatter is an unstable self-exciting phenomenon that leads to tool wear, poor surface
finish, and downgrade the milling operations. A novel active control strategy to attenuate the chatter
vibration is proposed. PD/PID controllers in combination with Type-2 Fuzzy logic were utilized as a
control strategy. The main control actions were generated by PD/PID controllers, whereas the Type-2 Fuzzy
logic system was used to compensate the involved nonlinearities. The Lyapunov stability analysis was
utilized to validate the stability of Fuzzy PD/PID controllers. The theoretical concepts and results are
proved using numerical simulations. Although PD/PID controllers have been used for chatter control in
machining process, the importance of stability along with the implementation of Type-2 Fuzzy logic system
for nonlinearity compensation was themain contribution. In addition, active control using anActive Vibration
Damper placed in an effective position is entirely a new approach with promising practical results.

INDEX TERMS Vibration control, manufacturing, fuzzy control, PD control, Lyapunov methods, stability
analysis, control nonlinearities

I. INTRODUCTION
In all modern manufacturing industries, one of the most key
feature is cutting process, although it results in self-excited
vibrations having negative impacts [29]. Chatter is an impor-
tant phenomena in machining process that affects the machin-
ing productivity by inducing low dimensional accuracy and
reduction in theMaterial Removal Rate (MRR). It also results
in below average surface finish as well as significant tool
wear [26]. The consequences of milling chatter is that it
generates large tool vibrations, minimizes tool life and hence
reduces the quality and productivity of the process. Surface
roughness is greatly affected by the large vibrations induced
by the milling chatter thus resulting in improper finishing,
less productivity and increased production time, [37]. Table 1
summarizes the acronym definitions.

The methodologies for chatter control can be categorized
in three levels. The first methodology is to choose suitable
machining parameters such as speed of the spindle and width
of cut considering Stability Lobe Diagram (SLD). The main
technique is to discard the chatter phenomena by selecting
the machining parameters from outside the lobes [10]. There
is a necessity of precise process parameters to calculate the
lobe and hence the region of stabilized operation cannot be
expanded via this technique, [41]. The second methodol-
ogy is to disturb the effect of regeneration by changing the

machining parameters continuously. Spindle Speed Variation
(SSV ) is a methodology related to this category that generates
a time varying delay thus suppressing inconvenient phase lags
between inner and outer chip modulation reducing chatter
vibrations [38]. The third methodology is to alter the dynam-
ics of machine tools by using additional passive or active
devices to expand the chatter boundary.

The technique involving passive devices like Dynamic
Vibration Absorber (DVA) and Tuned Mass Damper (TMD)
have been exhaustively utilized for the minimization of chat-
ter vibrations [33]. The design and implementation of a
2-Degree of Freedom (DoF). TMD for attenuation of milling
chatter was investigated in [40]. The main advantages of pas-
sive devices are: the low cost and easy implementation. Also,
it rules out the disadvantage of making the system destabi-
lized. But, the main limitations are that the dampers require
special methodologies for the validation of precise tuning
of their natural frequencies for suitable performance. These
passive devices are not adaptable to the varying machining
conditions and they lack robustness.

The machine tool performance can be suitably improved
by the technique of active control systems, which includes
appropriate sensors and dampers installed on the spin-
dle or tool holder [27]. An active damping controller with
the technique of direct velocity feedback is proposed in [12].
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TABLE 1. Acronym definitions.

A mechatronic simulator was used to validate the effective-
ness of the controller. The technology of active damping
of chatter with experimental validation has been researched
in [13].

Reference [8] implemented an active damper system on
a milling spindle associated with two orthogonal pairs of
electrostrictive stack. A Linear-Quadratic-Gaussian (LQG)
control law was developed to maintain a superior balance
between performance and robustness. Reference [42] pro-
posed an active model predictive control method to attenuate
chatter with incorporated input constraints. Reference [6]
proposed an adaptive active control approach to deal with the
regenerative effect for High Speed Machining (HSM ).
The main features for an effective controller are simple,

robust, and fault tolerant. Proportional + Derivative (PD)
and Proportional + Integral + Derivative (PID) controllers
have been vastly utilized in industrial applications and pro-
cesses. These controllers have superior effectiveness and
robustness, when the knowledge of the model is missed,
and also because of their simple nature with distinct phys-
ical meanings. The methodology of active elimination of
chatter vibrations in milling via harmonic excitation of a
workpiece was proposed in [39]. The system was devel-
oped on the basis of closed-loop control system, which
is realized by a PD controller and is tested considering
2-DoF milling system. Also, a PID controller design was
proposed in [1] for the mitigation of the chatter in milling
process.

The phenomena of size effect leads to nonlinearity in the
cutting force model [21]. Therefore, the consideration of non-
linearity in a cutting force model is crucial and must not be
avoided for the precise prediction of the dynamic behavior of
a milling system [9], [14], [34]. Recent research reveals that
nonlinear modeling of the chatter phenomenon has widely
been investigated as well as delayed nonlinear models having
square and cubic polynomial terms associated to cutting force
are taken into consideration, [23].

A Type-1 Fuzzy logic approach for chatter suppres-
sion in end milling processes was investigated in [17].
Reference [31] have investigated the chatter stability associ-
ated with milling processes using a Type-1 Fuzzy logic algo-
rithm for compensation of uncertainty in this manufacturing
process. Exhaustive investigation reveals that in comparison
with the conventional Type-1 Fuzzy logic, Type-2 Fuzzy set
demonstrates superior performance because of its integrated
additional DoF termed to be as Footprint of Uncertainty
(FoU ), [4], [22]. The detailed concept and approach of Type-2
Fuzzy sets has been proposed in [16]. The Type-2 Fuzzy
system is an efficient way to handle knowledge uncertainty
in comparison to classical Type-1 Fuzzy logic as the Type-2
Fuzzy sets can handle uncertainties with more parameters
as well as more design DoF [30]. This is one of the main
contribution of this research.

The third method involving active control of chatter is car-
ried out. First, the mathematical modeling of milling process
along x and y component is accomplished. The nonlineari-
ties incorporated in the process are identified and compen-
sated through the Type-2 Fuzzy logic approach. The sup-
pression of chatter is done by simulating the real effect of
Active Vibration Damper (AVD). In the modeling equation,
the dynamics of AVD is considered. The control action is
carried out using the Proportional Derivative/Proportional
Integral Derivative (PD/PID) strategy, which is utilized for
chatter suppression. Second, the validation of stability criteria
of the controllers is considered. Theorems are laid down thus
validating various parameters condition and boundedness of
the system states of the closed-loop system. Lyapunov stabil-
ity candidate is exploited for the procedure. Third, using the
designed PD/PID strategy with Type-2 Fuzzy in combination
with AVD, the chatter suppression is achieved. An intensive
numerical simulation analysis is carried out for the validation
of theoretical concept and stability criteria. The entire con-
trol scheme implemented in this work have been illustrated
by Fig. 1.

FIGURE 1. Control scheme for chatter control.

II. MODELING OF MILLING PROCESS
WITH ACTIVE CONTROL
A general 2-DoF model of a milling process considering that
the tool having n evenly spaced teeth and relatively flexible
to the rigid workpiece is [19], [43]:

M ẍ(t)+ C ẋ(t)+ Kx(t) = F(t) (1)
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where M ∈ <2×2, C ∈ <2×2 and K ∈ <2×2 are the mass,
damping and stiffness matrices which are:

M =
[
mx 0
0 my

]
, C =

[
cx 0
0 cy

]
,

K =
[
kx 0
0 ky

]
(2)

Also, x(t) = [x y]T are the tool displacements along x-axis
and y-axis, F(t) = [Fx Fy]T are the cutting forces. Represent-
ing eqn. (1) along x-axis and y-axis:[
mx 0
0 my

] [
ẍ
ÿ

]
+

[
cx 0
0 cy

] [
ẋ
ẏ

]
+

[
kx 0
0 ky

] [
x
y

]
=

[
Fx
Fy

]
(3)

which implies:

[c]cmx ẍ + cx ẋ + kxx = Fx
myÿ+ cyẏ+ kyy = Fy (4)

Tables (2-3) summarize the used variables in this article.

A. CUTTING FORCE DYNAMICS CONSIDERING
NONLINEARITIES
It is very important to illustrate the dynamics of the cutting
forces [3], [36] are shown in Fig. 2.

FIGURE 2. Dynamics of milling process [3], [36] .

The immersion angle αj is computed in clockwise from the
y-axis. The axial depth of cut z and the radial depth of cut w
are assumed to be constant. Considering that the bottom end
of one flute as the reference immersion angle and the bottom
end point of the other flutes illustrated at the angles as:

αj = α + jαp αp =
2π
n

j = 0, 1, 2, . . . (N − 1) (5)

where αp is the cutter pitch angle and n is the number of cutter
teeth. Considering the lag angle at an arbitrary axial depth cut
of z, the immersion angle of flute j is illustrated as [2]:

αj(z) = α + jαp −
(
2z
D

)
tanβ (6)

where β, and D, are the helix angle and the diameter of the
cutter for and j = 0, 1, . . . (N − 1). The cutting forces in

TABLE 2. Variable definitions.

x and y directions are represented as [11]:

Fx =
N−1∑
j=0

a∫
0

dFx,,j(α, z)

Fy =
N−1∑
j=0

a∫
0

dFy,j(α, z) (7)

where dFx,j(α, z) and dFy,j(α, z) are the elemental differential
forces corresponding to an infinitesimal element thickness dz
of the jth tool in x and y directions. The elemental forces are
given by:

dFx,j(α, z) = −dFt,j cosαj(z)− dFr,j sinαj(z)

dFy,j(α, z) = +dFt,j sinαj(z)− dFr,j cosαj(z) (8)

The forces dFx,j(α, z) and dFy,j(α, z) are the nonlinear
forces. Nonlinear modeling of milling process is of greater
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TABLE 3. Greek variable definitions.

importance as it has greater role in stability analysis criteria.
The cutting forces are illustrated as a third order polynomial
function of cut chip thickness, [25]:

dFt,,j(α, z) = [ξ1h3j (αj(z))+ ξ2h
2
j (αj(z))

+ ξ3hj(αj(z))+ ξ4]d(t, z)

dFr,,j(α, z) = [δ1h3j (αj(z))+ δ2h
2
j (αj(z))

+ δ3hj(αj(z))+ δ4]d(t, z) (9)

In the existence of regenerative chatter, the variable total chip
thickness is:

h(αj) =
[
1x sinαj +1y cosαj

]
r(αj) (10)

where,

r(αj) =
{
1 αst < αj < αex
0 αst > αj or αex < αj

}
(11)

also, r(αj) is the unit step function validating whether the
tooth is in or out of the cut, and it is stated in terms of start
immersion αst and exit immersion αex .

Again, 1x = x(t) − x(t − τ ),1y = y(t) − y(t −
τ ), τ = 2π

n� , where τ is the time delay. [x(t) y(t)] and
[x(t − τ ) y(t − τ )] exhibits dynamic displacement of the cut-
ter considering present and previous tool periods. � is the
spindle speed in rad/s. According to [23], the nonlinear
cutting forces along x-axis and y-axis which are in a closed
form are given by:

Fx = +
N
2π
{ζ11x3 + η11y3 + ζ21x2

+ η21y2 + ζ31x + η31y+ 3γ11x21y

+ 3γ21x1y2 + 2γ31x1y+ γ4}

Fy = −
N
2π
{ζ ∗11x

3
+ η∗11y

3

+ ζ ∗21x
2
+ η∗21y

2
+ ζ ∗31x + η

∗

31y

+ 3γ ∗11x
21y+ 3γ ∗21x1y

2

+ 2γ ∗31x1y+ γ
∗

4 } (12)

Taking into account the start immersion angle as 0 and the exit
angle as π2 the coefficients for half-immersion up-milling are
calculated as:

ζ1 =
1
4

[
ξ1 +

3
4
πδ1

]
, η1 =

1
4

[
δ1 +

3
4
πξ1

]
,

ζ2 =
1
3
[ξ2 + 2δ2] , η2 =

1
3
[δ2 + 2ξ2] ,

ζ3 =
1
2

[
ξ3 +

1
2
πδ3

]
, η3 =

1
2

[
δ3 +

1
2
πξ3

]
,

γ1 =
1
4

[
δ1 +

1
4
πξ1

]
, γ2 =

1
4

[
ξ1 +

1
4
πδ1

]
,

γ3 =
1
3
[δ2 + ξ2] , γ4 = [ξ4 + δ4] ,

ζ ∗1 =
1
4

[
−δ1 +

3
4
πξ1

]
, η∗1 =

1
4

[
ξ1 −

3
4
πδ1

]
,

ζ ∗2 = ,
1
3
[−δ2 + 2ξ2] , η∗2 =

1
3
[ξ2 − 2δ2] ,

ζ ∗3 =
1
2

[
−δ3 +

1
2
πξ3

]
, η∗3 =

1
2

[
ξ3 −

1
2
πδ3

]
,

γ ∗1 =
1
4

[
ξ1 −

1
4
πδ1

]
, γ ∗2 =

1
4

[
−δ1 +

1
4
πξ1

]
,

γ ∗3 =
1
3
[ξ2 − δ2] , γ ∗4 = [−δ4 + ξ4] (13)

where ξ1, ξ2, . . . , δ1, δ2, . . . are the cutting force coefficients.

B. ACTIVE CONTROL WITH ACTIVE VIBRATION DAMPER
To attenuate the tool chatter vibration caused by the external
force, an AVD is installed on the top of the spindle, Fig. 3,
where AVD is a linear servo actuator. The main action of the
linear actuator is to converts the rotary motion of a servo into
linear motion thus attenuating lateral vibration. The AVD is
placed at the centre of mass making an inclination ϕ with the

FIGURE 3. AVD on Spindle Top.
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centre of mass. This methodology is been adopted to mitigate
the problem of space during the placement of damper and
also by making the arrangements cost effective by using one
damper instead of two. The modeling equation of milling
process with the control force uc is:

M ẍ(t)+ C ẋ(t)+ Kx(t) = F(t)+ uc − dc (14)

where uc =
[
ucx ucy

]T
∈ <

2×1 are the control signals applied
to the dampers along x-axis and y-axis, dc =

[
dcx dcy

]
∈

<
2×1 are the damping and friction force vector of the damper

along x-axis and y-axis. The closed-loop system, eqn. (1),
along x and y component is:

mx ẍ + cx ẋ + kxx = Fx + ucx − dcx
myÿ+ cyẏ+ kyy = Fy + ucy − dcy (15)

The damper force fd is:

fd = md (g̈i + γ̈i) (16)

where md is the mass of the damper, g̈i is the acceleration of
the damper, γ̈i is the acceleration of the tool relative to the
damper, γ̈i =

√
ai,x + ai,y,where ai,x and ai,y are the relative

accelerations of the tool along x and y directions respectively,
fd should be separated into x and y directions as:

ui,x = fd cosϕ = md (g̈i cosϕ + ai,x)

ui,y = fd sinϕ = md (g̈i sinϕ + ai,y)

γ̈i =
ai,x
cosϕ

=
ai,y
sinϕ

ẍi,x = ai,x + g̈i cosϕ, ẍi,y = ai,y + g̈i sinϕ (17)

where ϕ is the angle of the damper along x-axis, ẍi,x and
ẍi,y are the relative acceleration of the damper along x and
y directions:

fd = md

(
g̈i +

ai,x
cosϕ

)
= md

(
g̈i +

ai,y
sinϕ

)
(18)

The control force of the damper along x and y directions are
defined as uc =

[
ucx ucy

]T
:

uc = mdi
[
ẍi,x ẍi,y

]T (19)

Considering the friction of the damper:

dcx = fri,x = cẋi,x + εmdg tanh
[
β ẋi,x

]
dcy = fri,y = cẋi,y + εmdg tanh

[
β ẋi,y

]
(20)

where c, β and ε are the damping coefficients of theCoulomb
friction [28]. Considering eguations(15) and (20) the closed-
loop system with control along x and y directions is:

mx ẍ + cx ẋ + kxx = Fx + ucx − cẋi,x − εmdg tanh
[
β ẋi,x

]
myÿ+ cyẏ+ kyy = Fy + ucy − cẋi,y − εmdg tanh

[
β ẋi,y

]
(21)

The terms

fx = cẋi,x + εmdg tanh
[
β ẋi,x

]
− Fx

fy = cẋi,y + εmdg tanh
[
β ẋi,y

]
− Fy (22)

are nonlinear, where F = [fx fy]T then, an intelligent tech-
nique has to be applied to compensate the nonlinearities
involved.

III. TYPE-2 FUZZY COMPENSATION TECHNIQUE
An effective means of compensating nonlinearities have been
suggested. The main five components of a Type-2 Fuzzy
Logic System (FLS) Fig. 4, are categorized as fuzzifier, rule
base, Fuzzy inference engine, type-reducer and defuzzifier. A
membership function validates a Type-2 Fuzzy set in which
the membership value or grade associated to each element
of this set is considered to be a Fuzzy set in the interval [0
1], instead of a crisp value. The membership functions of
Type-2 Fuzzy sets are incorporated with three dimensional
functions which is due to the (FoU ) that supports Type-2 FLS
with additional DoF. The advantage of Type-2 Fuzzy sets
over the Type-1 counterparts is that the Type-2 can deal easily
more patterns of uncertainties having higher magnitudes and
using a smaller rule base. A Type-2 Fuzzy set is denoted by Ã
and it is characterized using a Type-2 membership function
GÃ(x, u), where x ε X and u ε Jx ⊆ [0 1], i.e. [16], [30]:

Ã = {(x, u),GÃ(x, u) | ∀ xεX ,∀ uεJx ⊆ [0 1]} (23)

also, 0 6 GÃ(x, u) 6 1. Taking into consideration a contin-
uos universe of discourse, Ã can be expressed as

Ã =
∫
xεX

∫
uεJx

GÃ(x, u)/(x, u), Jx ⊆ [0 1] (24)

where Jx is stated to be as the primary membership of x. The
discrete Fuzzy sets are illustrated by the symbol

∑
instead of

using
∫
associated with Type-1 Fuzzy logic. The secondary

membership function which is par with x = x́, considering x́
ε X is illustrated as a Type-1 membership function stated by
GÃ(x = x́, u),∀ u ε Jx . It is important to state that the FoU is
considered to be the union of all primary memberships.

FoU (Ã) = UxεX Jx (25)

Consider Gup
Ã
(x) and Glo

Ã
(x) to be the upper and lower mem-

bership functions which are Type-1 that describes the upper
and lower bounds respectively of the FoU having interval
Type-2 membership function GÃ(x, u). Type-2 FLS resem-
bles Type-1 FLS as the structure of rules in the Type-2 FLS
as well as its inference engine are similar.

FIGURE 4. Block diagram of Type-2 FLS.
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The feasibility and less complexity involved within Type-2
FLS is the main reason behind the formulation of interval
Fuzzy sets, [16]. The methodology involved in the fuzzifica-
tion stage is that the crisp input vector having n elements x =
(x1, x2, . . . ., xn)T in the universe of discourseX1×X2×. . . .×
Xn is mapped into Type-2 Fuzzy sets [16]. The calculation
of upper and lower membership functions are achieved for
each point of the universe of discourse thus generating an
interval Type-1 set [f lol f upl ] taking into consideration each
rule l, in this case:

[f lol f upl ] = [f lol (x́) f upl (x́)] (26)

where:

f lol (x́) = Glo
F̃ l1
(x́1)∗, . . . , ∗GloF̃ lp

(x́1)

f upl (x́) = Gup
F̃ l1
(x́1)∗, . . . , ∗G

up
F̃ lp
(x́1) (27)

again ∗ denotes t-norm operator. The IF-THEN rules asso-
ciated with Type-2 has got the similar structure as Type-
1 counterpart. In this methodology, the antecedents and the
consequents are demonstrated using interval Type-2 Fuzzy
sets. Hence the l th rule is [5]:

Rl : IF (x1 is F̃ l1) and (x2 is F̃ l2) and, . . . , and (xn is F̃ ln)

THEN (y1 isH̃ l
1) and (y2 is H̃ l

2) and, . . . , and (ym is H̃ l
n)

(28)

where F̃ l1, F̃
l
2, . . . , F̃

l
n and H̃ l

1, H̃
l
2, . . . , H̃

l
n represents Fuzzy

sets.
A Type-2 Fuzzy inference engine provides a mapping from

the input Type-2 Fuzzy sets to the output ones. Each rule
l in the knowledge base is interpreted as a Type-2 Fuzzy
implication that, when aggregated with the fuzzified inputs,
infers a Type-2 Fuzzy set Õl such that:

GÕl (y) = txεX [GÃ(x) u GRl (x, y)] (29)

The modified and extended from of Type-1 defuzzification
methods is termed as Type-reduction method. A Type-2 out-
put Fuzzy set is converted to a Type-1 Fuzzy set by imple-
menting this methodology which is stated as Type-reduced
set. The centroid of the t th output Fuzzy set ytk which signifies
Type-1 interval set and it is extracted using its left and right
most points, ytlk and ytrk respectively, and it is demonstrated
as [16]:

ytk = [ytlk y
t
rk ] = y(θ1, . . . , θi) =

∑I
i=1 yiθi∑I
i=1 θi

(30)

The application of the centroid method as well as utilizing
the center-of-sets type reduction, the Type-2 Fuzzy sets can be
reduced to an interval Type-1 Fuzzy set [yzlk y

z
rk ] considering

each rule z. The deduced interval Type-1 Fuzzy set is:

ylk =

∑L
z=1 f

z
l y

z
lk∑L

z=1 f
z
l

, yrk =

∑L
z=1 f

z
r y

z
rk∑L

z=1 f
z
r

(31)

where f zl f zr are the firing strengths associated with yzlk and
yzrk of rule i. This operation is conducted to minimize yzlk and

maximize yzrk . Also, ylk and yrk can be expressed numerically
as:

yrk =

∑R
e=1 f

lo_eyerk +
∑Q

d=L+1 f
up_dydrk∑R

e=1 f
lo_e +

∑Q
d=R+1 f

up_d
(32)

If Q is the total number of rules, then Q iterations are suffi-
cient for the convergence of both procedures:

ylk =
L∑
e=1

qlo_elk ylk +
Q∑

d=L+1

qup_dylk

= [Qlolk Q
up
lk ]
[
ylolk
yuplk

]
= ξTlk	lk (33)

where qlo_elk = f lo_e/Vlk , qup_d = f up_d/Vlk andVlk =
(
∑L

e=1 f
lo_e
+
∑Q

d=L+1 f
up_d ). Also, ξTlk = [Qlolk Q

up
lk ] and

	
T
lk = [ylolk y

up
lk ]

yrk =
R∑
e=1

qlo_eyrk +
Q∑

d=R+1

qup_dyrk

= [Qlork Q
up
rk ]
[
ylork
yuprk

]
= ξTrk	rk (34)

where qlo_erk = f lo_e/Vrk , qup_d = f up_d/Vrk and Vrk =
(
∑R

e=1 f
lo_e
+
∑Q

d=R+1 f
up_d )

Initially the Type-reduced set is extracted using its left
most and right most points ylk and yrk . Then, it is defuzzified
by the application of interval set average formula for the
determination of crisp output. Hence, the defuzzified crisp
output considering each output k is defined as [18] :

y(x) =
yrk + ylk

2
=

1
2
(ξTrk 	rk +ξ

T
lk	lk )

=
1
2
[ξTrk ξ

T
lk ]

[
	rk
	lk

]
= ξT	 (35)

where ξT = 1
2 [ξ

T
rk ξ

T
lk ] and 	T = [	Trk 	

T
lk ]. Based on the

aforementioned concept, by singleton fuzzifier, the jth output
of the Fuzzy logic system can be expressed as:

f̂k =
yrk + ylk

2

=
1
2
[(φTrk (z)wrk (z)+ φ

T
l (z)wlk (z)] (36)

where k = 1, 2 wrk is the point at which µBrk = 1, wlk is
the point at which µBlk = 1, z = [x y ẋ ẏ]T , in matrix form,
the estimation of the uncertainty F is:

F̂ =
1
2

[
8T
r (z)Wr (z)+8T

l (z)Wl(z)
]

(37)

where F̂ =
[
f̂1 f̂2

]
= [f̂x f̂y]T . Representing the estimation

of uncertainty along x and y directions, where zx = [x ẋ] and
zy = [y ẏ]:

f̂x =
1
2

[
θTr (zx)wr (zx)+ θ

T
l (zx)wl(zx)

]
f̂y =

1
2

[
θTr (zy)wr (zy)+ θ

T
l (zy)wl(zy)

]
(38)
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IV. PD CONTROLLER WITH TYPE-2 FUZZY
COMPENSATION
The PD controller is the simplest algorithm that provides
high robustness into the classical controllers domain. The pat-
tern of PD controller, where Kp and Kd are positive-definite
constant matrices, which correspond to the proportional and
derivative gains given by (39). The design of the controller
is based on the suitable gain selection Kp and Kd such that
the closed-loop system is stable and good performance are
achieved. For the chatter control, the gains of PD are: KP =
diag

(
Kpx ,Kpy

)
∈ <

2x2, and Kd = diag
(
Kdx ,Kdy

)
∈ <

2x2.

u = −Kpe− Kd ė (39)

where e = x−xd is the error, xd is the expected tool vibration.
For vibration control, xd = 0, then:

u = −Kpx− Kd ẋ (40)

Considering the inputs for x and y directions:

ucx = −Kpxx − Kdx ẋ

ucy = −Kpyy− Kdyẏ (41)

PD controller with Type-2 Fuzzy compensation along
x−direction is:

ucx = −Kpxx − Kdx ẋ −
1
2
[θTr (zx)wr (zx)+ θ

T
l (zx)wl(zx)]

(42)

Also, along y−direction, PD control with Type-2 Fuzzy com-
pensation is:

ucy = −Kpyy− Kdyẏ−
1
2
[θTr (zy)wr (zy)+ θ

T
l (zy)wl(zy)]

(43)

Using equations (21), (22) and (42), the closed-loop system
with Type-2 Fuzzy compensation and PD controller along
x−direction is:

mx ẍ + cx ẋ + kxx + fx = −Kpxx − Kdx ẋ

−
1
2

[
θTr (zx)wr (zx)+ θ

T
l (zx)wl(zx)

]
(44)

For the y-direction, the closed-loop system is:

myÿ+ cyẏ+ kyy+ fy = −Kpyy− Kdyẏ

−
1
2

[
θTr (zy)wr (zy)+ θ

T
l (zy)wl(zy)

]
(45)

Since the pattern of two components x and y exhibits same
form, the analysis will be carried out considering only x-
direction. LetKpxx+Kdx ẋ = Lx(ẋ+ωxx), alsoKpxx = Lxωx
and Kdx = Lx , where ωx is a positive definite matrix, Lx is a
positive variable. Equation (44) becomes:

mx ẍ + cx ẋ + kxx + fx
= −Lx(ẋ + ωxx)

−
1
2

[
θTr (zx)wr (zx)+ θ

T
l (zx)wl(zx)

]
(46)

mx(ẍ + ωx ẋ)

= −cx ẋ − kxx − fx

−Lx(ẋ + ωxx)−
1
2
[θTr (zx)wr (zx)

+ θTl (zx)wl(zx)] = −cx ẋ + cxωxx − cxωxx

− (ωxω−1x )kxx + ω−1x kx ẋ − ω−1x kx ẋ − fx

−Lx(ẋ + ωxx)−
1
2
[θTr (zx)wr (zx)

+ θTl (zx)wl(zx)]+ mxωx ẋ
= −Lx(ẋ + ωxx)− cx(ẋ + ωxx)
−ω−1x kx(ẋ + ωxx)

−
1
2

[
θTr (zx)wr (zx)+ θ

T
l (zx)wl(zx)

]
+ [(mxωx + kxω−1x )ẋ + cxωxx − fx] (47)

According to the Theorem Stone-Weierstrass, [20], the gen-
eral nonlinear smooth function can be illustrated as:

(mxωx + kxω−1x )ẋ + cxωxx − fx

=
1
2

[
θTr (zx)w

∗
r (zx)+ θ

T
l (zx)w

∗
l (zx)

]
+ ex (48)

where ex is the modeling error, w∗r (zx) and w∗l (zx) are the
unknown optimal weights. The boundary conditions satisfy
the next inequality, where ωe is a positive definite matrix:

eTx ω
−1
ex ex ≤ ẽx (49)

Theorem 1: Suppose the closed-loop system of a milling
process represented by eqn. (14) is controlled by Type-
2 Fuzzy PD controllers mentioned by eguations (42) and (43)
where the gain satisfies

Kdx > ωfx , Kdy > ωfy (50)

and if the updated laws of the Fuzzy systems are:

d
dt
w̃r (zx) = −ρr [(ẋ + ωxx)T θr (zx)]T

d
dt
w̃l(zx) = −ρl[(ẋ + ωxx)T θl(zx)]T

d
dt
w̃r (zy) = −ρr [(ẏ+ ωyy)T θr (zy)]T

d
dt
w̃l(zy) = −ρl[(ẏ+ ωyy)T θl(zy)]T (51)

then, the states of the closed-loop systems eguations (44) and
(45) are bounded and stability is assured provided

lim
T→0

1
T

∫ T

0
[‖ (ẋ + ωxx)T ‖2kax+kbx

+ ‖ (ẏ+ ωyy)T ‖2kay+kby ] ≤ ẽx + ẽy (52)

where eTx ω
−1
ex ex ≤ ẽx , eTy ω

−1
ey ey ≤ ẽy, ω−1x kx − ωgx > 0,

ω−1y ky − ωgy > 0.
Proof: Consider Lyapunov candidate Vx along

x−component

Vx =
1
2
(ẋ + ωxx)Tmx(ẋ + ωxx)

+
1
4ρr

π1[w̃Tr (zx)w̃r (zx)]+
1
4ρl

π2[w̃Tl (zx)w̃l(zx)] (53)
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Since mx is positive definite matrices and ρr > 0, ρl > 0,
Vx ≥ 0. Also,

w̃r (zx) = w∗r (zx)− wr (zx)

w̃l(zx) = w∗l (zx)− wl(zx) (54)

The derivative of eqn. (53) gives:

V̇x = (ẋ + ωxx)Tmx(ẍ + ωx ẋ)

+
1
2ρr

π1[w̃Tr (zx)
d
dt
w̃r (zx)]+

1
2ρl

π2[w̃Tl (zx)
d
dt
w̃l(zx)]

(55)

Using eguations (47) and (48) in eqn. (55)

V̇x = (ẋ + ωxx)T {Lx(ẋ + ωxx)

− cx(ẋ + ωxx)− ω−1x kx(ẋ + ωxx)

−
1
2

[
θTr (zx)wr (zx)+ θ

T
l (zx)wl(zx)

]
}

+ {
1
2

[
θTr (zx)w

∗
r (zx)+ θ

T
l (zx)w

∗
l (zx)

]
+ ex}

+
1
2ρr

π1[w̃Tr (zx)
d
dt
w̃r (zx)]

+
1
2ρl

π2[w̃Tl (zx)
d
dt
w̃l(zx)]

= −(ẋ + ωxx)T [Lx(ẋ + ωxx)

+ cx(ẋ + ωxx)+ ω−1x kx(ẋ + ωxx)]

+ (ẋ + ωxx)T [
1
2
θTr (zx){w

∗
r (zx)− wr (zx)}]

+ (ẋ + ωxx)T [
1
2
θTl (zx)w

∗
l (zx){w

∗
l (zx)

−wl(zx)}]+ (ẋ + ωxx)T ex

+
1
2ρr

π1[w̃Tr (zx)
d
dt
w̃r (zx)]

+
1
2ρl

π2[w̃Tl (zx)
d
dt
w̃l(zx)] (56)

Consider the updated law for the Fuzzy system as follows:

d
dt
w̃r (zx) = −ρr [(ẋ + ωxx)T θr (zx)]T

d
dt
w̃l(zx) = −ρl[(ẋ + ωxx)T θl(zx)]T (57)

Combining equations (54) and (57) in eqn. (56)

V̇x = −(ẋ + ωxx)T [Lx(ẋ + ωxx)

+ cx(ẋ + ωxx)

+ω−1x kx(ẋ + ωxx)]+ (ẋ + ωxx)T ex

+ (ẋ + ωxx)T [
1
2
θTr (zx){w̃r (zx)− w̃r (zx)}]

+ (ẋ + ωxx)T [
1
2
θTl (zx){w̃l(zx)− w̃l(zx)}]

= −(ẋ + ωxx)T [Lx(ẋ + ωxx)+ cx(ẋ + ωxx)

+ω−1x kx(ẋ + ωxx)]+ (ẋ + ωxx)T ex (58)

The property of matrix inequality gives:

ATB+ BTA = ATωA+ BTω−1B (59)

The relation eqn. (59) is valid for all A,B ∈ Rn, ω = ωT > 0,
then:

(ẋ + ωxx)T ex ≤ (ẋ + ωxx)Tωex(ẋ + ωxx)+ eTx ω
−1
ex ex (60)

Since the term eTx ω
−1
ex ex is bounded by the relation eqn. (49),

and also ωex > 0 and let Lx > ωfx > 0, ω−1x kx > ωgx > 0.
From eqn. (58):

V̇x ≤ −(ẋ + ωxx)T [(Lx + cx − ωfx)

+ (ω−1x kx − ωgx)](ẋ + ωxx)+ ẽx
≤ − ‖ (ẋ + ωxx)T ‖2 [(Lx + cx
−ωfx)+ (ω−1x kx − ωgx)]+ ẽx (61)

Let Lx + cx − ωfx = kax and ω−1x kx − ωgx = kbx , then using
eqn. (61):

V̇x ≤ − ‖ (ẋ + ωxx)T ‖2kax+kbx +ẽx (62)

Considering the concept presented by [32], (ẋ + ωxx) is
bounded when eTy ω

−1
ey ey ≤ ẽy and let Lx + cx − ωfx >

0, ω−1x kx − ωgx > 0, therefore:∫ T

0
V̇x ≤ −

∫ T

0
‖ (ẋ + ωxx)T ‖2kax+kbx dt + ẽxT∫ T

0
‖ (ẋ + ωxx)T ‖2kax+kbx dt ≤ V0 − VT + ẽxT

LimT→0
1
T

∫ T

0
‖ (ẋ + ωxx)T ‖2kax+kbx≤ ẽx (63)

Considering a similar analysis along y−component, (ẏ+ωxy)
is bounded when ey is bounded by ẽy and Ly + cy − ωfy > 0,
ω−1y ky − ωgy > 0. Hence,

LimT→0
1
T

∫ T

0
‖ (ẏ+ ωyy)T ‖2kay+kby≤ ẽy (64)

where kay = Ly + cy − ωfy and kby = ω−1y ky − ωgy. Adding
eguations (63) and (64), the boundary conditions of (ẋ+ωxx)
and (ẏ+ ωyy) are achieved by:

lim
T→0

1
T

∫ T

0
[‖ (ẋ + ωxx)T ‖2kax+kbx

+ ‖ (ẏ+ ωyy)T ‖2kay+kby ] ≤ ẽx + ẽy (65)

Remark 1: The potential ability of adaptive Fuzzy com-
pensation eqn. (46) is that it does not be worry about the big
compensation error existing in eqn. (48), which is an out-
come of selecting a poor membership function. The gradient
algorithms eqn. (57) validates the updates of the membership
functions wr (zx) and wl(zx) in such a way that the system
states are bounded as well as error approaches towards zero.
Theorem 1 guarantees that the updating algorithms are stable.
There is a tendency of regulation error to become small with
the increase of the derivative gain. But the large derivative
gain results in slow transient performance. The error con-
verges to zero under the condition that derivative gain tends

VOLUME 6, 2018 72705



S. Paul, R. Morales-Menendez: Active Control of Chatter in Milling Process Using Intelligent PD/PID Control

to infinity [15]. It is utter necessary to increase the derivative
gain Kd to decrease the steady-state errors caused by these
uncertainties.

V. PID CONTROLLER WITH TYPE-2 FUZZY
COMPENSATION
PID controllers use feedback strategy and have three actions:
P-action is introduced for increasing the speed of response,
D-action is introduced for damping purposes and I -action is
introduced for obtaining a desired steady-state response [7].
The control law involving PID is given by:

u = −Kp(e)− Ki

∫ t

0
(e)dτ − Kd (ė) (66)

where Kp, Ki and Kd are positive definite, Ki is the integral
gain. For vibration control, xd = 0, then using eqn. (66):

u = −Kpx− Ki

∫ t

0
xdτ − Kd ẋ (67)

PID controller with Type-2 Fuzzy compensation along
x−direction is:

ucx = −Kpxx − Kix

∫ t

0
xdτ − Kdx ẋ

−
1
2

[
θTr (zx)wr (zx)+ θ

T
l (zx)wl(zx)

]
(68)

Also, along y−direction, PID controller with Type-2 Fuzzy
compensation is:

ucy = −Kpyy− Kiy

∫ t

0
xdτ − Kdyẏ

−
1
2

[
θTr (zy)wr (zy)+ θ

T
l (zy)wl(zy)

]
(69)

Using equations (21), (22) and (68), the closed-loop system
with Type-2 Fuzzy compensation and PID controller along
x−direction is:

mx ẍ + cx ẋ + kxx + fx

= −Kpxx − Kix

∫ t

0
xdτ − Kdx ẋ

−
1
2
[θTr (zx)wr (zx)+ θ

T
l (zx)wl(zx)] (70)

Considering the y-direction, the closed-loop system becomes:

myÿ+ cyẏ+ kyy+ fy

= −Kpyy− Kiy

∫ t

0
xdτ − Kdyẏ− Kdyẏ

−
1
2

[
θTr (zy)wr (zy)+ θ

T
l (zy)wl(zy)

]
(71)

Since the pattern of two components x and y exhibits is sim-
ilar, the analysis will be carried out considering x-direction
only. Assume Kiy

∫ t
0 xdτ = ξx , therefore from eqn. (68) it

can be demonstrated:

ẋ = −mx(cx ẋ + kxx + fx + Kpxx + ξx

+Kdx ẋ +
1
2
θTr (zx)wr (zx)+

1
2
θTl (zx)wl(zx)

ξ̇x = Kixx (72)

From equations (72) it is clear that eqn. (70) origin is not
at equilibrium and is [x ẋ ξx] =

[
0 0 ξ∗x

]
. To change the

origin at equilibrium, x = 0, ẋ = 0, the equilibrium
is [0 0 ρx(0, 0)] , so ξ∗x = ξx − ρx(0, 0), ρx is unknown
modeling error. The fx will be estimated using Type-2 Fuzzy
as:

fx =
1
2
θTr (zx)w

∗
r (zx)+

1
2
θTl (zx)w

∗
l (zx)+ ρx (73)

Therefore using eqn. (73) in (70):

mx ẍ + cx ẋ + kxx +
1
2
θTr (zx)w

∗
r (zx)

+
1
2
θTl (zx)w

∗
l (zx)+ ρx

= −Kpxx − ξx + ρx(0, 0)− Kdx ẋ

−
1
2
[θTr (zx)wr (zx)+ θ

T
l (zx)wl(zx)] (74)

The modeling error ρx is the function of two nonlinear forces:
damper friction and cutting force. The lower bound of the
modeling error is:∫ t

0
ρx = (

∫ t

0
ρdxdx −

1
2

∫ t

0
θTr (zx)wr (zx)

−
1
2

∫ t

0
θTl (zx)wl(zx))+

∫ t

0
ρfxdx

= ρ1x + ρ2x (75)

The lower bound of ρ1x =
∫ t
0 ρdxdx −

1
2θ

T
r (zy)wr (zy) −

1
2θ

T
l (zy)wl(zy) is a first order continuous function satisfying

Lipschitz condition:

‖ ρ1x(a)− ρ1x(b) ‖ ≤ k1x ‖ a− b ‖ (76)

where k1x is a Lipschitz constant. The lower bound of damp-
ing uncertanities is

∫ t
0 ρdxdx = −ρ̄dx . Also, θ

T
r (zx) and

θTl (zx) are the Gaussian functions and so:

1
2

∫ t

0
θTr (zx)wr (zx) =

wr (zx)
4

√
π erf(zx)

1
2

∫ t

0
θTl (zx)wl(zx) =

wl(zx)
4

√
π erf(zx) (77)

so,

k1x = −ρ̄dx −
1
4

√
π erf(zx) [wr (zx)+ wl(zx)] (78)

Let the lower bound of the cutting force be f̄xl(1x,1y),∫ t
0 ρfxdx = f̄xl(1x,1y), since the cutting force Fx ε
f̄xl(1x,1y):

f̄xl(1x,1y) < kxl(1x,1y) (79)

Hence, f̄xl(1x,1y) is bounded and kxl(1x,1y) is a constant
value. The property of eigen values suggest that the positive
definite matrix mx satisfies the following conditions:

‖ mx ‖ ≥ λmin(mx) > 0

m̄ ≥ λmax(mx) ≥‖ mx ‖ (80)

where λmax(mx) and λmin(mx) are the maximum and mini-
mum eigenvalues of the matrixmx . m̄ > 0 is the upper bound.
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Theorem 2: Suppose the closed-loop system of a milling
process represented by eqn. (14) is controlled by Type-2
Fuzzy PID controllers mentioned by eguations (68) and (69),
the closed-loop system will be asymptotically stable under
the following gains conditions:

λmin(Kpx) ≥ [k1x + kxl(1x,1y)+ λmax(cx)]

+
1
υx

[λmax(Kix)− λmin(kx)+ 0xmax]

λmin(Kdx) ≥ υx[λmax(mx)+ λmax(cx)]
+ [0xmax − λmin(cx)]

λmax(Kix) ≤

(
λmin(mx))

1
2 (λmin(Kpx)

) 3
2

6
√
3λmax(mx)

(81)

λmin(Kpy) ≥ [k1y − kyl(1x,1y)+ λmax(cy)]

+
1
υy

[λmax(Kiy)− λmin(ky)+ 0ymax]

λmin(Kdy) ≥ υx[λmax(my)+ λmax(cy)]
+ [0ymax − λmin(cy)]

λmax(Kiy) ≤
(λmin(my))

1
2
(
λmin(Kpy)

) 3
2

6
√
3λmax(my)

(82)

provided that the updated law for the Fuzzy system are:

d
dt
w̃r (zx) = −

ρr

λ1
[(ẋ + υxx)TφTr (zx)]

T

d
dt
w̃l(zx) = −

ρl

λ1
[(ẋ + υxx)TφTl (zx)]

T

d
dt
w̃r (zy) = −

ρr

λ1
[(ẏ+ υyy)TφTr (zy)]

T

d
dt
w̃l(zy) = −

ρl

λ1
[(ẏ+ υyy)TφTl (zy)]

T (83)

where ρr , λ1 are positive definite matrix, υx > 0 is a design
parameter, λmin and λmax are the minimum and maximum
eigenvalues.

Proof: For stability analysis, the Lyapunov candidate is
selected as:

Vx =
1
2
ẋTmx ẋ +

1
2
xTKpxx +

υx

2
ξ∗Tx K−1ix ξ

∗
x

+ xT ξ∗x + υxx
Tmx ẋ +

υx

2
xTKdxx +

∫ t

0
ρxdx

− k1x − kxl(1x,1y)+
1
4ρr

λ1[w̃Tr (zx)w̃r (zx)]

+
1
4ρl

λ2[w̃Tl (zx)w̃l(zx)] (84)

where Vx (0) = 0. To continue with the Lyapunov analysis, it
is necessary to show thatV ≥ 0. For simplicity,V is separated
into three parts as Vx = V1 + V2 + V3, where:

V1 =
1
6
xTKpxx +

υx

2
xTKdxx +

∫ t

0
σxdx

− kσx − f̂xl(1x,1y)
1
4ρr

λ1[w̃Tr (zx)w̃r (zx)]

+
1
4ρl

λ2[w̃Tl (zx)w̃l(zx)] (85)

Since Kpx > 0,Kdx > 0, so V1 ≥ 0

V2 =
1
6
xTKpxx +

υx

2
ξ∗Tx K−1ix ξ

∗
x + x

T ξ∗x (86)

When υx ≥ 3
(λmin(K

−1
ix )λmin(Kpx ))

V2 ≥
1
2

(√
λmin(Kpx)

3
‖x‖ −

√
3

(λmin(Kpx))

∥∥ξ∗x ∥∥
)2

≥ 0 (87)

And

V3 =
1
6
xTKpxx +

1
2
ẋTmx ẋ + υxxTmx ẋ (88)

Using the property of inequality

ATBC ≥ ‖A‖ ‖BC‖

≥ ‖A‖ ‖B‖ ‖C‖ ≥ λmax(B) ‖A‖ ‖C‖

V3 ≥
1
2
(
1
3
λmin(Kpx) ‖x‖2

+ λmin(mx) ‖ẋ‖2 + 2υxλmax(mx) ‖x‖ ‖ẋ‖) (89)

When υx ≤ 1
2

√
1
3λmin(mx )λmin(Kpx )

λmax(mx )

V3 ≥
1
2
(

√
λm(Kpx)

3
‖x‖ +

√
λm(Mx) ‖ẋ‖)2 ≥ 0 (90)

Hence V ≥ 0 Since λmin(K
−1
ix ) = 1

λmax(Kix )√
1
3λmin(mx)

λmax(mx)
≥ (

6λmax(Kix)√
λmin(Kpx)

)(
1

λmin(Kpx)
)

λmax(Kix) ≤
(λmin(mx))

1
2
(
λmin(Kpx)

) 3
2

6
√
3λmax(mx)

(91)

The derivative of eqn. (84) is:

V̇x = ẋTMx ẍ + ẋTKpxx + υx
d
dx
ξ∗Tx K−1ix ξ

∗
x

+ xT
d
dx
ξ∗x + ẋ

T ξ∗x + ẋ
Tρx +

υx

2
ẋTMx ẋ

+ υxxTmx ẍ + υx ẋTmx ẋ + υx ẋTKdxx

+
1
2ρr

λ1[
d
dt
w̃Tr (zx)w̃r (zx)]

+
1
2ρl

λ2[
d
dt
w̃Tl (zx)w̃l(zx)] (92)

V̇x = ẋT [−cx ẋ − kxx −
1
2
θTr (zx)w

∗
r (zx)

−
1
2
θTl (zx)w

∗
l (zx)− ρx − Kpxx − Kdx ẋ

− ξx + ρx(0, 0)−
1
2
θTr (zx)wr (zx)

−
1
2
θTl (zx)wl(zx)]+ ẋ

TKpxx

+ υx
d
dx
ξ∗Tx K−1ix ξ

∗
x + x

T d
dx
ξ∗x + ẋ

T ξ∗x

+ ẋTρx + υx ẋTmx ẋ + υx ẋTKdxx
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+ υxxT [−cx ẋ − kxx −
1
2
θTr (zx)w

∗
r (zx)

−
1
2
θTl (zx)w

∗
l (zx)− ρx − Kpxx

−Kdx ẋ − ξx + ρx(0, 0)−
1
2
θTr (zx)wr (zx)

−
1
2
θTl (zx)wl(zx)]+

1
2ρr

λ1[
d
dt
w̃Tr (zx)w̃r (zx)]

+
1
2ρl

λ2[
d
dt
w̃Tl (zx)w̃l(zx)] (93)

V̇x = ẋT [−cx ẋ − kxx − Kpxx − Kdx ẋ

− ξx + ρx(0, 0)]+ ẋTKpxx

+ υx
d
dx
ξ∗Tx K−1ix ξ

∗
x + x

T d
dx
ξ∗x

+ ẋT ξ∗x + υx ẋ
Tmx ẋ + υx ẋTKdxx

+ υxxT [−cx ẋ − kxx − ρx
−Kpxx − Kdx ẋ − ξx + ρx(0, 0)]

−
1
2
(ẋT + υxxT )θTr (zx)[wr (zx)+ w

∗
r (zx)]

−
1
2
(ẋT + υxxT )θTl (zx)[wl(zx)+ w

∗
l (zx)]

+
1
2ρr

λ1[
d
dt
w̃Tr (zx)w̃r (zx)]

+
1
2ρl

λ2[
d
dt
w̃Tl (zx)w̃l(zx)] (94)

If w̃r (zx) = −[wr (zx) + w∗r (zx)], w̃l(zx) = −[wl(zx) +
w∗l (zx)] and the updated law for the Fuzzy system is selected
as:

d
dt
w̃r (zx) = −

ρr

λ1
[(ẋ + υxx)TφTr (zx)]

T

d
dt
w̃l(zx) = −

ρl

λ1
[(ẋ + υxx)TφTl (zx)]

T (95)

Then

V̇x = ẋT [−cx ẋ − kxx − Kpxx − Kdx ẋ

− ξx + ρx(0, 0)]+ ẋTKpxx

+ υx
d
dx
ξ∗Tx K−1ix ξ

∗
x + x

T d
dx
ξ∗x + ẋ

T ξ∗x

+ υx ẋTmx ẋ + υx ẋTKdxx

+ υxxT [−cx ẋ − kxx

− ρx − Kpxx − Kdx ẋ − ξx + ρx(0, 0)] (96)

Since, ξ∗x = ξx − ρx(0, 0) and d
dx ξ
∗
x = Kixx,

so d
dx ξ
∗T
x K−1ix ξ

∗
x = xT ξ∗x and xT d

dx ξ
∗
x = xTKixx gives:

V̇x = ẋT [−cx ẋ − kxx − Kdx ẋ]+ xTKixx

+ υx ẋTmx ẋ + υxxT [−cx ẋ − kxx

− ρx − Kpxx] = −ẋT [cx ẋ + kxx + Kdx ẋ

− υxmx ẋ]− υxxT [cx ẋ + kxx + Kpxx]

+ xTKixx + υxxT [ρx(0, 0)− ρx] (97)

Using the Lipschitz condition eqn. (76), boundary condition
eqn. (79) and considering ρx(0, 0) = 0:

υxxT [ρx(0, 0)− ρx] ≤ υxk1x ‖x‖2 + υxkxl(1x,1y) ‖x‖2

(98)

Applying the property ATB+ BTA ≤ AT3A+ B3−1B,

−υxxT cx ẋ ≤ υxλmax(cx)(xT x + ẋT ẋ) (99)

Also,

−υx ẋT kxx ≤ 0xmax(xT x + ẋT ẋ)

0xmax ≤ λmax(kx)

where 0max is a design parameter. Using equations (80), (98)
and (99):

V̇x ≤ −ẋT [λmin(cx)+ λmin(Kdx)
− υxλmax(mx)− 0xmax − υxλmax(cx)]ẋ
− xT [υxλmin(Kpx)+ υxλmin(kx)
− λmax(Kix)− υxλmax(cx)− υxk1x
− υxkxl(1x,1y)− 0xmax]x (100)

From eqn. (100), the system states will be bounded if the two
mentioned conditions are satisfied:

λmin(cx)+ λmin(Kdx) ≥ υxλmax(mx)+ 0xmax

+ υxλmax(cx)υx[λmin(Kpx)+ λmin(kx)]
≥ λmax(Kix)+ υxλmax(cx)+ υxk1x
+ υxkxl(1x,1y)+ 0xmax (101)

Equations (101) and (91) give the condition of stability as:

λmin(Kpx) ≥ [k1x + kxl(1x,1y)+ λmax(cx)]

+
1
υx

[λmax(Kix)− λmin(kx)+ 0xmax]

λmin(Kdx) ≥ υx [λmax(mx)+ λmax(cx)]

+ [0xmax − λmin(cx)]

λmax(Kix) ≤
(λmin(mx))

1
2 (λmin(Kpx))

3
2

6
√
3λmax(mx)

(102)

Considering the similar analysis along y−component and
since the cutting forces along y−component are in opposite
direction to x−component, the stability conditions are:

λmin(Kpy) ≥ [k1y − kyl(1x,1y)+ λmax(cy)]

+
1
υy

[λmax(Kiy)− λmin(ky)+ 0ymax]

λmin(Kdy) ≥ υx[λmax(my)+ λmax(cy)]

+
[
0ymax − λmin(cy)

]
λmax(Kiy)

≤
(λmin(my))

1
2
(
λmin(Kpy)

) 3
2

6
√
3λmax(my)

(103)

when the updated law for the Fuzzy system along
y−component are selected as:

d
dt
w̃r (zy) = −

ρr

λ1
[(ẏ+ υyy)TφTr (zy)]

T

d
dt
w̃l(zy) = −

ρl

λ1
[(ẏ+ υyy)TφTl (zy)]

T (104)
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VI. VALIDATION
For validation of the effectiveness of the proposed control
strategy, the cutting conditions of milling process in [24] were
used to simulate the milling process. The tool and cutting
parameters are shown in Table 4.

TABLE 4. Milling process parameters [24] .

The software environment isMatlab/Simulink. Simulations
are presented to show that the tool chatter can be attenuated
to a significant level by using the AVD as an actuator with
the developed controllers thus validating the effectiveness of
the proposed control approach using PD, PID, Type-2 Fuzzy
PD and Type-2 Fuzzy PID. A simulation period of 0.5 s
was considered for evaluation. For the simulation purposes,
the weight of the AVD is considered to be 5% of the structure.
Two subsytem blocks of milling model, one without con-

trol system and other with control system were created to
compare the results. The cutting and damper forces are the
inputs to the milling process model. The frequency for the
simulation process was set at 500 rad/s. Numerical integra-
tors were used to compute the velocity and position from
the acceleration signal. Three sets of test were simulated,
PD/PID controllers, PD/PID controllers along with Type-1
Fuzzy toolbox, PD/PIDwith open source Type-2 Fuzzy tool-
box to extract the simulation results. The control signal from
the controller subsystem block is fed to the AVD subsystem
simulation block to generate the required control forces along
x-direction and y-direction. IT2-FLS toolbox [35] is utilized
to design the Type-2 Fuzzy system.

The newly developed components are functions for type-
reduction operations with a brand interface. The main user
interfaces of the IT2-FLS toolbox consist of main editor,
membership function editor, rule editor and surface viewer.
The membership functions of the inputs (position and veloc-
ity errors) were chosen to be as Gaussian functions as shown
in Fig. 5, where mfU and mfL are the upper and lower
membership functions.

For the position error, three membership functions were
selected and for the velocity error, two membership func-
tions were selected. They were normalized in [−2, 2].

FIGURE 5. Membership functions of position error (top) and velocity
error (bottom).

Reference [16] was utilized to defuzzify the Type-2 Fuzzy
system. It has been noted during the analysis that the five
Fuzzy rules were sufficient to maintain minimum regulation
errors. For Type-1 Fuzzy system, ten IF-THEN rules were
sufficient tomaintain theminimum regulation error. Gaussian
functions were applied for Type-1 Fuzzy system. IF-THEN
rules were applied for both Type-1 and Type-2 Fuzzy system
as follows:

IF(xe is 21), (ye is 22)

AND(ẋe is 23), (ẏe is 24)

THEN (ux is 25), (uy is 26)

where xe, ye are the position errors, ẋe, ẏe are the veloc-
ity errors, and ux , uy are the required control forces along
x−direction and y−direction. 21,22,23,24,25, and 26
are Type-2 Fuzzy sets. For design purposes, ρr = ρl = 6
and ρr

λ1
=

ρl
λ1
= 8 were chosen.

The Theorem 1 and Theorem 2 give the sufficient con-
ditions of the minimal proportional and derivative gains as
well as maximum integral gain. The maximum and minimum
bounds of the parameters were:

λmax(mx t) = 20, λmax(cx) = 1.2,

λmin(cx) = 1, λmin(kx) = 6990,

λmax
(
my
)
= 20, λmax(cy) = 4.3,

λmin(cy) = 3.5, λmin(ky) = 5000,

k1x , k1y, kxl(1x,1y), kyl(1x,1y) are effected by the exter-
nal force F. The values were chosen as k1x = 250, k1y =
250, kxl(1x,1y) = 100, kxl(1x,1y) = 50 depending on
the maximum values of the constant associated. The The-
orem 2 gave the sufficient conditions of the minimal pro-
portional and derivative gains and maximum integral gain.
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Theorem 1 validated that both proportional and derivative
gain must be positive as negative gains can make the systems
unstable. For x−direction and y−direction, using the ranges
from Theorem 2:

λmin(Kpx) ≥ 312, λm (Kdx) ≥ 90,

λM (Kix) ≤ 3112, λmin(Kpy) ≥ 331,

λm (Kdx) ≥ 85, λM (Kix) ≤ 2842,

On the basis of eqn. (105), wide ranges of gain values were
tested and it was found with several trials for PD, PID,
Type-2 Fuzzy PD and Type-2 Fuzzy PID controllers the best
selected gains for suitable vibration attenuation and stability
are:

λmin(Kpx) = 245, λm (Kdx) = 93,

λM (Kix) = 2234, λmin(Kpy) = 260,

λm (Kdx) = 88, λM (Kix) = 2115

The comparisons in terms of vibration attenuation were
carried out among PD, PID, Type-2 Fuzzy PD and Type-
2 Fuzzy PID controllers. The results of these controllers were
shown in Figs. 6-11. The results of the average vibration
are evaluated using Mean Squared Error (MSE), MSE =
1
d

∑d
k=1 x (k)

2, where x (k) is the chatter vibration and d is
the total number of data. Results of the average vibration are
compared in Table 5.

FIGURE 6. Tool vibration along x-direction (top) and y-direction (bottom)
using PD controller.

Based on MSE indicator, the percentage vibration reduc-
tion performance of the various controllers are computed.
The PD controller reduces the vibration in 27.2% and 25.2%
along x and y directions. The percentage vibration reduction
with PID controller was 48.9% and 34.47% along x and y
directions. It is justified that although PD controller is able
to attenuate the chatter vibration, it is not enough. This lag is
somewhat achieved by introducing an integral gain to the PD
controller. PID controller attenuates the chatter vibration to a
better level along x−direction but along y−direction there is

FIGURE 7. Tool vibration along x-direction (top) and y-direction (bottom)
using PID controller.

FIGURE 8. Tool vibration along x-direction (top) and y-direction (bottom)
using Type-1 Fuzzy PD control system.

not much difference with PD controller. The performance of
PID controller is better than PD controller.

The Type-1 PD controller reduces the vibration in 59.1%
and 49.4% along x and y directions; whereas, Type-1 PID
controller reduces the vibration in 72% and 64.4% along
x and y directions. The percentage vibration reduction with
Type-2 Fuzzy PD controller is 66.1% and 57.09% along x
and y directions, and with Type-2 Fuzzy PID controller the
percentage vibration reduction are 80.4% and 76.2% along x
and y directions.

In the work of [39], the milling chatter was attenuated by
proposing a PD control system. Although a PD controller is
applied by considering nonlinear dynamics, the compensa-
tion of nonlinearities were not taken into consideration. In our
proposal, the comparison in terms of vibration attenuation
reveals the superior performance of PD/PID controller in
combination with Fuzzy compensator along x−direction and
y−direction. This validates that the compensation of non-
linearities with Fuzzy logic approach improves significantly
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FIGURE 9. Tool vibration along x-direction (top) and y-direction (bottom)
using Type-1 Fuzzy PID control system.

FIGURE 10. Tool vibration along x-direction (top) and y-direction
(bottom) using Type-2 Fuzzy PD control system.

the performance of controllers. Several researches [17], [31]
reveals that although Type-1 Fuzzy in combination with other
control methodologies have been used for chatter attenua-
tion; the combination of Fuzzy compensation with PD/PID
controllers for milling chatter attenuation is investigated for
the first time in this research project. Type-2 Fuzzy system
performed better than Type-1 Fuzzy system which was evi-
dent from the percentage vibration attenuation results. The
parameters associated to the membership functions of Type-2
Fuzzy system are lt2, ct2, rt2 and ht2 which define the left
point, the center point, right point and the height of the
membership functions. The term ht2 is not present in Type-1
Fuzzy system. The Type-2 Fuzzy system has more DoF in
the design and can handle nonlinearities in a better way.
From the percentage vibration attenuation, it is clear that the
Type-2 Fuzzy PID controller outperforms all the controllers.
The main constraint of the Type-2 Fuzzy toolbox is the high
computational cost, this is a future work.

FIGURE 11. Tool vibration along x-direction (top) and y-direction
(bottom) using Type-2 Fuzzy PID control system.

TABLE 5. Average vibration attenuation.

Reference [1] used a PID controller for chatter suppres-
sion; but, the stability criteria was not taken into consideration
for the extraction of stable gains. In this work, from the
stability view point, Theorem 1 requires that the proportional
and derivative gains should be positive. In the simulations,
the negative gains resulted in an unstable closed-loop opera-
tion, which is according to the conditions in Theorem 1. The-
orem 2 provides sufficient conditions for the integral gains.
It was found that, when integral gain is more than 3, 400
and 3, 700 along x and y direction respectively, the system
becomes unstable.

The placement of damper is an important factor for suitable
vibration attenuation. In this work, AVD was placed in the
center of mass in an inclined position. The main reason for
innovative placement is to make the setup a cost effective
one. Since the vibration attenuation is required along both x-
direction and y-direction, there is a requirement of two AVD
placed linearly along x-component and y-component. But by
placing the AVD in an inclined position, the control forces
are resolved along x-component and y-component; instead
of using two AVD, only one AVD was used, there was a
cost reduction in the process and also significant vibration
attenuation was observed with one AVD which was evident
from the percentage vibration reduction results.
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FIGURE 12. Cutting force along x-direction (top), y-direction (midle) and
control signal (bottom) of Type-2 Fuzzy PID.

The cutting forces along x−direction and y−direction and
the control signal of Type-2 Fuzzy PID are shown in Fig. 12.

VII. CONCLUSIONS
A novel active control strategy for the attenuation of chatter
vibration in milling process is proposed. The important the-
oretical contribution associated with the stability analysis for
the PD, PID, Type-2 Fuzzy PD and Type-2 Fuzzy PID was
developed. The required stability conditions were obtained
for the purpose of tuning the PD/PID gains on the basis of
proposed theorems. By utilizing Lyapunov stability analy-
sis, the minimum values of the proportional and derivative
gains and the maximum values of the integral gains were
computed. The Type-2 Fuzzy logic concept was utilized to
compensate the nonlinearities involved within the cutting
forces and damper friction. Also, Type-1 Fuzzy logic system
was developed in combination with PD/PID controller for
analyzing and comparing the performance with Type-2 Fuzzy
logic system.

The numerical simulation and analysis validates the effec-
tiveness of PD, PID, Type-1 Fuzzy PD, Type-1 Fuzzy PID,
Type-2 Fuzzy PD and Type-2 Fuzzy PID controllers in the
minimization of chatter vibration. Type-2 Fuzzy system per-
formed better than Type-1 Fuzzy system due to the nature
of Type-2 Fuzzy system in handling the nonlinearities with
more designDoF. The results establish that the Type-2 Fuzzy
PID controller is the best among all the controllers. The main
contributions of this proposal are:

1) For the mitigation of milling chatter, PD and PID
controllers are used in earlier research project. The
stability of the controller is an important issue and

needs to be dealt effectively as unstable controller may
add up unnecessary forces that may result in tool dam-
age and improper finish of the product. In this work,
the stability of PD and PID controllers were validated
which has not been given importance in earlier research
considering milling chatter attenuation.

2) The implementation of Type-2 Fuzzy logic systemwith
PD/PID controllers for the compensation of nonlinear-
ities was carried out for the first time. The simulation
results validate that a Fuzzy system can handle nonlin-
earities to suitable extent for increasing the effective-
ness of PD/PID controllers.

3) The technique of active control using AVD placed in
an effective position is entirely a new concept. The
simulation results suggest that by placing the AVD in
an inclined position and by resolving forces in two
directions, suitable vibration attenuation is achieved.
This innovative strategy rules out the use of multiple
dampers which is advantageous from the cost point of
view.

Future work is intended towards the development of the
experimental setup for further investigation and the improve-
ment of the controller by minimizing the computational cost
associated with the Type-2 Fuzzy system.
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