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ABSTRACT For highly maneuvering target interception in terminal guidance, the maximal admissible
mode decision delay (MAMDD) and the least required mode sojourn time (LRMST) are calculated in
continuous-time controlled system. The lateral acceleration command of the evader is modeled as a
jump-Markov process. Suppose that the mode switches are observable and the evader’s motion mode is
correctly identified by a separate mode decision-maker with a fixed time delay, then the error model of the
state estimation is derived. By limiting the state estimation error to a certain range, MAMDD and LRMST
are calculated. The derivation is validated by a typical instance of tactical ballistic missile interception. The
results in this paper provide a useful tool for guiding the design of the mode decision-maker and evaluating
the performance of the logic-based integrated estimation and guidance system.

INDEX TERMS Continuous-time controlled system, highly maneuvering target interception, least required
mode sojourn time, maximal admissible mode decision delay, state estimation error.

NOMENCLATURE

P Pursuer/Interceptor
E Evader/Target
τp, τe Time constants of P and E
amax
p , amax

e Maximum lateral accelerations of P and E
Vp, Ve Velocities of P and E
up, ue Lateral acceleration commands of P and E
r Relative range between players
tsw Mode switch moment
1t Mode decision delay
tf Final time
m Target motion mode
mi−1, mi Mode before and after ith mode change

1m Mode change value, 1m 1
= mi − mi−1

σθ Angular measurement accuracy
σa Acceleration measurement accuracy
sw Power spectral density of process noise
x̃ State estimation error
ς Mean error of state estimation
E0 Error bound

E Normalized error bound, E 1
= E0/1mi

E∞ Normalized error limit

si Mode sojourn time, si
1
= ti − ti−1

I. INTRODUCTION
With the increasing maneuverability of the evader, highly
maneuvering target interception (HMTI) has attracted exten-
sive attention in the research community [1]–[3]. Estimation,
guidance and control constitute the three essential factors for
a successful interception. Among these, the estimation accu-
racy of the target state determines the bound of the intercep-
tion performance. That is, regardless of how the flight system
is designed, the error in statistical miss distance will not be
lower than the performance guaranteed by the estimator [4].

For HMTI, the state estimation process can be treated as
a problem of maneuvering target tracking (MTT). As the
maneuvers of the evader are often unknown and unpredictable
to the system, a hybrid estimation problem consisting of base
state estimation and mode decision is usually needed. The
widely used methods for hybrid estimation problems can
be basically classified into two categories: the single-model
and the multiple-model. Li and Vesselin [5], [6] conducted a
series of detailed analyses and comparisons in the context of
these techniques. Either way, the mode decision delay affects
the estimation performance significantly [7]. Shinar et al. [8]
figured out that the estimation delay of the target maneu-
ver, especially the delay of the evader’s lateral acceleration,
is the main error source in miss distance for HMTI. Due to
the mode decision delay, mode mismatch occurs once the
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evader’s mode is switched. It causes a significant deteriora-
tion of the estimation performance and may even result in
the divergence of the estimator (the mode decision delay is
too great and there is insufficient time for the estimator to
converge), further affects the guidance performance. Conse-
quently, lowering the impact of mode decision delay is very
essential for a precise interception. Related work mainly cov-
ers two aspects: exploring new guidance law compensating
the estimation delay [9], [10] and reducing the mode decision
delay of the target maneuver [11]–[13]. For the latter case,
the idea of integrated estimation and guidance (IEG) method,
which combines a low-bandwidth highly precise estimator
and a separatemode decision-maker that estimates the current
motion mode of the evader timely, has been demonstrated
superiority for HMTI problems [14]–[16]. The logic-based
IEG method proposed by Shinar is one of the most promising
algorithms [15]. In fact, both the radar and the image seeker
can observe signatures highly related to the target maneuvers,
showing some potential to quick mode decision for the mode
decision-maker.

To guarantee an ideal guidance performance, the mode
decision delay should be limited to a range as small as
possible. Therefore, following questions need to be further
emphasized. Given the error bound, what is the maximal
admissible mode decision delay (MAMDD) for the mode
decision-maker to discriminate the evader’s motion mode?
Once the mode decision delay is settled, what is the least
required mode sojourn time (LRMST) to ensure the observ-
ability of the mode switches? For these problems, in our pre-
viouswork, [17] studied the characteristics of state estimation
error in discrete-time controlled system and derived the upper
bound of mode delay (MDUB) and the lower bound of mode
sojourn time (STLB).

In real applications, the sampling interval affects the sta-
bility and accuracy of the discrete-time system significantly,
thus it is necessary to theoretically analyze the two key
parameters for the mode decision-maker in the continuous
control system. As a counterpart of [17], the main work and
contributions in this paper mainly cover the following two
aspects. Firstly, the error model of the state estimation in
continuous-time controlled system is derived and validated by
Monte Carlo simulations. Secondly, MAMDD is calculated
by limiting the state estimation error to a certain range and
LRMST is solved once the mode decision delay is given.
Compared to [17], a more compact bound is obtained, mean-
ing that a more precise requirement is applied to the mode
decision-maker in the stage of designing a practical IEG
system. Furthermore, in order to describe the meaning of
the two bounds more precisely, MDUB and STLB in [17]
are renamed as MAMDD and LRMST in present work,
respectively.

The remainder of the paper is organized as follows:
Section 2 describes the mathematical model in a planar
interception scenario. Section 3 derives the state estima-
tion error model in continuous time. Section 4 calculates
MAMDD and LRMST with a given estimation error bound.

Demonstrations and conclusions are presented in Section 5
and Section 6, respectively.

FIGURE 1. Planer interception geometry. The X axis lies along the initial
line of sight. (xp, yp) and (xe, ye) are current positions of P and E,
respectively. φp and φe are the aspect angles defined as the angles
between the velocity vectors and the positive X axis.

II. PROBLEM FORMULATION
A. SYSTEM MODEL
Similar to most work discussed the interception problem,
the engagement takes place in a horizontal planar consist-
ing of two players [3], [14]–[18] – a pursuer (interceptor)
denoted by P and an evader (target) denoted by E – as shown
in Fig. 1. Three basic assumptions for a planer interception
are made as follows:
• Both dynamics of the players are approximated by the
first-order transfer functions, with the time constants
τp and τe, respectively;

• Both speeds of the players are constant, denoted by
Vp and Ve, respectively;

• Both lateral accelerations of the players are bounded,
with maximal values amax

p and amax
e , respectively.

Fig. 1 shows the planer interception geometry. Due to the
short duration of the terminal guidance and the high velocities
involved in HMTI, the aspect angles here satisfy the small
angle conditions (that is, sinφp ≈ φp, sinφe ≈ π − φe).
Therefore, the trajectories can be linearized along the initial
line of sight. Let the initial time t0 = 0s and given the initial
range r0, the final time tf of the interception can be easily
approximated as

tf ≈
r0

Vp cosφp(0)− Ve cosφe(0)
(1)

Denote the state vector x = [x1(t), x2(t), x3(t), x4(t)]T =
[y(t), ẏ(t), aey(t), a

p
y(t)]T, where t ∈ [0, tf ]. For brevity,

the time t is omitted hereafter. Based on the above assump-
tions, the system dynamics can bemodeledwith the following
linear differential equations:

ẋ1 = x2, x1(0) = 0

ẋ2 = x3 − x4, x2(0) = Veφe(0)− Vpφp(0)
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ẋ3 = (ue − x3)/τe, x3(0) = 0

ẋ4 = (up − x4)/τp, x4(0) = 0 (2)

where x1 = ye − yp is the relative range between P and E
along the Y axis; x2 is the relative lateral velocity; x3 and x4
are the lateral accelerations of P and E, respectively; up and ue
are the respective commanded accelerations bounded by

|ui(t)| ≤ amax
i , i = p, e (3)

Eq. (2) can be represented as the following state vector
form

ẋ = Ax+ B1up + B2ue, x(0) = (0, x2(0), 0, 0)T (4)

where matrixes A, B1 and B2 are given by

A =


0 1 0 0
0 0 1 −1
0 0 −1/τe 0
0 0 0 −1/τp

, B1 =


0
0
0

1/τp

,

B2 =


0
0

1/τe
0

 (5)

B. JUMP-MARKOV ACCELERATION COMMAND MODEL
Assume that the lateral acceleration command of the evader
follows a Jump-Markov process [11]

ue(t) = m(t)+ w(t) (6)

where m(t) is the discretized mode of evader’s lateral accel-
eration command shown in Fig. 2, and w(t) is the quan-
tizing error treated as a zero-mean Gaussian white noise
with the power spectrum density sw. For detailed methods
of mode-set design with respect to MTT, one can refer
to [11], [19], and [20].

FIGURE 2. Model-set of the evader’s lateral acceleration command. The
mode space is discretized and the acceleration command of the evader
jumps from one mode to another. mi represents the specific acceleration
command at time ti .

C. OBSERVATION MODEL
To be consistent with [17], we use the following observation
model

Y(t) = Hx(t)+ v(t) (7)

where Y(t) = [ym, a
p
ym]T is the measurement vector

(ym and apym are the measurements of the relative position and
the pursuer’s acceleration, respectively), H is the measure-
ment matrix given by

H =
[
1 0 0 0
0 0 0 1

]
, (8)

and v(t) is the observation noise obeying the Gaussian dis-
tribution with zero mean and covariance R(t) [17]. The pur-
suer’s acceleration is measured by the onboard accelerometer
precisely, thus its measurement noise is of a relatively small
variance σ 2

a .

III. STATE ESTIMATION ERROR MODEL
Fig. 3 shows a typical structure of the logic-based IEG
system, where the estimator is independently optimized
from the controller. For this configuration, a separate mode
decision-maker is used to estimate the evader’s current
motion mode m(t). Each m(t) corresponds to a model,
which increases the flexibility to the system for a number
of different models. Therefore, a timely and accurate mode
decision-maker is beneficial for the estimator to choose the
matched mode quickly and correctly. Furthermore, it also
helps the guidance processor to choose the proper guidance
law and its parameters when a mode change occurs. For
example, if the absolute value ofm(t) is small enough, DGL/0
(DGL: differential game law) may be preferable because it is
more robust and efficient; if the absolute value ofm(t) is large,
DGL/1 will be more appropriate; if the sign or direction of
m(t) is known, it will be further used to reduce the reachable
set [21] of target acceleration when calculating ZEM. Based
on this configuration, in the following, the error model of the
state in continuous-time controlled system is derived.

FIGURE 3. A typical structure of IEG system. Y(t) is the observation vector
of the seeker. m(t) is the output of the mode decision-maker. up is the
control command generated by guidance law.

Assume that the current motion mode of the evader is
correctly identified by the mode decision-maker with a fixed
time delay 1t after the mode switching moment. Let the
mode after the ith mode change be mi, then the mode
switch processes and the corresponding outputs of the mode
decision-maker are illustrated in Fig. 4.
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FIGURE 4. Diagram of mode switch and the outputs of the mode
decision-maker. m and m̂ represent the actual and the estimated
acceleration command of the evader, respectively. A certain mode
decision delay 1t exits in the process of mode identification.

Consider time ti−1 ≤ t ≤ ti+1, then m(t) can be
expressed as

m(t) = mi−1 + (mi − mi−1)u(t − ti) (9)

where u(t) is the step function given by

u(t) =

{
1, t ≥ 0
0, t < 0

(10)

From Fig. 4, the dynamic model used by the estimator can
be formulated as

ẋ(t)=Ax(t)+B1up(t)+B2(mi−mi−1)u(t − ti −1t)+w(t)

(11)

Substituting Eq. (6) into Eq. (4) yields

ẋ(t) = Ax(t)+ B1up(t)+ B2m(t)+ w(t) (12)

where w(t) = B2w(t) is the process noise that follows
a zero-mean Gaussian distribution with covariance matrix
Q = B2BT

2 sw. Without loss of generality, only the error
distribution during the time t ∈ [ti−1 + 1t, ti + 1t] is
considered here. Two cases need to be taken into account
specifically.
Case 1: t ∈ [ti−1+1t, ti). The correspondingmotionmode

of the evader is mi, then the system state equation is

ẋ(t) = Ax(t)+ B1up(t)+ B2mi−1 + w(t) (13)

The standard Kalman filter is used as the estimator, then
the form of the observer is governed by

˙̂x(t) = Ax̂(t)+ B1up(t)+ B2mi−1 + k(t)(Y(t)−Hx̂(t))

(14)

where k(t) is the Kalman gain in continuous system given by

k(t) = P(t)HTR−1 (15)

P(t) is the covariance matrix of prediction error specified by
the following Riccati equation

Ṗ(t) = AP(t)+ P(t)AT
+Q− P(t)HTR−1HP(t) (16)

The state estimation error is defined as the difference
between the estimated state and the real state. That is, x̃(t) =
x̂(t)− x(t). Subtracting Eq. (13) from Eq. (14) yields

˙̂x(t) = (A− k(t)H)x̃(t)+ (k(t)v(t)− w(t))

x̃(ti−1 +1t) = x̃ti−1+1t (17)

Denote F(t) = A − k(t)H and ξ (t) = k(t)v(t) − w(t),
respectively. Solving Eq. (17), we have

x̃(t) = exp


t∫

ti−1+1t

F(s)ds

 x̃ti−1+1t

+

t∫
ti−1+1t

exp


t∫

s

F(u)du

ξ (s)ds (18)

Case 2: t ∈ [ti, ti +1t]. The corresponding motion mode
of the evader is mi, thus the state equation becomes

ẋ(t) = Ax(t)+ B1up(t)+ B2mi + w(t) (19)

By virtue of Eq. (11), the form of the observer is identical
with Eq. (14), because the pursuer still thinks that the evader
is in the the mode mi−1 . It suggests that a mode mismatch
occurs in this case. The state estimation error satisfies

˙̃x(t) = (A− k(t)H)x̃(t)+ (k(t)v(t)− w(t))

−B2(mi − mi−1)

x̃(ti) = x̃ti (20)

Therefore, it is obtained that

x̃(t) = exp


t∫

ti

F(s)ds

 x̃ti +

t∫
ti

exp


t∫

s

F(u)du

ξ (s)ds
−(mi − mi−1)

t∫
ti

exp


t∫

s

F(u)du

ds · B2 (21)

Substituting Eq. (18) with t = ti, we acquire

x̃(ti) = exp


ti∫

ti−1+1t

F(s)ds

 x̃ti−1+1t

+

ti∫
ti−1+1t

exp


ti∫
s

F(u)du

ξ (s)ds (22)

According to Eqs. (21) and (22), it is readily got

x̃(t) = exp


t∫

ti−1+1t

F(s)ds

 x̃ti−1+1t

+

t∫
ti−1+1t

exp


t∫

s

F(u)du

ξ (s)ds
− (mi − mi−1)

t∫
ti

exp


t∫

s

F(u)du

ds · B2 (23)
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Notice that E{v(t)} = 0 and E{w(t)} = 0, which leads to

E {ξ (t)} = k(t)E{v(t)} − E{w(t)} = 0 (24)

where E{·} is the mathematical expectation. Therefore,
the mean error of state (denoted by ζ (t)) satisfies

ζ (t) = E{x̃(t)} = exp


t∫

ti−1+1t

F(s)ds

E{x̃ti−1+1t }

− (mi − mi−1)

t∫
ti

exp


t∫

s

F(u)du

ds · B2 (25)

From Eq. (25), it is observed that ζ (t) consists of two parts.
The first term on the right side measures the influence of
the initial estimation error, and the second term measures the
influence of the mode mismatch.

IV. MAMDD AND LRMST
Based on the above error model, in this section, MAMDD
is solved given the error bound. Meanwhile, to guarantee the
observabilities of mode switches, LRMST is calculated when
the system mode decision delay is known.

Assume that a long time has already been worked for the
filter before the maneuver of the evader, then the Kalman
gain converges to a steady value. In this case, the steady-state
Kalman gain ks can be used to approximate k(t). Note that the
covariance matrix of the measurement noise is range varying
in terminal guidance, thus ks also varies with respect to the
relative range r . The expression of ks is given by

ks = PsHTR−1(r) (26)

where Ps is the steady covariance matrix that obeys the
following Riccati equation

0 = APs + PsAT
+Q− PsHTR−1(r)HPs (27)

Denote Fs = A − ksH and let 1mi = (mi − mi−1)
represent the change value of the ith mode switch. Then for
t ∈ [ti, ti +1t], Eq. (25) can be rewritten as

ζ (t) = eFs(t−ti−1−1t)ζ (ti−1 +1t)−1mi

t∫
ti

eFs(t−s)ds · B2

(28)

After a Jordan canonical decomposition of the matrix Fs,
it is obtained that Fs = PJP−1. Where J is the Jordan
canonical form of Fs, whose eigenvalues are denoted by
λi = ai + jbi, i = 1, 2, 3, 4 . From Eq. (28), it is easy to
know all the real part of the eigenvalues ai must be less than
zero to ensure the convergence of filtering.
Lemma 1: Suppose that A is an nth-order square matrix

with all different eigenvalues λi = ai + jbi, i = 1, ..., n . Its
eigenvalues satisfy condition: an < an−1 < · · · < a1 < 0.
Then the following expression ||eAt || ≤ κ(A)ea1t = κea1t

(for brevity, || · || denotes the 2-norm of matrix hereafter)

holds, where κ = κ(A) = ||P|| · ||P−1|| is the condition
number of A.

The proof of Lemma 1 is given in Appendix. From
Lemma 1, the following inequality can be obtained

||ζ (t)|| ≤ κea1(t−ti−1−1t)||ζ (ti−1 +1t)||

−
1miκ · ||B2||

a1
+
1miκ · ||B2||

a1
ea1(t−ti) 1= g(t) (29)

Notice that a1 < 0, thus g(t) is monotonically decreasing for
t < ti. It is assumed that ||ζ (ti−1+1t)|| satisfies the following
inequality at t = ti

ea1(ti−ti−1−1t)||ζ (ti−1 +1t)|| < −
1mi · ||B2||

a1
(30)

then g(t) is monotonically increasing for t ∈ [ti, ti+1t]. The
proof is given in Appendix. Therefore, the filtering process is
divergent during t ∈ [ti, ti +1t]. That is, the mode decision
delay1t should be limited to ensure that the estimation error
does not exceed the error bound.

Let E0 denote the error bound (i.e., ||ζ (t)|| ≤ E0), E
1
=

E0/1mi and E∞
1
= limt,1t→∞g(t)/1mi = −κ · ||B2||/a1

denote the normalized error bound and the normalized error
limit, respectively. By definition, E < E∞. As g(t) is mono-
tonically increasing for t ∈ [ti, ti + 1t], then substituting
Eq. (29) with t = ti + 1t and limiting its value to the error
bound E0 yields

g(ti +1t) = κea1(ti−ti−1)||ζ (ti−1 +1t)||

−
1miκ · ||B2||

a1
+
1miκ · ||B2||

a1
ea11t ≤ E0 (31)

and

−
1mi · κ||B2||

a1
+
1mi · κ||B2||

a1
ea11t

≤ E0 − κea1(ti−ti−1)||ζ (ti−1 +1t)|| ≤ E0 (32)

From Eq. (32), MAMDD is specified as follows

MAMDD =
1
a1

ln
(
1+

E0a1
1mi · κ||B2||

)
(33)

If1t ≤ MAMDD, to ensure that Eq. (31) is true, the mode
sojourn time si

1
= ti− ti−1 still needs to be constrained. Given

the mode decision delay1t , from Eq. (31), it is acquired that

ea1(ti−ti−1)||ζ (ti−1 +1t)|| ≤ ea1(ti−ti−1)E0

≤
E0
κ
+
1mi · ||B2||

a1

(
1− ea11t

)
(34)

Then, LRMST can be calculated as follows

LRMST =
1
a1

ln
(
1
κ
+
1mi · ||B2||

a1E0

(
1− ea11t

))
(35)

V. SIMULATIONS
To validate the above theoretical derivation, the results are
compared with the Monte Carlo simulation through a typical
instance of tactical ballistic missile interception. Table 1 sum-
marizes the interception parameters. Table 2 lists the esti-
mator’s parameters. The Monte Carlo simulation number is
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TABLE 1. Interception Parameters.

TABLE 2. Estimator’s Parameters.

1000 and the gravity acceleration g= 9.8m/s2. Themeasure-
ment accuracies of the angular and the pursuer’s acceleration
of the radar are set to be 5 mrad and 1 m/s2, respectively.
A maneuver of the evader occurs at t = 2.0s and the mode
decision delay is set to be 0.1 s. A bang-bang control strategy
is adopted by the evader as it can minimize the capture zone
of the pursuer [18]. Without loss of generality, only a single
mode change is considered here.

FIGURE 5. Estimation error of every state with respect to time. (a) error of
relative position; (b) error of relative velocity; (c) error of evader’s lateral
acceleration; (d) error of pursuer’s acceleration. The mode switch occurs
at t = 2.0s and the mode decision delay 1t = 0.1s.

Fig. 5 shows the estimation error of every state with
respect to time. It is seen from this figure that the curves
of Monte Carlo simulation match well with the analytic
results, which proves the correctness of the derived error
model. Furthermore, it can be observed that after the former

2 second filtering, the initial state estimation errors x̃0 grad-
ually converges to zero; when the evader’s mode changes
(t = 2s), mode mismatch occurs and the estimation errors
of the relative position, the relative velocity and the evader’s
lateral acceleration increase quickly; after the mode is cor-
rectly identified (t = 2.1s), the state estimation error then
converges asymptotically. However, the estimation of the
pursuer’s acceleration is not affected by the mode mismatch
and its error remains a very small value during the whole
interception. This is in accordance with the assumption that
an accurate acceleration model of the pursuer is available and
its value can be measured by the seeker onboard precisely.

FIGURE 6. Kalman gains with respect to time under different initial
conditions. (a) gain of relative position; (b) gain of relative velocity;
(c) gain of evader’s lateral acceleration; (d) gain of pursuer’s acceleration.

Fig. 6 illustrates the results of the current Kalman gain
and the steady gain with respect to time under different
initial conditions (P0 = σ 2

0 I4). As the relative range r
decreases with the time-to-go, R decreases with the decrease
of r . By virtual of Eq. (26), k(t) and ks increase with time.
As shown in Fig. 6, after a certain period of iteration, k(t)
gradually approaches ks. Therefore, it is proper to replace k(t)
with ks when calculating MAMDD and LRMST.

Fig. 7 shows the results of MAMDD and LRMST. Specif-
ically, a) presents the relationship between E∞ and r .
E∞measures the limit of normalized error bound for different
relative range. It is seen from this figure that E∞ increases
with the increase of r . That is, the farther the relative range,
the greater the allowable error. As r increases, the vari-
ance of the measurement noise increases and ks decreases
(see Eq. (26)). Then, the real part a1 of the maximum eigen-
value of Fs increases, which further leads to the increase
of E∞. b) shows the relationship between MAMDD and
the normalized error bound E for different r . It is observed
that MAMDD increases with the increase of E , thus the
requirement of the mode decision-maker get more relaxed for
a larger E . Given MAMDD, a smaller relative range r means
a lower error bound E . That is, a more stringent requirement
should be applied to the mode decision-maker as the players
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FIGURE 7. MAMDD and LRMST. (a) E∞ with respect to range; (b) MAMDD
with respect to for different range; (c) LRMST with respect to 1t for
different E ; (d) E0 under different 1m and MAMDD.

get closer. c) shows the relationship between LRMST and1t
for r = 5 km. As shown in this figure, given the error bound,
LRMST increases with the mode decision delay, which is in
accordance with Eq. (34). When the mode decision delay is
settled, the smaller the error bound E , the greater the LRMST.
In other words, as the admissible error bound becomes lower,
the mode sojourn time needs to be longer to ensure that the
mode switches are observable and the estimation error does
not exceed the bound. d) gives the contour map of E0 as a
function of MAMDD and 1m for r = 5 km. It can be found
from this figure that MAMDD is approximately inversely
proportional to 1m. That is, a stricter requirement is applied
to the mode decision-maker when intercepting a target with a
higher maneuverability.

TABLE 3. Comparison of MAMDD(s) with respect to E for r = 5km.

Table 3 compares the values of MAMDD given in [17]
and this paper for different normalized error bounds when
r = 5km. It is observed that the results of this paper are
smaller than its results in [17] especially for a larger E . That
is, a more precise requirement for the mode decision-maker
is presented in this paper.

In practice, one can use the derived MAMDD and LRMST
to make requirements for the mode decision-maker in IEG
system design and evaluate the performance of the estimator
in hybrid system.

VI. CONCLUSION
As a counterpart of [17], two critical parameters MAMDD
and LRMST of the logic-based IEG system in continuous-
time controlled system are derived. Simulation results show
that MAMDD increases with the increase of error bound.

As the pursuer approaches the evader, the requirement of
identifying the evader’s mode for the mode decision-maker
gets more stringent. Given an error bound, the smaller the
mode decision delay, the longer the mode sojourn time is
required to ensure the observability ofmode switches. Amore
relaxed requirement is applied to the mode decision-maker
when intercepting the evader with a weaker maneuverability.
The bounds derived in this paper are more compact than its
discrete counterpart. Conclusions in this paper give a useful
tool for guiding the design of the mode decision-maker in a
practical IEG control system, especially for the determination
of mode decision delay.

To reduce the decision delay of target maneuver, the design
of feature-aided mode decision-maker is our future work.

APPENDIXES
Proof of Lemma 1: Assume that A = PJP−1 and its distinct
eigenvalues λi = ai + jbi, i = 1, ..., n satisfy an < an−1 <
· · · < a1 < 0, then

eAt = P


ea1t+jb1t

. . .

. . .

eant+jbnt

P−1

= Pf (Jt )P−1 (36)

According to the characteristic of norm-2, following
inequality can be obtained

||eAt || = ||Pf (Jt )P−1|| ≤ ||P|| · ||P−1|| · ||f (Jt )|| (37)

and

||f (Jt )|| = ρ1/2
(
f H(Jt ) · f (Jt )

)

= ρ1/2



e2a1t

. . .

. . .

e2ant


 = ea1t

(38)

where ρ (·) is the function of spectral radius. Then

||eAt || ≤ κ(A)ea1t = κea1t (39)

this completes the proof of Lemma 1.
Proof the monotonicity of g(t): For t ∈ [ti, ti + 1t],

differentiate the g(t) with respect to the time t , it can be
obtained

g′(t) = κa1ea1(t−ti−1−1t)||ζ (ti−1 +1t)||

+1miκ · ||B2||ea1(t−ti)

= κa1ea1(t−ti+ti−ti−1−1t)||ζ (ti−1 +1t)||

+1miκ · ||B2||ea1(t−ti)

= κea1(t−ti) · a1ea1(ti−ti−1−1t)||ζ (ti−1 +1t)||

+ κea1(t−ti)1mi · ||B2|| (40)
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then from (30), we can acquire g′(t) > 0. Therefore, g(t) is
monotone increasing in this time interval. This completes the
proof.
Proof of Eq. (30): To meet the system requirements, fol-

lowing conditions should be guaranteed: ||ζ (ti−1 + 1t)|| ≤
E0, ti − ti−1 ≥ LRMST and 1t ≤ MAMDD. Therefore,

ea1(ti−ti−1−1t)||ζ (ti−1 +1t)||

≤ ea1·LRMSTe−a1·MAMDDE0

=

(
1
κ
+
1mi · ||B2||

a1E0

(
1− ea11t

))
e−a1·MAMDDE0

≤

(
1
κ
+
1mi · ||B2||

a1E0

(
1− ea1·MAMDD

))
e−a1·MAMDDE0

=

(
E0
κ
+
1mi · ||B2||

a1

)
e−a1·MAMDD

−
1mi · ||B2||

a1

=

(
E
κ
−
E∞
κ

)
·1mie−a1·MAMDD

−
1mi · ||B2||

a1

< −
1mi · ||B2||

a1
(41)

this completes the proof of Eq. (30).
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