
Received October 21, 2018, accepted November 14, 2018, date of publication November 20, 2018,
date of current version December 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2882455

A General Framework for Accelerating Swarm
Intelligence Algorithms on FPGAs, GPUs
and Multi-Core CPUs
DALIN LI 1,2, LAN HUANG1, KANGPING WANG1, WEI PANG3, YOU ZHOU1, AND RUI ZHANG1
1College of Computer Science and Technology, Jilin University, Changchun 13002, China
2Zhuhai Laboratory of Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Department of Computer Science and
Technology, Zhuhai College of Jilin University, Zhuhai 519041, China
3Department of Computing Science, University of Aberdeen, Aberdeen AB24 3UE, U.K.

Corresponding author: Kangping Wang (wangkp@jlu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61472159, Grant 61572227, and
Grant 61772227, in part by the Development Project of Jilin Province of China under Grant 20160204022GX, Grant 20170101006JC,
Grant 20170203002GX, Grant 2017C030-1, and Grant 2017C033, in part by the Premier-Discipline Enhancement Scheme through Zhuhai
Government, in part by the Premier Key-Discipline Enhancement Scheme through the Guangdong Government Funds, and in part by the
Jilin Provincial Key Laboratory of Big Data Intelligent Computing under Grant 20180622002JC.

ABSTRACT Swarm intelligence algorithms (SIAs) have demonstrated excellent performance when solving
optimization problems including many real-world problems. However, because of their expensive computa-
tional cost for some complex problems, SIAs need to be accelerated effectively for better performance. This
paper presents a high-performance general framework to accelerate SIAs (FASI). Different from the previous
work which accelerates SIAs through enhancing the parallelization only, FASI considers both the memory
architectures of hardware platforms and the dataflow of SIAs, and it reschedules the framework of SIAs as a
converged dataflow to improve the memory access efficiency. FASI achieves higher acceleration ability by
matching the algorithm framework to the hardware architectures. We also design deep optimized structures
of the parallelization and convergence of FASI based on the characteristics of specific hardware platforms.
We take the quantum behaved particle swarm optimization algorithm as a case to evaluate FASI. The results
show that FASI improves the throughput of SIAs and provides better performance through optimizing the
hardware implementations. In our experiments, FASI achieves a maximum of 290.7 Mb/s throughput which
is higher than several existing systems, and FASI on FPGAs achieves a better speedup than that on GPUs and
multi-core CPUs. FASI is up to 123 times and not less than 1.45 times faster in terms of optimization time
on Xilinx Kintex Ultrascale xcku040 when compares to Intel Core i7-6700 CPU/ NVIDIA GTX1080 GPU.
Finally, we compare the differences of deploying FASI on hardware platforms and provide some guidelines
for promoting the acceleration performance according to the hardware architectures.

INDEX TERMS Field programmable gate arrays, multicore processing, parallel programming, particle
swarm optimization, pipeline processing.

I. INTRODUCTION
Swarm intelligence (SI) emerges from the collective behavior
of decentralized and self-organized systems. A typical SI sys-
tem consists of a population of individuals which follow very
simple rules and interact with each other by acting on their
local environments. The interactions between such individu-
als can lead to the emergence of very complex global behav-
ior, far beyond the capability of single individual [1]–[3].
Examples in natural SI systems include bird flocking, ant
foraging, and fish schooling, etc.

Inspired by the nature swarm intelligence, a collection
of algorithms have been proposed for optimization prob-
lems, such as particle swarm optimization (PSO) [4], [5],
ant colony optimization (ACO) [6], [7]. PSO is inspired by
the social behavior of bird flocking or fish schooling and
widely used for real-parameter optimization. ACO simulates
the foraging behavior of ant colony, and it has been suc-
cessfully applied to solve various combinatorial optimization
problems. Typically, the SI algorithms (SIAs) consist of three
stages: (1) updating the individuals respectively; (2) fitness

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

72327

https://orcid.org/0000-0002-3086-9087


D. Li et al.: General Framework for Accelerating SIAs on FPGAs, GPUs, and Multi-Core CPUs

evaluation of the individuals; (3) communication between
all the individuals for global information sharing [8]. These
stages will be iterated several times until the termination
criteria are met.

Although SIAs achieve varying degree of success in solv-
ing many real-world problems where conventional arith-
metic and numerical methods do not perform well, such as
routing design in wireless sensor network [9]–[11] and path
planning [12]–[14], they suffer from the drawback of inten-
sive computation caused by the time-consuming fitness eval-
uation process, which greatly limits their applications. Much
effort [15], [16] has been made to improve the performance
of SIAs. Based on interactions within population, SIAs are
naturally amenable to be parallelized. Such an intrinsic prop-
erty of SIAs makes them very suitable to be deployed on
hardware platforms with the ability of parallel computing,
such as multi-core CPUs, graphics processing units (GPUs),
and field programmable gate arrays (FPGAs).

However, therewill not be sufficient performance improve-
ment if we only focus on the characteristic of parallelization
without paying enough attention on the properties of the
hardware platforms. In addition to parallelization, the SIAs
also have a convergence characteristic determined by the
interactions among all individuals. The interactions should
be implemented through the comparison operations between
each of the individuals and the only individual with the best
fitness value. If the comparisons are not well organized by
considering the efficiency of memory access according to
specific hardware platforms, the memory access bottleneck
and the throughput limitation may occur when the size of a
swarm is large, and thus the performance of algorithm will be
significantly reduced.

To further optimize the parallelization and convergence
performance of SIAs, we propose a general framework for
accelerating SIAs (FASI) on FPGAs, GPUs and multi-core
CPUs. FASI provides a unified framework implemented by
the C++ language, and it can be deployed on different hard-
ware platforms.

FASI reschedules the process of SIAs based on their
dataflows: it assigns the update of individuals and the fitness
evaluation into map_x functions, and the communications
among individuals into reduce_x functions. Themap_x func-
tions are function units of FASI which are mapped to parallel
cores on hardware platforms, and reduce_x functions are
function units of FASI which are implemented for the conver-
gence of SIAs. The new dataflow of SIAs is a converged one
which begins from parallel update, followed by parallel fit-
ness evaluation and completes at the interactions among indi-
viduals. The number ofmap_x functions is determined by the
parallel processing ability of the specific hardware platform
and set by the tuning knobs of FASI. If the number of individ-
uals is larger than that of map_x functions, FASI divides the
individuals into groups, and then the individuals are updated
group by group. For optimizing the performance of mem-
ory access caused by the convergence of SIAs, FASI uses

a hierarchical convergence implemented by combine_x and
reduce_x functions. Before reducing, a combine_x function is
used for pre-converging a group of individuals by generating
a group best individual, then all the group best individuals
are converged by the final reduce_x function through a low
cost bandwidth. Before compiling, FASI should be optimized
for higher throughput according to the specific parallel pro-
cessing ability and memory accessing feature of the hardware
platforms.

We take quantum behaved particle swarm optimiza-
tion (QPSO) algorithm [17], [18], an improved PSO, as the
case to implement and evaluate FASI, and deeply opti-
mize the case for the hardware platforms separately.
On FPGAs, a combination of SIMD and full pipelined
FASI is implemented based on the flexible architecture of
FPGAs. On GPUs, we design a low sequential ID thread
reduce (LSITR) to increase the occupancy of GPUs, and we
also use combination in block to reduce the communication
cost between blocks. Onmulti-core CPUs, a combine_x func-
tion in each thread improves the cache hit ratio.

In our experiments, eight standard benchmark functions
are adopted for the performance evaluation and compari-
son. Compared with the state-of-the-art work on acceler-
ating PSO [8], [19], FASI achieves higher throughputs as
shown in Section 6. FASI on FPGAs reaches higher speedup
than on other hardware platforms; compared with multi-core
CPUs, FPGAs reach a maximum of 123 times speedup on
benchmark function Sphere; compared with GPUs, FPGAs
reach a maximum of 9 times speedup on benchmark function
SchwefelP2.22.

In summary, this research makes the following
contributions:

1) We propose the first unified general framework for
accelerating SIAs on different hardware platforms.
The framework is designed by matching the algorithm
framework to the architectures of the hardwares for
better throughput and optimized parallel programming
modules.

2) We propose memory access optimization methods
for better accelerating performance of the framework
according to the characteristics of the hardware plat-
form to be deployed.

3) We compare the differences of deploying FASI on
hardware platforms, and provide some guidelines for
promoting the acceleration performance according to
the hardware architectures.

The rest of this paper is organized as follows: in
Section II, we present some related work; Section III
describes the characteristics of the parallel hardware plat-
forms; in Section IV, we introduce swarm intelligence algo-
rithms and analyze the parallel and MapReduce features of
the algorithms; Section V gives the design and implemen-
tation of FASI; Section VI evaluates the performance of
FASI; Section VII concludes the paper and explores future
work.

72328 VOLUME 6, 2018



D. Li et al.: General Framework for Accelerating SIAs on FPGAs, GPUs, and Multi-Core CPUs

II. RELATED WORK
Accelerated SIAs has been used on solving many
problems [20], [21]. Although much effort has been made,
research on accelerating SIAs is still in its infancy and rising
phase; especially good and convincible performance criteria
are yet to be proposed.

Due to the characteristic of intensive computation, a direct
method of accelerating SIAs is investing more computation
units, especially more hardware cores, to construct a paral-
lelized computation environment. As a result, the hareware
platforms with multi-cores are widely used.

FPGAs are considered as one of the candidate hardware
platforms for the parallel implementation of SIAs, which
could accelerate algorithms by their customizable hardware
structures. FPGAs cannot only provide customized parallel
structures, but also provide flexible pipelines. A very deep
pipelined multiplier of FPGAs was proposed in [22] with
some initial guidance on deep pipeline structure designing.
However, the multiplier provided is dedicated for matrix
multiplication, and it needs to be significantly modified while
applied on SIAs. One can also use the throughput of the
FPGAs implementations to evaluate the acceleration perfor-
mance. The work in [23] and [24] provide good reference on
how to improve the throughput for dedicated algorithms.

There are many explorations on accelerating SIAs by
FPGAs. In [25], a micro-architecture specific for QPSO
was proposed. The dimension update part of QPSO, which
owns obvious parallelization features, is accelerated by par-
allelized computation units, whereas the fitness evaluation
part is still serial. This work only achieves speedup compared
with an ARM platform. Another work in [26] accelerates an
improved ACO on FPGAs and applies it for path planning,
which is also composed of parallelized dimension update and
serial fitness evaluation. For the better hardware resource
usage,in [27], the proposed PSO accelerator packages the
fitness evaluation function in an SP module which only cal-
culates the fitness value of the particles and is shared by the
paralleled swarm unit modules. Since the fitness evaluation
costs more resource of FPGAs due to the complexity of the
benchmark functions, a shared fitness evaluation function
module provides an economic method for improving the
degree of parallelization.

When the hardware resource is limited on the FPGAs
chips, the upper acceleration strategy performs well. Consid-
ering that fitness evaluations consume most of the operation
resource and time, a hardware/software co-design accelerator
was proposed in [28]. The accelerator is implemented on a
heterogeneous architecture, and the algorithms are divided
into two parts: the benchmark functions were designed
through software in the CPU-core; the left parts are deployed
in parallel in PFGAs. This acceleration strategy is flexi-
ble when the benchmark functions are changed. And also,
it can save more hardware resource to improve the degree
of parallelization. However, the communication between the
benchmark functions and particle update becomes the new
performance bottleneck.

In order to reach full parallelization of SIAs,
in [19], [29]–[31], full parallelized accelerators of PSO are
developed on single FPGAs chips. Each particle has its own
position update unit and fitness evaluation unit. All the parti-
cles are operated concurrently except for global information
sharing. However, the accelerators still do not reach good
acceleration ratio mainly because they follow the original
dataflow of PSO. The accelerating ratio reported in [19]
is between hardware accelerator and Micorblaze soft-core
implementation. In [30], the accelerating ratio is achieved
by comparing with a Matlab implementation on an Intel
Core Duo at 1.6 GHz. But neither of them provided ideal
acceleration benchmark.

Since the size of the swarm scale may increase, in [32]
and [33], a multi-swarm strategy is developed. The particles
are divided into sub-swarms, and all sub-swarms complete the
iteration process by themselves. There is a communication
controller, and the best position will be synchronized to all the
other sub-swarms through the communication structure when
it receives a better global best position request. In addition,
a paralleled Genetic Algorithm (GA) on Multiple FPGAs has
also been implemented in [34]. Both of them just immigrate
parallel programming modules to the FPGAs platform and
focus on the communication between devices, considering
insufficiently on the characteristic of FPGAs, especially the
customizable pipeline.

GPUs are another kind of hardware platform for the par-
allel implementation of the SIAs. Compared with FPGAs,
GPUs have more RAMs and can accelerate SIAs of larger
data scale. A PSO implementation in CUDA architecture is
proposed in [35], which is aiming to speed up the algorithm
on problems which has large amounts of data. Each pro-
cessing core of the GPUs is responsible for a portion of the
overall processing operations, and the parallelization ability
of GPUs could be fully utilized. In [36], a set of bio-inspired
optimization methods (PSO, Genetic Algorithm (GA), Sim-
ulated Annealing (SA), and pattern search) on GPUs are
implemented, which can be a good index of implementing
SIAs on GPUs. However, the implementation details are not
given. The work in [8] provides a brief overview of recent
studies on GPUs-based SIAs. The implementations of SIAs
on GPUs are summarized as four modules. According to the
experiment results, a PSO implemented inmultiphase parallel
model reaches better performance.

In addition to deploying an algorithm on a single hardware
platform as shown previously, implementing the same algo-
rithm on different hardware platforms and comparing the per-
formance of the implementations will provide good insights
for better accelerating algorithms. In [37], Markov Chain
Monte Carlo (MCMC) is implemented and deeply opti-
mized for better performance onmulti-core CPUs, GPUs, and
FPGAs. The experiment results provide good reference on
how to choose acceleration platforms. In [38], the three-point
Viterbi decoding algorithm was implemented on multi-core
CPUs, GPUs, and FPGAs respectively, and the performance,
such as decoding throughput, programming costs, and price

VOLUME 6, 2018 72329



D. Li et al.: General Framework for Accelerating SIAs on FPGAs, GPUs, and Multi-Core CPUs

costs, was discussed. Both of the work accelerate the algo-
rithms respectively on each of the hardware platforms, which
discuss less on constructing unified parallel modules of the
algorithms on different hardware platforms.

Inspired by the above previous work, we propose a new
acceleration framework of SIAs, which can be coded in C++
language in the same framework, compiled and deeply opti-
mized for different hardware platforms.

III. THE CHARACTERISTICS AND PROGRAMMING
MODELS OF FPGAs, GPUs AND MULTI-CORE CPUs
This section introduces the characteristics and programming
models of FPGAs, GPUs, and multi-core CPUs.

A. FPGAs
FPGA, acronym for Field Programmable Gate Array, is a
kind of integrated circuit (IC) that can be programmed in the
field after manufacture. The gates are connected according to
the programs. Because of this flexible hardware architecture,
FPGA has almost no bus bandwidth limitation, and it offers
gate-level parallelization and deep alterable pipeline.

A classic FPGA chip is composed of control logic
blocks (CLBs), which are the basic function units. A CLB
is composed of Flip-Flops and LUTs, where Flip-Flops are
responsible for storage, and LUTs are mainly used for arith-
metic. Considering the higher demands for storage and arith-
metic by applications, the manufacturers integrate hard cores
in FPGAs to meet these demands and for higher integration,
such as BRAM for storage and DSP for arithmetic. The
prevail FPGA architecture is shown in Fig. 1, which is a
typical Xilinx FPGA.1

FIGURE 1. The architecture of FPGAs.

However, managing such a rich resource is not an trival
task. The function modules are always described in hardware
description language (HDL), e.g., VHDL and Verilog, which
are designed for circuits description, but not logic description.
A programmer has to transfer the arithmetic logic to the resis-
tor transistor logic, which is challenging for programmers
using high-level languages.

High-level synthesis (HLS) is an automated design pro-
cess that interprets an algorithmic description of a desired
behavior described in a high-level language such as Sys-
temC and C/C++ and then creates HDL of the behavior.

1https://www.xilinx.com/products/silicon-devices/fpga.html

A designer typically describes the behaviors and the inter-
connect protocols; the high-level synthesis tools handle the
micro-architecture and transform untimed or partially timed
functional code into fully timed implementations. In recent
years, HLS is successful in accelerating algorithms with low
developing costs [39], [40].

B. GPUs
GPUs have recently become popular as general comput-
ing devices due to their massively parallel architecture and
improved accessibility provided by developing environments
such as the Nvidia CUDA framework.

A GPU consists of multiple identical instances of com-
putation units called Stream Multiprocessors (SMs). A SM
is the computing unit where parallel execution of a group
of threads, named thread blocks, happens. Each SM has
one (or more) unit to fetch instructions, multiple ALUs
(i.e., stream processors or CUDA cores) for parallel execu-
tion, a shared memory accessible by all threads in the SM,
and a large register file which contains private register sets
for each of the hardware threads. Each thread of a thread
block is processed on an ALU. Since ALUs are grouped
to share a single instruction unit, threads mapped on these
ALUs execute the same instruction in each cycle, but with
different data. Each logical group of threads sharing the same
instructions is called a warp. Moreover, threads belonging
to different warps can execute different instructions on the
same ALUs, but in a different time slot. Actually, ALUs are
time-shared between warps [41].

CUDA provides an accessible compiler and an API exten-
sion with familiar C-like constructs. In the programming
model of CUDA, a task on GPUs is a grid, which contains
blocks. A block is mapped to an SM on the GPUs, and con-
sists of multiple threads. A thread is the minimum processing
unit. A task accesses memory through a hierarchical structure
as shown in Fig. 2. Each thread has private local memory.
Each block has shared memory visible to all threads of the
block and with the same lifetime as the block. All threads
have to access the same global memory. Texture memory

FIGURE 2. The architecture of GPUs.

72330 VOLUME 6, 2018



D. Li et al.: General Framework for Accelerating SIAs on FPGAs, GPUs, and Multi-Core CPUs

and constant memory are read-only, and they are cached
for fast access. Different memories are quite different on
bandwidth. Local memory and global memory are off-chip
DRAM connecting to GPUs via GDDR5. Shared memory is
essentially a block of programmable on-chip L1 cache with
limited capacity. In order to improve the bandwidth of reading
and writing, the share memory is divided into 32 blocks,
named banks. A bank conflict will occur if multiple threads
access different addresses of the same bank at the same time.
The memory traffic must be carefully tuned to exploit the full
bandwidth from all memory controllers.

C. MULTI-CORE CPUs
Amulti-core processor is a single computing component with
two or more independent processing units called cores, which
read and execute program instructions. The instructions are
ordinary CPU instructions (such as add, data movement, and
branch), but a single processor can run multiple instructions
on separate cores at the same time (Multi-threading), thus
increasing the overall speed for programs amenable to par-
allel computing [42].

OpenMP [43] is an implementation of multithreading,
a method of parallelizing whereby a master thread forks
a specified number of slave threads. The threads then run
concurrently, with the runtime environment allocating threads
to different processors. The communication between threads
is completed by accessing share memory, which should be
proceeded carefully to increase the throughput.

IV. SWARM INTELLIGENCE ALGORITHMS (SIAs)
AND DATAFLOW ANALYSIS
This section presents an overview and a dataflow analysis
of SIAs through taking the quantum-behaved particle swarm
optimization algorithm as a case.

A. AN OVERVIEW OF SWARM INTELLIGENCE
ALGORITHMS
The most respected and popular SIAs are particle swarm
optimization (PSO), ant colony optimization (ACO), and etc.
PSO is widely used for real value parameter optimization
while ACO has been successfully applied to solve combina-
torial optimization problems. As described in [8], although
there are differences in details among SIAs, most of the
SIAs follow the same computational framework and common
features in the dataflow as shown in the left of Fig. 3, which
makes it possible to provide a general acceleration frame-
work.

B. PARTICLE SWARM OPTIMIZATION AND
QUANTUM-BEHAVED PARTICLE
SWARM OPTIMIZATION
PSO, originally proposed by Eberhart and Kennedy
in 1995 [4], is one of the classic SIAs. It is motivated by
the behavior of organisms such as fish schooling and bird
flocking. In PSO, each particle corresponding to an individual
of the population is a candidate solution to the problem.

FIGURE 3. The rescheduled dataflow of QPSO.

The particles fly in a multi-dimensional search space to find
an optimal or sub-optimal solution by competition as well as
by cooperation among them. In terms of classical mechanism,
a particle is depicted by its position vector Ex and velocity
vector Ev , which determine the trajectory of the particle. The
particle moves along a determined trajectory in Newtonian
mechanics. The update equations in the classic PSO are
shown as follow:{
Evi← Evi + EU (0, φ1)

⊗
(Epi − Exi)+ EU (0, φ2)

⊗
(Epg − Exi)

Exi← Exi + Evi,

(1)

where EU (0, φ1) represents a vector of random numbers uni-
formly distributed in [0, φ1] , and it is randomly generated
at each iteration and for each particle.

⊗
is component-wise

multiplication; Epi is the best ever position of particle i; and Epg
is the global best ever position of all the particles.

PSO has undergone many modifications for better per-
formance or solution of more specific problems since its
introduction. In this research, we take the representative
Quantum Behaved Particle Swarm Optimization (QPSO)
algorithm [17], [18] as the instance of our algorithm acceler-
ation framework. QPSO replaces the trajectory in Newtonian
mechanics with the quantum mechanics. In the quantum
world, the Ex and Ev of a particle cannot be determined
simultaneously according to uncertainty principle, which
lead to a better global convergence of the QPSO algo-
rithm. The updating equations of QPSO are shown as
follow:{
Epi← EU1(0, φ)

⊗
Epi + (1− EU1(0, φ))

⊗
Epg

Exi← Epi ± Eβ
⊗
|
−−−→
mbesti − Exi|

⊗
ln(1/ EU2(0, φ)),

(2)

where EU1(0, φ) and EU2(0, φ) represent the vectors of random
numbers uniformly distributed in [0, φ] ,which is randomly
generated at each iteration and for each particle.

⊗
is com-

ponentwise multiplication. Epi is the best ever position of
particle i. Epg is the global best ever position of all the par-
ticles.

−−−→
mbesti is defined as the mean of the Epi positions of all

particles. β is related to the times of iteration and calculated

VOLUME 6, 2018 72331



D. Li et al.: General Framework for Accelerating SIAs on FPGAs, GPUs, and Multi-Core CPUs

by β = (1.0 − 0.5) · (T − t)/T + 0.5, where T is the total
iteration times of the algorithm, and t is the iterating count of
the current iteration.

QPSO is one of the most efficient versions of PSO, and
it keeps the same algorithm framework as the original PSO
in [4]. The convergence of QPSO contains two parts:

−−−→
mbesti,

which is implemented by accumulations, and Epg, which is
implemented by comparisons. The accumulations are the typ-
ical criterion for the memory access performance of a parallel
program containing convergence [41]. Therefore, we take
QPSO as an use case in our experiments.

C. PARALLEL AND DATAFLOW ANALYSIS
In order to improve the performance of the intensive compu-
tation of SIAs, parallel computation can be used.

1) PARALLELISING QPSO
A parallel analysis is necessary before designing a high per-
formance parallel implementation of SIAs. The pseudocode
of QPSO is shown in Algorithm 1. There are three stages in
QPSO. Stage 1: line 7 ∼ 15, the positions of all particles
are update separately; Stage 2: line 5, each particle evaluates
its fitness in the new position by the fitness function, and
compares the new fitness value with its best ever fitness
value for the better fitted position of this iteration; Stage 3:
line 6, all the particles compete for the global best posi-
tion at this iteration, and this is called global information
sharing. All the data and computations in Stage 1 are inde-
pendent, which makes Stage 1 suitable for parallelization.
In Stage 2, all the particles calculate their fitness values
with the same fitness function, but there are no dependencies
between the executions of the fitness function. Therefore,
Stage 2 can also be parallelized. Stage 3 is the conver-
gence of QPSO which could be optimized but not fully
parallelisable.

Algorithm 1 QPSO Algorithm
1: for t = 1 to Maximum Iteration D do
2: Compute the mean best position mbest;
3: β = (1.0− 0.5) · (T − t)/T + 0.5;
4: for i = 1 to population size M do
5: if if (xi) < f (pi) then pi = xi ; end if
6: pg = min(pi);
7: for j = 0 to dimension D do
8: φ = rand(0,1); u = rand(0,1);
9: pij = φ · pij + (1− φ) · pgj;

10: if rand(0,1)> 0.5 then
11: xij = pij + β · abs(mbestj − xij) · log(1/2);
12: else
13: xij = pij − β · abs(mbestj − xij) · log(1/2);
14: end if
15: end for
16: end for
17: end for

2) DATAFLOW ANALYSIS
In addition to parallelization, all data need to be read andwrit-
ten through the memories (registers, caches, RAMs) when
QPSO is operated on processors. The efficiency of the mem-
ory access greatly affects the performance of the algorithms.
We can improve the performance of the algorithms by a
well-designed dataflow of the algorithms that takes account
of the architectures of the memories.

We propose a rescheduled dataflow of QPSO as shown
in Fig. 3. The left part of Fig. 3 is the dataflow of Algorithm 1,
and the sections in the grey box will be iteratively excuted
until the termination criterion is met. Stage 3 could be the bot-
tleneck of the memory access because all the particles have
to compare the fitness values generated from Stage 2 with
that of the global best. The comparisons are serial, and the
memory unit where the global best position stored will be
accessed as many times as the number of particles. If the
size of a swarm is large, the efficiency of Stage 3 will be
very low. The right part of Fig. 3 is the rescheduled dataflow,
which puts Stage 1 at the beginning, and is followed by
Stage 2 and Stage 3 successively. S1 is processed in parallel,
and the updated dimensions belonging to the same particle
are transferred to the corresponding fitness evaluation unit in
S2; the new fitness values from S2 will be received by the
communication unit in S3. The rescheduled dataflow is con-
vergent, and suitable for improving memory access through
optimizations based on the memory architecture of specific
processors.

V. DESIGN AND IMPLEMENTATION OF FASI
This section presents the design and implementation of FASI.
We first propose the baseline framework of FASI, then we
implement FASI on FPGAs, GPUs and multi-core CPUs
systems respectively. We also provide a deep optimization
of FASI according to the architectures of the hardware plat-
forms, which could provide some insights for the future work.

A. BASELINE FRAMEWORK OF FASI
The previous studies on accelerating SIAs in the literature
mainly focus on the parallelization of the algorithms that
they implements the algorithms according to the data inde-
pendence, and thus they do not pay enough attention to the
architecture of specific platforms. These implementations
have either a limited parallel scale and throughput [19] due
to the low utilization of hardware resource or large data
transmission delay caused by using the memory architecture
inadequately [28], or low overall performance because of the
frequent data exchange between RAM and cache [8].

In order to achieve better accelerating performance of SIAs
and optimize the implementation of the algorithm by focusing
on the architecture of specific platforms, we propose FASI.
FASI is a general framework for accelerating SIAs on FPGAs,
GPUs and multi-core CPUs, and it has the following features:

1) FASI provides a unified programming interface
(map_x and reduce_x) and algorithm framework which
could be compiled on different hardware platforms.

72332 VOLUME 6, 2018



D. Li et al.: General Framework for Accelerating SIAs on FPGAs, GPUs, and Multi-Core CPUs

2) FASI adjusts the degree of concurrency through the
tuning knobs to match the ability of the specific hard-
ware platforms.

3) FASI is implemented in C++ language, and takes
floating point as the data type for the portability across
hardware platforms.

4) FASI reschedules the dataflow of SIAs for optimizing
memory access.

5) FASI optimizes the parallelism of SIAs and the utiliza-
tion of hardware based on the ability of the concurrent
cores and the architecture of memories of the specific
platforms.

Algorithm 2 Baseline Framework of FASI
1: for t = 1 to Maximum Iteration IT do
2: for g = 1 to Group Number of Dimensions GD do
3: for d = 1 to Dimension Number D do
4: execute map_dimension();
5: end for
6: end for
7: for g = 1 to Group Number of Individuals GI do
8: for i = 1 to Individual Number I do
9: execute map_particle();
10: end for
11: for c = 1 to Combination Number CN do
12: execute combine_group();
13: end for
14: end for
15: for r = 1 to Reduce Number R do
16: execute reduce_group();
17: end for
18: execute reduce_global();
19: end for

The pseudocode of the baseline framework of FASI is
shown in Algorithm 2. There are five user defined inter-
faces: map_dimension(), map_particle(), combine_group(),
reduce_group() and reduce_global(). The implementation
of the interfaces should be completed specifically by the
designer based on the ability and features of particu-
lar hardware platforms. Each instance of map_dimension()
is in charge of one paralleled update of dimension,
i.e., Stage 1 described in Algorithm 1. map_dimension()
has high concurrency and low computation intensity. Each
instance of map_particle() is in charge of one paralleled
fitness evaluation, i.e., Stage 2 described in Algorithm 1. The
map_particle() has less concurrency than map_dimension()
but it may be more computationally intensive because
of the possible complexity of fitness functions. The
combine_group() function combines a group of concur-
rent particles evaluated by map_particle(). A well designed
combine_group() could decrease the access frequency of
global memory through computing the intermediate global
best position of the group of particles it belongs to.
reduce_group() and reduce_global() construct a two-level
convergence, and they are in charge of Stage 3 of Algorithm 1.

reduce_group() is the level 1 convergence, which improves
the utilization of cache through calculating the intermediate
global best position generated by the combine_group() in
groups if the size of the cache of the computation platform
is small; reduce_global() is the level 2 convergence, which
calculates the final global best position.

There are seven tuning knobs for the concurrency of the
interfaces, i.e., IT , GD, D, GI , I , CN and R. IT is the
times of iteration. D is the number of paralleled dimension
simultaneously, and the maximum value of D is determined
by the value of C1, the number of concurrent cores that could
execute dimension update. Normally, D = C1. GD is the
group number that finishes all the dimension update. The
relationship between GD and D is as follow:

GD =
individuals× dimensions per individual

D
(3)

I is the number of the paralleled particles simultane-
ously, and the maximum value of I is determined by C2
which is the number of concurrent cores that could execute
fitness calculation. Normally, I = C2, and C2 = C1
while on CPUs and GPUs since dimension updating and
fitness calculation are executed in the same core. However,
C2 < C1 while on FPGAs, for the implementations of
C1 and C2 cost resources on chip respectively. GI =
number of individuals/I , which is the group number that
finishes the computation of all the fitness value. CN is the
number of iteration of combine_group, while R is the parallel
number of reduce_group().CN will be kept at 1, andRwill be
kept at 0 if the hardware platform on which FASI is deployed
has enough cache.

Wewill introduce the principles of customizingmap_x and
reduce_x and the rules of choosing the values of the tuning
knobs in the following sections while deploying FASI on
different hardware platforms. All the implementations take
QPSO as the example.

B. FASI ON FPGAs
FPGAs offer the most flexible architecture for the hardware,
including gate level parallel, variable memory bandwidth
and all programmable memories without hierarchical struc-
ture. The advantage of FPGAs should be better explored
through the combination of high concurrency and vari-
able deep pipeline, which could achieve higher through-
put when the pipeline is full. There will not be enough
speedup if we only implement a paralleled structure of the
algorithm.

1) OPTIMIZED BASELINE FRAMEWORK OF FASI ON FPGAs
We optimize the baseline framework of FASI on FPGAs
by setting the tuning knob CN to 1 and R to 0. The
reduce_global() is moved to right after combine_group(),
as shown in Algorithm 3. #pragma is the pre-compilation
directive of Xilinx HLS. PIPELINE indicates to implement
a for-loop with pipeline structures, and UNROLL indicates
to implement a for-loop with parallel structures.

VOLUME 6, 2018 72333



D. Li et al.: General Framework for Accelerating SIAs on FPGAs, GPUs, and Multi-Core CPUs

Algorithm 3 Optimized Framework of FASI on FPGAs
1: for t = 1 to Maximum Iteration IT do
2: #pragma HLS PIPELINE
3: for g = 1 to Group Number of Dimensions GD do
4: #pragma HLS UNROLL
5: for d = 1 to Dimension Number D do
6: execute map_dimension();
7: end for
8: end for
9: for g = 1 to Group Number of Individuals GI do
10: #pragma HLS UNROLL
11: for i = 1 to Individual Number I do
12: execute map_particle();
13: end for
14: execute combine_group();
15: execute reduce_global();
16: end for
17: end for
18: execute reduce_tree();

2) FULL PIPELINED FASI ON FPGAs
The reduce_global() is for calculating the global best val-
ues (mbest and Pg of QPSO), and has to communicate
with all of the map_particle() functions. If it is imple-
mented on processors with hierarchical memories, such as
GPUs and multi-core CPUs, the global best values should be
stored in the global memory for the communications among
threads, and barriers will be set before reductions or com-
binations for the synchronization of data of the threads. All
of these will lead to a latency of the program. However,
benefited from the flexible memory architecture of FPGAs,
the communications and the synchronization on FPGAs
could be better controlled without global memory access
and the barriers because the dataflow of the program will
be mapped to dedicated circuit connections, and the global
best values could be stored in FFs. Therefore, we propose
a full pipelined FASI on FPGAs, where the reductions and
combinations are also pipelined together with the threads.
As shown in Fig. 4, map_dimension(), map_particle(),

FIGURE 4. The full pipelined FASI on FPGAs.

combiner(), and reducer_global() are located in dimension
map, particle map, combine, and reduce stages respectively,
and the reduce_global() could be pipelined together with
map_dimension() and map_particle() for higher throughput.

3) SIMD
The map_dimension() functions are implemented in SIMD
mode; the number of paralleled map_dimension() is the
value of C1. Each map_dimension() stores the dimension
data to be processed in a block of BRAM with FIFO
mode. All the map_dimension() functions read dimension
data in the same clock period. There are fixed connec-
tions between map_dimension() and map_particle() accord-
ing to the relationship between dimensions and particles. The
map_particle() functions work in SIMD, too.

Different from GPUs and CPUs, there are no fixed pro-
cessing cores in FPGAs. Therefore, the numbers of paralleled
map_dimension() and map_particle() are not limited by the
number of processing cores, but limited by the bottleneck
resource for the algorithm is accelerated, such as BRAMs,
FFs, LUTs or DSPs.We use the following expression to deter-
mine the numbers of paralleled map_dimension(), i.e., the
value of C1.

C1 = max{CBRAM ,CFF ,CLUT ,CDPS}, (4)

where CBRAM is calculated by the following expression:

CBRAM = QBRAM/NBRAM , (5)

QBRAM is the quantity of BRAMs of dedicated FPGA
chip; NBRAM is the number of BRAMs occupied by a
map_dimension().

Due to the different strategies that HLS translates C code to
HDL code, we get the values of CFF , CLUT , and CDPS , from
the synthesis report of HLS tools. All the particle data are
stored in BRAMs, and other intermediate values are stored
in FFs, which we could find an explicit expression for the
usage of BRAMs. However, the LUTs, DSPs, and FFs are
used for arithmetic calculations, and the combination for a
dedicated operation of them is accomplished by theHLS tools
automatically. LUTs will also be used as routing resource for
decreasing the fan-out of some central elements, and the ratio
of LUTs usage should be obtained from the synthesis report
of HLS tools.
map_particle() is mainly for fitness value calculation,

which is a computationally intensive part of QPSO. As men-
tioned above, we cannot provide an explicit expression for
the number of paralleled map_particle() functions, i.e., the
value of C2.
However, there is a relationship between C1 and C2: a big

value of C1 will lead to a big value of C2. A bigger C2 will
lead to a sharp increase in the usage of the resource, which
may extend the resource of a FPGA chip. So, the basic strat-
egy is that a bigger C1 could be taken when the complexity
of fitness function is lower, and a smaller C1 should be taken
otherwise.

72334 VOLUME 6, 2018



D. Li et al.: General Framework for Accelerating SIAs on FPGAs, GPUs, and Multi-Core CPUs

4) FULL PIPELINE WITH 1 CLOCK INITIATION INTERVAL
Not only full pipelined, FASI is also a perfect 1 clock Initia-
tion Interval pipeline, as shown in Fig. 4. Initiation Interval is
defined as the number of clocks before the pipeline can accept
new input data. In a pipelined structure, the value of Initiation
Interval will affect the latency of the pipeline, i.e., the running
time of the algorithm. The perfect 1 clock Initiation Interval
requires the data being processed in 1 clock in each step of the
pipeline. This could be achieved through increasing the depth
of the pipeline and modifying the workload of each step, for
instance, refining a float-point addition into multiple steps.
However, only increasing the depth is not enough for QPSO
because of the global information sharing in reduce_global().
As shown in lower part of Fig. 4, a group of dimension data
in BRAMs will be read bymap_dimension() every clock, and
also the global best values of this paralleled group (PGPg and
mbestGP of QPSO) will be generated by combine_group()
every clock, which is a typical pipeline process. Finally,
reduce_global() calculates the PGPg and mbestGP with the
PGPg and mbestGP of the previous iteration for the new global
best values of this iteration (Pg and mbest). The calcula-
tions in reduce_global() include floating-point comparation
and addition which have to be finished in multiple clocks.
Refining the floating-point comparation and addition into
multiple steps to realize a 1 clock Initiation Interval pipeline
is invalid in reduce_global(), because the new coming PGPg
and mbestGP cannot communicate with Pg and mbest until
the previous floating-point operations are completed, and this
is called carried dependency.

FIGURE 5. The pipeline buffer for 1 clock initiation interval.

In order to construct a full 1 clock Initiation Interval
pipeline of FASI for accelerating QPSO, we design pipeline
buffers for Pg and mbest respectively in reduce_global() as
shown in Fig. 5. The size of the buffer NPB could be obtained
according to NPB = Nc, where Nc is the clock number of
a floating-point comparation or addition which is variable
according to the frequency of FPGAs and should be obtained
from HLS tools.

A pipeline buffer works as a circular queue by one tempo-
rary global best value (PTg or mbestT ) in each of its elements.
The new coming PGPg or mbestGP of every clock chooses
PTg or mbestT from the tail of the queue for calculation, and
the newly generated PTg or mbestT will be put back where it

comes from. The tail pointer of the queue increase, and the
next new coming PGPg or mbestGP will communicate with
the next value in the queue. After Nc times of calculation,
the tail pointer goes back to the head of the queue, and the
calculation between PGPg or mbestGP and the head element
has just completed. In this way, a full 1 clock Initiation
Interval pipeline is constructed. At the end of each iteration,
a reduce_tree() calculates all the values in the queue for Pg
and mbest by an adding tree or a comparing tree.

5) BRAM BANDWIDTH
BRAMs provide a large capacity and discrete distribution but
with limited bandwidth per block. If a higher bandwidth is
required, the designer may take a lot of effort for assembling
the BRAMs to fit the algorithms. In FASI, we designed
a pattern of assembling BRAMs to meet the bandwidth
requirement of SIMD as shown in Fig. 6. There are D paral-
leled BRAM vectors with GD depth per vector. Each vector
belongs to a map_dimension(), and could be multiple serial
BRAMs if the depth of one block is less than GD. According
to this pattern, the bandwidth of BRAMs can be calculated
by the following equation:

Bandwith = D× wordwidth, (6)

FIGURE 6. The BRAMs pattern.

6) TRADE-OFF OF FASI ON FPGAs
SIMD vs Micro − core. A micro-core structure for func-
tion units, such as map_dimension() and map_particle(), has
better integration and portability performance on FPGAs,
which has been used by most of the previous work. How-
ever, the Initiation Interval of the pipeline will be increased
because of the I/O communication overheads among mico-
cores. And also, the micro-cores will be treated as atomic by
HLS and cannot be refined into multiple steps if not well-
designed. Finally, we choose SIMD structure for implement-
ing map_dimension() and map_particle() functions.
BRAMs vs FFs. FFs provides flexible storage structure,

larger bandwidth, but limited capacity, and BRAMs have
larger capacity with limited bandwidth. Finally, we choose
BRAMs for storing the particles and break the bandwidth
limitation of BRAMs by an elaborated pattern of assembling
BRAMs, which fits BRAMs for the SIMD so that FASI could
handle larger scale of particles than before.
SavingResource vs Convergence. There are log functions

in QPSO. The implementation of log functions on FPGAs

VOLUME 6, 2018 72335



D. Li et al.: General Framework for Accelerating SIAs on FPGAs, GPUs, and Multi-Core CPUs

will costs many resources, and they become an obstacle for
deploying scalable QPSO on FPGAs. We replace the log
function with a lookup table of 256 log values, which will
slower the convergence of QPSO but save a lot of resources.

C. FASI ON GPUs
GPUs provide a many-core processor and hierarchical RAM
architecture managed by CUDA. CUDA maps the parallel
parts of the algorithms to kernel functions. Each kernel func-
tion is implemented as a grid on GPUs, while a grid contains
multiple blocks, and a block contains multiple threads. Each
thread is a processing core of the GPUs. The communica-
tion between threads of the same block is achieved through
shared memory, and both the communications between grids
and between blocks are achieved through global memory.
An optimized program of GPUs should minimize the global
memory access.

1) OPTIMIZED BASELINE FRAMEWORK OF FASI ON GPUs
We optimize the baseline framework of FASI by setting the
tuning knobs GD, D, CN , and R to be 0 and by moving the
dimension update and combination into map_particle() as
shown in Algorithm 4. Following the CUDA coding standard,
we describe map_particle() and reduce_global() as kernel
functions which will be explained later.

Algorithm 4 Optimized Framework of FASI on GPUs
1: for t = 1 to Maximum Iteration IT do
2: execute map_particle< < < GI, I > > >();
3: execute reduce_global< < < 1, GI > > >();
4: end for

2) PARALLEL STRUCTURE OF FASI ON GPUs
We propose a paralleled structure of FASI on GPUs as shown
in Fig. 7. map_particle() and reduce_global() are mapped
to kernel functions which are executed in parallel on GPUs.
map_particle() is implemented by GI blocks, and each block
contains I threads. Each thread is in charge of the position
update and fitness evaluation of one particle. reduce_global()
is implemented in 1 block andGI threads, and it is responsible
for calculating the global best value.

3) BLOCK AND THREAD CONFIGURATION
There are three constrains of limitations for choosing the val-
ues ofGI and I : The Compute Capability (CC) of GPUs (C1);
the requirements of share memory, registers, and warps of a
block (C2); the feature of the algorithm (C3).
The solutions of C1 and C2 are provided by the manual of

GPUs and CUDA tool, and C3 should be resolved according
to the scale of the algorithms. For QPSO, the last constraint
is described by the following two expressions:

NB × NT ≤ Np, (7)

NT = 2x , (8)

FIGURE 7. The parallel structure of FASI on GPUs.

where NB is the number of blocks, NT is the number
of threads, and Np is the number of particles. The first
expression ensures no idle threads, and the second one
provides a high efficiency in the reduce_global() kernel
function. And the final values of blocks and threads are
determined by:

VB,T = min(L1,L2,L3), (9)

4) DATA STORAGE AND COMMUNICATIONS
In order to decrease the global memory access and improve
the communication efficiency among threads, we deeply opti-
mize the implementation of FASI on GPUs. All the parti-
cle data are stored in the global memory and divided into
mb groups, just the same value as the number of blocks
of map_particle(). Each thread of map_particle() reads the
particle data from the global memory, updates the data and
calculates the fitness value. After that, the threads rewrite the
new particle data into the global memory and store the fitness
values into the share memory. Before the reduction in the
block, we use a CUDA system call function __syncthreads()
to synchronize the threads. Then, all the threads belonging to
the same block share the fitness values to calculate the block
best values through a reduction process. At the end, the block
best values of all the blocks are written into the global mem-
ory for calculating the global best values in reduce_global().
reduce_global() communicates with map_particle() through
the global memory. It reads all the block best values into the
share memory and calculates the global best values through
a reducing process. In this way, only the limited block best
values are shared between blocks, which can save the global
memory bandwidth and shorten the runtime of the whole
program.

72336 VOLUME 6, 2018



D. Li et al.: General Framework for Accelerating SIAs on FPGAs, GPUs, and Multi-Core CPUs

5) LOW SEQUENTIAL ID THREAD REDUCTION
To deeply optimize the reduction process according to the
architecture of GPUs, we propose Low Sequential ID Thread
Reduction (LSITR) in reduce_global() as shown in Fig. 7.
All the block best values generated from map_particle() are
first moved into the share memory of the block, which can
speed up the data reading and writing in the later opera-
tions. Each thread of reduce_global() can obtain the block
best values from the corresponding share memory bank. The
reduction processes are performed iteratively. Every reduc-
tion process is executed in the first half of all the current
threads (the threads with low sequential IDs). This brings two
benefits: first, all the operating threads locate in the same
warp, which improves the occupancy of warps to decrease
the thread latency; secondly, the threads access the share
memory sequentially, which prevents the bank conflict so
that the runtime of reduce_global() can be shortened and the
performance of the whole program will be improved. Finally,
the global best values are obtained in Thread 0.

D. FASI ON MULTI-CORE CPUs
Multi-core CPUs arewell managed byOpenMP. Each proces-
sor of the multi-core CPUs is equipped with the local cache.
It is much faster a processor accesses its own local cache
rather than accesses the main memory or the cache of other
processors. An optimized design of multi-core CPUs should
utilize the local cache efficiently.

1) OPTIMIZED BASELINE FRAMEWORK OF FASI
We optimized the baseline framework of FASI by set-
ting the tuning knob GD, D, and R as 0, setting tuning
knob CN as 1, and moving the dimension updating into
map_particle(), which is shown as Algorithm 5. #pragma
is the pre-compilation directive in OpenMP. Nt indicates the
number of parallel threads.Moving the dimension update into
map_particle() enables the threads to load more dimension
data to the cache, which could increase the cache hit rate.

Algorithm 5 Optimized Framework of FASI on Multi-Core
CPUs
1: for t = 1 to Maximum Iteration IT do
2: #pragma omp parallel num_threads(Nt )
3: for g = 1 to Group Number of Individuals GI do
4: for i = 1 to Individual Number I do
5: execute map_particle();
6: end for
7: #pragma omp critical
8: execute combine_group();
9: end for

10: execute reduce_global();
11: end for

2) PARALLEL STRUCTURE OF FASI ON MULTI-CORE CPUs
We propose a paralleled structure of FASI on multi-core
CPUs as shown in Fig.8. Each thread is in charge of 1/n part

FIGURE 8. The parallel structure of FASI on multi-core CPUs.

of the particles, where n is the number of processors. The
group best values of the particles of a thread are calculated
by the combine_group(), and then stored in the sharememory.
In this way, there are only n values that need to be read from
the share memory for the reduce_global(). The Barrier keeps
the synchronization between threads before reduce_global().
For the validity of the global best value, the reduce_global()
has to be executed in a critical region in the main thread. The
critical region guarantees the data to be read and calculated
in sequence.

In conclusion, the heavy workload of each thread could
improve the cache hit rate, and the group best values could
decrease the share memory access, which helps us provide
an optimized FASI on multi-core CPUs.

E. A COMPARISON BETWEEN THE IMPLEMENTATIONS
WITH AND WITHOUT DATAFLOW RESCHEDULING
We compare the difference between the implementations with
and without dataflow rescheduling on each of the hardware
platforms separately.

1) THE COMPARISON OF IMPLEMENTATIONS
OF FASI ON FPGAs
The most efficient part of FASI on FPGAs is the full pipeline
with 1 clock initiation interval as discussed in Section V-B.4.
To construct a pipeline structure for an algorithm, it is better
to set the dataflow of the algorithm as a set of continuous for-
ward operationswithout breaks from the beginning to the end.
Before the rescheduling as shown in the left part of Fig. 3,
the communication locates in the middle of the dataflow. The
global best values will be generated only when all the particle
data arrive. There is a break in the dataflow if implementing
the algorithmwith a pipeline.Without rescheduling, the algo-
rithm has to be implemented with two pipelines before and
after the communication. The efficiency of the whole imple-
mentation will be therefore decreased.

2) THE COMPARISON OF IMPLEMENTATIONS
OF FASI ON GPUs
The communication efficiency between blocks and threads
is very important for the performance of GPU programs,

VOLUME 6, 2018 72337



D. Li et al.: General Framework for Accelerating SIAs on FPGAs, GPUs, and Multi-Core CPUs

FIGURE 9. The memory access schedule of SIAs on GPUs.

which mainly depends on memory access. The memory
access schedule of SIAs on GPUs is shown in Fig. 9. Before
rescheduling, the dataflow is divided into three parts which
have to be implemented by three kernel functions because
of the communication among them. Therefore, there are
three times of global memory access in each iteration of the
algorithms. Benefited from the rescheduling, the ‘‘Update
Swarm’’ and the ‘‘Evaluate Fitness’’ is implemented in the
same kernel function, and one time global memory access
is saved. The performance of the whole program will be
improved.

3) THE COMPARISON OF IMPLEMENTATION
OF FASI ON MULTI-CORE CPUs
The memory access efficiency is very important for the per-
formance of GPUs programs. Each core of the multi-core
CPUs has its own cache, the communication among the
cores is implemented through the shared memory. As shown
in Fig. 10, before the rescheduling, there are three times of
shared memory access in each iteration of the algorithms.
However, there will be only twice shared memory access

FIGURE 10. The memory access schedule of SIAs on CPUs.

after rescheduling. Therefore, the runtime of the programwill
be shorter.

VI. EXPERIMENTS AND RESULTS
A. EVALUATION PLATFORMS
We evaluate the performance of FASI using the fol-
lowing devices: For the FPGA platform, we present
results for KCU105 (xcku040-ffva1156-2-e) evaluation
board (@400MHz) hosted by Intel Xeon E5-2660 with 8 GBs
of RAM and Xilinx Vivado 2017.2 tools. The FPGAs com-
municated with the host PC through a serial port. All the
results on FPGAs are obtained from physical KCU105 board.
For the GPUs platform, we use NVIDIAGeForce GTX 1080,
visual studio 2015 and CUDA 8.0. For the multi-core CPUs,
we use Intel Core i7-6700HQ (@2.6 GHz) with 8 threads.
We use 32GBs of RAMandOpenMP onUbuntu Linux16.04.
The -O3 optimization is used by the compiler on both
multi-core CPUs and GPUs.

We also implemented the baseline framework of FASI on
the Intel Core i7-6700HQ (@2.6 GHz) with one CPU core
and -O3 optimization activated.

A resource comparison is listed in Table 1.

TABLE 1. Resource comparison of plateforms.

We use eight benchmark functions for the evaluation of
fitness of QPSO as shown in Table 2.

In order to provide a universal comparison criterion for
the hardware platforms, and take the conclusion of [8] as a
reference, we used the particle scenarios as shown in Table 3
in our experiments. The Particles per Group are divided into
two sections ((f1, f2) and (f3-f8)) based on the complex-
ity of the bench mark functions. f3-f8 involves sin/cos/exp
which costs more resource on FPGAs to permit less parallel
particles. For exploring the differences among the memory
architectures, we set the biggest group number as 4000, which
could make all the particle data just stored in the BRAMs on
FPGA chips without data transmission between the BRAMs
and the RAMs out of the FPGA chip.

B. PERFORMANCE OF FASI ON FPGAs
1) RESOURCE UTILIZATION
From the resource utilization, we could find out whether
the resources of FPGAs are used effectively and where is

72338 VOLUME 6, 2018



D. Li et al.: General Framework for Accelerating SIAs on FPGAs, GPUs, and Multi-Core CPUs

TABLE 2. Benchmark function.

FIGURE 11. The resource occupation ratio of QPSO on FPGAs.

TABLE 3. Particle scenarios of experiments.

the resource bottleneck for the implementation of an algo-
rithm. A comparison of the percentage of required hardware
resources for the eight benchmark functions is illustrated
in Fig. 11. The utilization of BRAMs in each benchmark
function grows linearly with the increase of the number of
the groups. There is a maximum of 93% utilization in f 1
with 4,000 groups. Different from BRAMs, the other kinds
of resources used for arithmetic have a fixed percentage
of utilization in different groups, but change according to
the complexity of different benchmark functions. There is
a maximum of 81% utilization of DSP48E in f 3. We also

find that the BRAMs will be the bottleneck of the imple-
mentation when the complexity of the algorithms, mainly the
complexity of the benchmark functions in QPSO, is low; on
the other hand, the arithmetic resource (DSPs, LUTs) will
be the bottleneck when the complexity of the algorithms is
high. The implementation of the algorithm on FPGA will fail
if the resource is not enough for the complexity. This is one of
the most important rules which should be considered before
implementing an algorithm on FPGAs.

2) PERFORMANCE
The runtime of each benchmark function is shown in Fig. 12,
which also has a positive linear relationship with the number
of groups. As described in Section V-B.2, a pipeline struc-
ture was designed in FASI on FPGAs, and the particles are
divided into groups to flow into the pipeline group by group,
which leads to the growth of the run time. The algorithm
implemented by FPGAs will be synthesized to certain circuit
connections on the chip without operating system, resource
competition and so on. Therefore, there is a definite lin-
ear relationship between the runtime and the scale of the
algorithm.

VOLUME 6, 2018 72339



D. Li et al.: General Framework for Accelerating SIAs on FPGAs, GPUs, and Multi-Core CPUs

FIGURE 12. The run time of benchmark functions on FPGA.

TABLE 4. Pipeline depth of different benchmark function.

The depth of the pipeline of FASI on FPGAs is alterable
according to the complexity of the benchmark function as
shown in Table 4, where the maximum 260-level depth is
achieved on the Ackley benchmark function. The alterable
pipeline is another advantage of FPGAs comparedwith GPUs
and multi-core CPUs. However, a high performance pipeline,
such as 1 clock II in FASI, is very challenging for a designer.

The degree of parallelism is shown bellow:

P = N × D, (10)

where P denotes degree the of parallelism, N denotes the
number of particles per group, and D denotes the number of
dimensions per particle. Therefore, we got a 48 = 12 × 4

FIGURE 13. The run time of benchmark functions on GPUs.

degree of parallel on f 1 and f 2, and a 24 = 6 × 4 degree of
parallel on f 3 f 8, which is higher than multi-core CPUs.

There are performance improvements of FASI compared
with the work in [19]. FASI proposes a structure that com-
bines the variable deep pipeline and the parallelism, while
only parallel structure was implemented in [19]. Another
improvement of FASI is that the BRAMs are used for the
storage of the particles, but the particles are only stored in FFs
in [19]. Finally, FASI achieves a maximum of 290.7Mbit/s
throughput on benchmark function Sphere, where in [19] the
maximum value of throughput is only 22.2Kbit/s.

C. PERFORMANCE OF FASI ON GPUs
We use the Nsight2 tool for analyzing the performance of
FASI on GPUs, and Nsight is a commonly used CUDA
performance optimizing tool. For the comparison between
platforms, the runtime of FASI on GPUs only includes the
execution of the two kernel functions, but without data prepa-
ration time.

The occupancy of the kernel functions is shown in Table 5,
which means the activation ratio of the Warps of a streaming
multiprocessor (SM). According to the occupancy, we could
find that FASI is well optimized on GPUs.

2http://www.nvidia.com/object/nsight.html

72340 VOLUME 6, 2018



D. Li et al.: General Framework for Accelerating SIAs on FPGAs, GPUs, and Multi-Core CPUs

FIGURE 14. The run time and the cache hit ratio of benchmark functions on multi-core CPUs.

TABLE 5. Resource occupancy of kernel functions.

Considering the randomness of SIAs, we take the average
value of 10 trails of program execution as the runtime for
each benchmark function. The runtime of FASI on GPUs
is shown in Fig. 13. There is an overall trend that the run-
time increases with the increase of the size of the group.
However, the trend between two neighbor groups is not
as distinct as that of FPGAs. The increase in run time on
GPUs is mainly due to the warp switching among threads
and the data transmission among the shared memory and
the local memory. The times of warp switching are almost
the same in different group numbers because of the fixed
numbers of paralleled particles, as shown in Table 3. The
transmission latency between memories is small because of
the sufficient bandwidth of GPUs comparing to the band-
width required by the paralleled particles. Finally, the times
of warp switching dominates the latency of FASI on GPUs,
which leads to the increase of the run time as shown
in Fig. 13.

The work in [8] only implements a multiphase parallel
model onGPUs, which deploys communication (global infor-
mation sharing) on multi-core CPUs and the other two stages
of PSO on GPUs with twice the amount of data transmis-
sions between GPUs and multi-core CPUs in the multiphase

parallel model. Different from [8], FASI reschedules the
dataflow which optimizes the memory access between dif-
ferent types of memories of GPUs, and deploy all sections
of QPSO on GPUs. The data of particles are moved from
multi-core CPUs to GPUs at the beginning, calculated on
GPUs during the whole process, and transferred back to
multi-core CPUs at the end. FASI achieves a maximum
of 102.4Mbit/s throughput on benchmark function Sphere.
We cannot compare the throughputs between FASI and
the system in [8] due to the fact that only the speedup is
published in [8].

D. PERFORMANCE OF FASI ON MULTI-CORE CPUS
We use the Perf 3 tool for analyzing the performance of FASI
on multi-core CPUs, which is a commonly used performance
analysis tool on Linux. The run time is recorded by the system
call clock_gettime(), which can calculate the running time of
a thread. We take the average value of 10 times of program
execution as the runtime for each benchmark function. The
cache missing is recorded by Perf . The run time and cache
missing of FASI on multi-core CPUs are shown in Fig. 14.
Both the run time and cache missing increase in line with the
growth of the group, which demonstrates that our dataflow
rescheduling of QPSO is valid on the memory access. The
rescheduling decreases the cross access of memory; only
the increase in the size of the group dominates the increase
in cache missing and the RAM access. FASI on multi-core
CPUs achieves a maximum of 5.095Mbit/s throughput on
benchmark function Salomon.

3http://www.eclipse.org/linuxtools/projectPages/perf/

VOLUME 6, 2018 72341



D. Li et al.: General Framework for Accelerating SIAs on FPGAs, GPUs, and Multi-Core CPUs

E. SPEEDUP COMPARISON BETWEEN FPGAs,
GPUs AND MULTI-CORE CPUs
Based on the previous analysis, the maximum speedup of
FASI occurs on FPGAs, which is mainly attributed to the
following characteristics: 1) the efficiency of the dataflow
of SIAs could be improved by customized pipeline struc-
tures; 2) constructing pipeline structures is the superiority
of FPGAs; 3) the memory architecture of FPGAs is more
flexible than that of GPUs and multi-core CPUs.

We also compare the run time among FPGAs, GPUs and
multi-core CPUs. The speedup of FPGAs to multi-core CPUs
is shown in Fig. 15. The variation of the speedup is not
obvious between groups since FASI on FPGAs and FASI on
multi-core CPUs have the same run time increase trends as
the analysis in Section VI-B and Section VI-D.

FIGURE 15. The speedup of FPGAs to multi-core CPUs.

The speedup of FPGAs to GPUs is shown in Fig. 16. The
value of speedup decreases as the number of groups increases
since the run time of FASI onGPUs did not increase as rapidly
as the run time on FPGAs as discussed in VI-C. We can
conclude that FASI will achieve better speedup on GPUs as
the number of particle increases, and FASI on FPGAs can
reach better speedup with a small number of particles in the
group.

The speedup of GPUs to multi-core CPUs is shown
in Fig. 17. As the number of particle increases, the GPUs
achieves better speedup.

VII. DISCUSSIONS AND CONCLUSIONS
FASI is a general acceleration framework for SIAs based
on the uniform dataflow of the algorithms. Most of the
SIAs has the same update and fitness evaluation progresses
but different communication models. FASI separates these
three stages into dedicated modules for further optimizations.
The communication will be the throughput bottleneck of
parallelizing SIAs due to the heavy data transmission and
the hierarchal memory architectures of the hardware plat-
forms. FASI reschedules the dataflow of SIAs to decrease
the data transmission between different memory hierarchies,
which improves the overall throughput. Because of the dis-
tributed memory architecture and the customized deep vari-
able pipeline of FPAGs, FASI on FPGAs achieves better
throughput.

FIGURE 16. The speedup of FPGAs to GPUs.

FIGURE 17. The speedup of GPUs to multi-core CPUs.

Another improvement of FASI compared to the previous
studies is that FASI does not parallelize all the particles at
the same time, and instead, it divides the paralleled particles
into groups by considering both the number of parallel cores
of the processors and the efficiency of the memory access.
There could be a tradeoff between the parallelization and
the bandwidth of the memory; a better acceleration for the
algorithms should achieve a larger overall throughput.

Benefited from HLS, FASI can be implemented in C++
language and portable across hardware platforms. FASI offers
open interfaces, e.g. map_x, combine_x, and reduce_x, and
tuning knobs. A designer could adapt a particular SIA into
the baseline framework of FASI first, then customize the
structure of FASI by setting the values of tuning knobs and
making appropriate modifications of the code based on the
characteristics of the hardware platforms.

The different characteristics of hardware platforms incur
varying cost for customizing the structure of FASI for better
performance. In this research, we take QPSO as the case,
which contains typical operations of the parallel computa-
tion, and QPSO achieves the highest speedup on FPGAs,
followed by the speedup on GPUs, and the lowest speedup on
muli-core CPUs. However, QPSO on FPGAs also costs our
longest time for structure design and optimization, especially
the reduce_x function, which is the biggest obstacle of 1 clock
II pipeline. On GPUs, the design of LNTR takes up most of
the time when implementing FASI, which needs a designer to
be very experienced on the architecture of GPUs. On multi-
core CPUs, the customization costs least, but it achieves the

72342 VOLUME 6, 2018



D. Li et al.: General Framework for Accelerating SIAs on FPGAs, GPUs, and Multi-Core CPUs

lowest speedup. The efficiency of the reduce_x functions
becomes the bottleneck of the whole workflow. According to
the experimental results, FPGAs achieves the higher speedup
while the size of the swarm is small, and the speedup of
FPGAs to GPUs will decrease with the increase of the size
of a swarm. We suggest that the designers deploy FASI on
FPGAs while there are high performance requirement and
sufficient time for designing the algorithm.

As described in [8], although there are differences in
details among SIAs, most of them follow the same com-
putational framework and common features in the dataflow.
FASI constructs a general framework for SIAs based on the
dataflow, which makes FASI work well for most of the SIAs.
Furthermore, FASI optimizes the dataflow for the hardware
platforms, which could achieve better speedup compared to
the systems in [8] and [19].

The computation intensity of SIAs locates in the bench-
mark functions, and the benchmark funcions adopted in SIAs
are almost the same ones among SIAs. Therefore, the main
work that implements FASI for different SIAs is the imple-
mentation and optimization of the reduce_x functions due
to the different communication strategies of SIAs, which
still has to be completed specifically by the designer for a
particular SIA in FASI at the moment.

In the future, we will further investigate and summarize
different communication strategies of SIAs and provide com-
mon frameworks in the reduce_x functions for the SIAs with
the same communication strategy so that we can further refine
and improve FASI.

REFERENCES
[1] R. C. Eberhart, Y. Shi, and J. Kennedy, Swarm Intelligence. San Francisco,

CA, USA: Morgan Kaufmann, 2001.
[2] Y. Tan, Fireworks Algorithm: A Novel Swarm Intelligence Method. Berlin,

Germany: Springer, 2015.
[3] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence.

Hoboken, NJ, USA: Wiley, 2005.
[4] R. Eberchart and J. Kennedy, ‘‘Particle swarm optimization,’’ in Proc.

IEEE Int. Conf. Neural Netw., Perth, WA, Australia, Nov./Dec. 1995,
pp. 1942–1948.

[5] D. Bratton and J. Kennedy, ‘‘Defining a standard for particle swarm
optimization,’’ in Proc. IEEE Swarm Intell. Symp. (SIS), Apr. 2007,
pp. 120–127.

[6] M. Dorigo and L. M. Gambardella, ‘‘Ant colony system: A cooperative
learning approach to the traveling salesman problem,’’ IEEE Trans. Evol.
Comput., vol. 1, no. 1, pp. 53–66, Apr. 1997.

[7] M. Dorigo and C. Blum, ‘‘Ant colony optimization theory: A survey,’’
Theor. Comput. Sci., vol. 344, nos. 2–3, pp. 243–278, 2005.

[8] Y. Tan and K. Ding, ‘‘A survey on GPU-based implementation of
swarm intelligence algorithms,’’ IEEE Trans. Cybern., vol. 46, no. 9,
pp. 2028–2041, Sep. 2016.

[9] P. S.Mann and S. Singh, ‘‘Energy-efficient hierarchical routing for wireless
sensor networks: A swarm intelligence approach,’’ Wireless Pers. Com-
mun., vol. 92, no. 2, pp. 785–805, 2017.

[10] N. Srivastava and P. Raghav, ‘‘A review on swarm intelligence based
routing algorithms in mobile adhoc network,’’ in Proc. 8th Int. Conf.
Comput., Commun. Netw. Technol. (ICCCNT), Jul. 2017, pp. 1–7.

[11] W. Wang, S. Wu, and K. Lu, ‘‘Duck pack algorithm—A new swarm
intelligence algorithm for route planning based on imprinting behav-
ior,’’ in Proc. 29th Chin. Control Decis. Conf. (CCDC), May 2017,
pp. 2392–2396.

[12] G. Li, Q. Liu, Y. Yang, F. Zhao, Y. Zhou, and C. Guo, ‘‘An improved differ-
ential evolution based artificial fish swarm algorithm and its application to
AGV path planning problems,’’ in Proc. 36th Chin. Control Conf. (CCC),
Jul. 2017, pp. 2556–2561.

[13] A. Hidalgo-Paniagua, M. A. Vega-Rodríguez, J. Ferruz, and N. Pavón,
‘‘Solving the multi-objective path planning problem in mobile robotics
with a firefly-based approach,’’ Soft Comput., vol. 21, no. 4, pp. 949–964,
2017.

[14] Y. K. Ever, ‘‘Using simplified swarm optimization on path planning for
intelligent mobile robot,’’ Procedia Comput. Sci., vol. 120, pp. 83–90,
2017. [Online]. Available: https://www.journals.elsevier.com/procedia-
computer-science/

[15] W. Deng, R. Chen, B. He, Y. Liu, L. Yin, and J. Guo, ‘‘A novel two-stage
hybrid swarm intelligence optimization algorithm and application,’’ Soft
Comput., vol. 16, no. 10, pp. 1707–1722, 2012.

[16] S. M. Duan, J. L. Mao, J. L. Li, and L. X. Fu, ‘‘Design implementation
and application of swarm intelligence algorithm optimization function
simulation platform,’’ in Proc. Int. Conf. Softw. Eng. Inf. Technol. (SEIT),
2016, pp. 196–203.

[17] J. Sun, B. Feng, and W. Xu, ‘‘Particle swarm optimization with parti-
cles having quantum behavior,’’ in Proc. Congr. Evol. Comput., vol. 1,
Jun. 2004, pp. 325–331.

[18] J. Sun, W. Xu, and B. Feng, ‘‘A global search strategy of quantum-behaved
particle swarm optimization,’’ in Proc. IEEE Conf. Cybern. Intell. Syst.,
vol. 1, Dec. 2004, pp. 111–116.

[19] R. M. Calazan, N. Nedjah, and L. M. Mourelle, ‘‘A hardware accelerator
for particle swarm optimization,’’ Appl. Soft Comput., vol. 14,
pp. 347–356, Jan. 2014.

[20] Ö. Polat and T. Yildirim, ‘‘FPGA implementation of a general regression
neural network: An embedded pattern classification system,’’Digit. Signal
Process., vol. 20, no. 3, pp. 881–886, 2010.

[21] S. E. Papadakis and A. G. Bakrtzis, ‘‘A GPU accelerated PSO with
application to economic dispatch problem,’’ in Proc. Int. Conf. Intell. Syst.
Appl. Power Syst., Sep. 2011, pp. 1–6.

[22] A. Panato, S. Silva, F. Wagner, M. Johann, R. Reis, and S. Bampi, ‘‘Design
of very deep pipelined multipliers for FPGAs,’’ in Proc. Design, Automat.
Test Eur. Conf. Exhib., vol. 3, Feb. 2004, pp. 52–57.

[23] M. F. Brejza, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, ‘‘A high-
throughput FPGA architecture for joint source and channel decoding,’’
IEEE Access, vol. 5, pp. 2921–2944, 2017.

[24] X.-T. Nguyen, T.-T. Hoang, H.-T. Nguyen, K. Inoue, and C.-K. Pham,
‘‘An FPGA-based hardware accelerator for energy-efficient
bitmap index creation,’’ IEEE Access, vol. 6, pp. 16046–16059,
2018.

[25] Z. Chai, J. Sun, R. Cai, and W. Xu, ‘‘Implementing quantum-behaved
particle swarm optimization algorithm in FPGA for embedded real-
time applications,’’ in Proc. 4th Int. Conf. Comput. Sci. Converg. Inf.
Technol. (ICCIT), Nov. 2009, pp. 886–890.

[26] C.-C. Hsu, W.-Y. Wang, Y.-H. Chien, R.-Y. Hou, and C.-W. Tao, ‘‘FPGA
implementation of improved ant colony optimization algorithm for
path planning,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), Jul. 2016,
pp. 4516–4521.

[27] Y. Maeda and N. Matsushita, ‘‘Simultaneous perturbation particle swarm
optimization using FPGA,’’ inProc. Int. Joint Conf. Neural Netw. (IJCNN),
Aug. 2007, pp. 2695–2700.

[28] S.-A. Li, C.-C. Hsu, C.-C. Wong, and C.-J. Yu, ‘‘Hardware/software
co-design for particle swarm optimization algorithm,’’ Inf. Sci., vol. 181,
no. 20, pp. 4582–4596, 2011.

[29] A. Rathod and R. A. Thakker, ‘‘FPGA realization of particle swarm
optimization algorithm using floating point arithmetic,’’ in Proc. Int. Conf.
High Perform. Comput. Appl. (ICHPCA), Dec. 2014, pp. 1–6.

[30] D. M. Muñoz, C. H. Llanos, L. dos S. Coelho, and M. Ayala-Rincón,
‘‘Comparison between two FPGA implementations of the particle swarm
optimization algorithm for high-performance embedded applications,’’ in
Proc. IEEE 5th Int. Conf. Bio-Inspired Comput., Theories Appl. (BIC-TA),
Sep. 2010, pp. 1637–1645.

[31] D. M. M. Arboleda, C. H. Llanos, and M. Ayala-Rincón, ‘‘Hardware
architecture for particle swarm optimization using floating-point
arithmetic,’’ in Proc. 9th Int. Conf. Intell. Syst. Design Appl. (ISDA),
Nov./Dec. 2009, pp. 243–248.

[32] G. S. Tewolde, D. M. Hanna, and R. E. Haskell, ‘‘Multi-swarm parallel
PSO:Hardware implementation,’’ inProc. IEEE Swarm Intell. Symp. (SIS),
Mar./Apr. 2009, pp. 60–66.

[33] G. S. Tewolde, D. M. Hanna, and R. E. Haskell, ‘‘A modular and
efficient hardware architecture for particle swarm optimization
algorithm,’’ Microprocess. Microsyst., vol. 36, no. 4, pp. 289–302,
2012.

VOLUME 6, 2018 72343



D. Li et al.: General Framework for Accelerating SIAs on FPGAs, GPUs, and Multi-Core CPUs

[34] L. Guo, A. I. Funie, D. B. Thomas, H. Fu, and W. Luk, ‘‘Parallel genetic
algorithms on multiple FPGAs,’’ ACM SIGARCH Comput. Archit. News,
vol. 43, no. 4, pp. 86–93, 2016.

[35] D. L. Souza, G. D. Monteiro, T. C. Martins, and V. A. Dmitriev, ‘‘PSO-
GPU: Accelerating particle swarm optimization in CUDA-based graphics
processing units,’’ in Proc. Annu. Conf. Companion Genetic Evol.
Comput., 2011, pp. 837–838.

[36] F. Valdez, P. Melin, and O. Castillo, ‘‘Bio-inspired optimization methods
on graphic processing unit for minimization of complex mathematical
functions,’’ in Recent Advances on Hybrid Intelligent Systems. Berlin,
Germany: Springer, 2013, pp. 313–322.

[37] G. Mingas and C.-S. Bouganis, ‘‘Population-based MCMC on multi-
core CPUs, GPUs and FPGAs,’’ IEEE Trans. Comput., vol. 65, no. 4,
pp. 1283–1296, Apr. 2016.

[38] R. Li, Y. Dou, and D. Zou, ‘‘Efficient parallel implementation of three-
point Viterbi decoding algorithm on CPU, GPU, and FPGA,’’Concurrency
Comput., Pract. Exper., vol. 26, no. 3, pp. 821–840, 2014.

[39] L. Ma, L. Lavagno, M. T. Lazarescu, and A. Arif, ‘‘Acceleration by
inline cache for memory-intensive algorithms on FPGA via high-level
synthesis,’’ IEEE Access, vol. 5, pp. 18953–18974, 2017.

[40] F. B. Muslim, L. Ma, M. Roozmeh, and L. Lavagno, ‘‘efficient FPGA
implementation of OpenCL high-performance computing applications via
high-level synthesis,’’ IEEE Access, vol. 5, pp. 2747–2762, 2017.

[41] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, ‘‘Accelerating CUDA
graph algorithms at maximum warp,’’ in Proc. 16th ACM Symp. Princ.
Pract. Parallel Program. (PPoPP), 2011, pp. 267–276.

[42] R. Buchty, V. Heuveline, W. Karl, and J.-P. Weiss, ‘‘A survey on
hardware-aware and heterogeneous computing on multicore processors
and accelerators,’’ Concurrency Comput., Pract. Exper., vol. 24, no. 7,
pp. 663–675, 2012.

[43] OpenMP Community. (2015). OpenMP 4.5 Complete Specifications.
Accessed: Nov. 2015. [Online]. Available: http://www.openmp.org/wp-
content/uploads/openmp-4.5.pdf

DALIN LI received the bachelor’s and master’s
degrees in mechatronic engineering from Liaoning
Technical University, Fuxin, China, in 2005 and
2008, respectively. He is currently pursuing the
Ph.D. degree in computer science with the College
of Computer Science and Technology, Jilin Uni-
versity, Changchun, China. His current research
interests include high performance computing,
swarm intelligence, and machine learning.

LAN HUANG received the Ph.D. degree. He is
currently a Professor and a supervisor for Ph.D.
candidates. She is mainly engaged in business
intelligence theory and application research. She
was one of the outstanding youth project funding
winners of Jilin Province in 2005, and the person
in charge of Young and Middle-aged Leader and
Innovation Team of Jilin Province in 2012. She
was invited to Italy Trento University as a Senior
Visitor in 2010. As PI and Co-PI, he has been

undertaking or accomplished more than 10 teaching and scientific research
projects, granted by the National 863 Hi-tech Research and Development
Program, the National Science Foundation China, provincial/ministerial
foundations, and other sources. The works that she participated as main
investigator, were awarded the first prize for the National Commercial
Science and Technology Award bestowed by the China General Chamber
of Commerce (the first prizewinner in 2010), the second prize for the Jilin
Province Scientific and Technological Progress Award (first prizewinner
in 2011), the second prize for the National Commercial Science and Technol-
ogy Award (forth prizewinner in 2007, sixth prizewinner in 2004), the second
prize for the Jilin Province Scientific and Technological Progress Award
(forth prizewinner in 2004), and the second prize of Jilin Province Teaching
Achievements (second prizewinner in 2005). In recent years, her research
interests focus on business intelligence application and social network min-
ing algorithm. She has published 64 academic papers, and obtained seven
software copyrights. The software results researched and developed by her
team have brought good economic benefit for the cooperative enterprises and
application enterprises.

KANGPING WANG received the bachelor’s, mas-
ter’s, and Ph.D. degrees from Jilin University
in 2000, 2003, and 2008, respectively. He is cur-
rently a Faculty Member with the College of Com-
puter Science and Technology, Jilin University.
In past several years, his research interests include
heterogeneous computing and deep learning.

WEI PANG received the Ph.D. degree from the
University of Aberdeen in 2009. He is currently
a Senior Lecturer with the School of Natural
and Computing Sciences, University of Aberdeen.
In past several years, his research interests include
machine learning, qualitative reasoning, and evo-
lutionary computing.

YOU ZHOU received the bachelor’s and Ph.D.
degrees from Jilin University in 2002 and 2008,
respectively. He is currently an Associate Profes-
sor with the College of Computer Science and
Technology, Jilin University. In past several years,
his research interests include heterogeneous com-
puting and machine learning.

RUI ZHANG received the Ph.D. degree from the
University of Trento in 2009. He is currently an
Associate Professor with the College of Computer
Science and Technology, Jilin University. In past
several years, his research interests include knowl-
edge representation and machine learning.

72344 VOLUME 6, 2018


	INTRODUCTION
	RELATED WORK
	THE CHARACTERISTICS AND PROGRAMMING MODELS OF FPGAs, GPUs AND MULTI-CORE CPUs
	FPGAs
	GPUs
	MULTI-CORE CPUs

	SWARM INTELLIGENCE ALGORITHMS (SIAs) AND DATAFLOW ANALYSIS
	AN OVERVIEW OF SWARM INTELLIGENCE ALGORITHMS
	PARTICLE SWARM OPTIMIZATION AND QUANTUM-BEHAVED PARTICLE SWARM OPTIMIZATION
	PARALLEL AND DATAFLOW ANALYSIS
	PARALLELISING QPSO
	DATAFLOW ANALYSIS


	DESIGN AND IMPLEMENTATION OF FASI
	BASELINE FRAMEWORK OF FASI
	FASI ON FPGAs
	OPTIMIZED BASELINE FRAMEWORK OF FASI ON FPGAs
	FULL PIPELINED FASI ON FPGAs
	SIMD
	FULL PIPELINE WITH 1 CLOCK INITIATION INTERVAL
	BRAM BANDWIDTH
	TRADE-OFF OF FASI ON FPGAs

	FASI ON GPUs
	OPTIMIZED BASELINE FRAMEWORK OF FASI ON GPUs
	PARALLEL STRUCTURE OF FASI ON GPUs
	BLOCK AND THREAD CONFIGURATION
	DATA STORAGE AND COMMUNICATIONS
	LOW SEQUENTIAL ID THREAD REDUCTION

	FASI ON MULTI-CORE CPUs
	OPTIMIZED BASELINE FRAMEWORK OF FASI
	PARALLEL STRUCTURE OF FASI ON MULTI-CORE CPUs

	A COMPARISON BETWEEN THE IMPLEMENTATIONS WITH AND WITHOUT DATAFLOW RESCHEDULING
	THE COMPARISON OF IMPLEMENTATIONS OF FASI ON FPGAs
	THE COMPARISON OF IMPLEMENTATIONS OF FASI ON GPUs
	THE COMPARISON OF IMPLEMENTATION OF FASI ON MULTI-CORE CPUs


	EXPERIMENTS AND RESULTS
	EVALUATION PLATFORMS
	PERFORMANCE OF FASI ON FPGAs
	RESOURCE UTILIZATION 
	PERFORMANCE

	PERFORMANCE OF FASI ON GPUs
	PERFORMANCE OF FASI ON MULTI-CORE CPUS
	SPEEDUP COMPARISON BETWEEN FPGAs, GPUs AND MULTI-CORE CPUs

	DISCUSSIONS AND CONCLUSIONS
	REFERENCES
	Biographies
	DALIN LI
	LAN HUANG
	KANGPING WANG
	WEI PANG
	YOU ZHOU
	RUI ZHANG


