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ABSTRACT This paper describes a general framework for the optimization of very large reflectarrays for
space applications. It employs the generalized intersection approach as optimizing algorithm, integrating a
number of techniques that substantially improve the baseline algorithm by accelerating computations while
preserving the accuracy of the electromagnetic analysis. In particular, a learning algorithm based on support
vector machines is used to obtain a surrogate model of the reflectarray unit cell accelerating the analysis more
than three orders of magnitude. For the optimization, the gradient computation is accelerated by employing
the technique of differential contributions on the radiated field, which avoids the use of the fast Fourier
transform in the computation of the far field. Finally, to improve the cross-polarization performance, instead
of optimizing the crosspolar pattern, the crosspolar discrimination or crosspolar isolation is optimized,
improving both the antenna and algorithm performances. Relevant numerical examples are provided to show
the capabilities of the proposed framework for a Direct Broadcast Satellite mission, showing how to design
a contoured beam reflectarray with a European footprint with two different coverage zones. In addition,
a complete study of computing time is carried out to analyze the impact of each technique in the optimization
process.

INDEX TERMS Very large reflectarray, radiation pattern synthesis, contoured beam, crosspolar
optimization, machine learning technique, support vector machines, gradient-based algorithm, crosspolar
discrimination (XPD), crosspolar isolation (XPI), Direct Broadcast Satellite (DBS).

I. INTRODUCTION
The constant development of communication technologies
has resulted in the need of systems which fulfil increasing
tighter requirements in order to improve their quality and per-
formance. In particular, communications through satellites
are commonplace in modern society, including applications
such as television broadcast, mobile telephone networks and
data transmission. In addition to communication satellites,
other space applications include radar, navigation and remote
sensing [1]. In all of them, the antenna is a very important
subsystem, since it allows wireless communications, convert-
ing guided waves into radiating waves propagating in free
space, and vice versa. Depending on the application, different

parameters may be optimized, including but not limited to
efficiency, size, matching and radiation pattern. Specifically,
radiation pattern synthesis is important for both terrestrial and
space application, since non-canonical beam patterns are not
easy to achieve [2]. Furthermore, within antenna pattern syn-
thesis, copolar shaped patterns are easier to obtain compared
with crosspolar far field optimization. Some applications that
demand shaped beams include global Earth coverage, which
requires an isoflux pattern providing constant energy flux
on the surface of the Earth [3]; Direct Broadcast Satellite
(DBS) applications, which require a shaped beam to fulfil a
given footprint on the Earth Surface (see FIGURE 1); etc.
DBS applications are particularly challenging since they also
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FIGURE 1. Illustration of a satellite in geostationary orbit providing DBS
service with a European footprint having several coverages zones with
different requirements.

require a high polarization purity, working with very large
antennas. Traditionally, shaped parabolic reflectors have been
used for this kind of applications [1]. However, they are bulky
and expensive, and with the popularization of the microstrip
technology reflectarrays have become a potential substitute
to parabolic reflector dishes [2].

FIGURE 2. Sketch of the single-offset reflectarray geometry under study.

A reflectarray consists of a primary feed, typically a horn
antenna, and an array of radiating elements, which add a cer-
tain phase-shift on the reflected wave (see FIGURE 2). They
are usually comprised of hundreds or even thousands of ele-
ments, making antenna pattern synthesis a very challenging
task when dealing with very large reflectarrays. This is espe-
cially true for applications with very stringent requirements,
such as Direct Broadcast Satellite (DBS) missions [1], [2].
In addition, current applications such as multibeam [4] or
Synthesis Radar Aperture (SAR) [5] are proposing ever-
larger reflectarrays, with very high gain and narrow beams
which are driving current analysis and optimization tech-
niques to face memory and computational limitations due to

the large number of elements involved and the high resolution
necessary to correctly characterize the radiation pattern.

The optimization of reflectarray antennas has been
a challenge in recent years. The dominant synthesis approach
consists in a Phase-Only Synthesis (POS) that employs a
simplified analysis of the reflectarray unit cell to accelerate
computations. In POS, the unit cell is considered an ideal
phase-shifter with no losses and no cross-polarization [6].
These simplifications barely affect the copolar pattern [7],
but the crosspolar pattern computed is not valid. Thus, POS
techniques are only able to deal with copolar requirements
[6]–[8]. The goal of the POS is to obtain a phase distribution
that generates the desired copolar pattern according to certain
requirements. Then, the reflectarray layout is obtained using a
Full-Wave analysis tool based on Local Periodicity (FW-LP),
usually a Method of Moments (MoM-LP) and a zero-finding
routine which adjusts the geometry of each unit cell to match
the required phase-shift [2]. The simulated layout using
a FW-LP will produce the desired copolar pattern as obtained
from the POS plus a small gain loss which depends on the
selected substrate. However, since the crosspolar pattern was
not taken into account during the synthesis, it may not comply
with the expected cross-polarization performance, which will
depend on the application.

The crosspolar optimization was first handled at a unit
cell level [9]–[13] since the direct optimization of the
whole reflectarray was considered impractical [14]. An early
work [9] proposed an arrangement of the reflectarray ele-
ments in four quadrants with mirror symmetry to reduce
the crosspolar pattern. This approach was later improved
in [10], where the mirror-like arrangement was imposed
among neighbor elements, and showed better performance
than that of [9]. Another technique was presented in [11]
and later implemented in [12]. It consists in enforcing a
null in the amplitude of the reflection cross-coefficients that
contribute more to the crosspolar pattern. Element rotation
was employed in [13] to minimize the crosspolar tangential
field at the reflectarray aperture, thus reducing the crosspolar
pattern indirectly. For this reason, working at the element
level provides suboptimal results.

A more flexible approach to the crosspolar optimization
is to work at the radiation pattern level, optimizing all the
reflectarray elements at the same time. In this regard, some
techniques have been developed that allow the direct opti-
mization of reflectarray antennas considering both copo-
lar and crosspolar requirements. One of the first works
to perform direct optimization was presented in [15]–[17].
However, it only considered single-polarized reflectarrays
with very few elements (a total of 225) and the algorithm
was slow. In [18], an efficient extension of the Intersection
Approach algorithm was presented, giving as a result a dis-
tribution of reflection coefficient matrices (instead of a phase
distribution). The main drawback was to obtain a reflectar-
ray layout from such matrices, which is a challenging task.
Nevertheless, a similar approachwas followed in [19], and the
layout was obtained by applying trapezoidal transformations
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to the unit cell. In [20] a gradient minimax algorithm was
used, accelerating computations with the use of a database
of the scattering matrix of the reflectarray unit cell. In [21]
the direct optimization employs a full-wave analysis based
on local periodicity, in particular a MoM-LP, making com-
putations slow. However, the algorithm is able to handle
thousands of optimizing variables with success and a number
of techniques were introduced to minimize the number of
calls to the MoM-LP routine and to accelerate computations.

In this paper, we present a general framework for the
efficient optimization of very large reflectarrays including
copolar and crosspolar requirements, focusing on space appli-
cations where the specifications are very tight. The chosen
algorithm is the generalized Intersection Approach, which
integrates a number of techniques that substantially improve
the baseline algorithm from the point of view of the antenna
and algorithm performances. First, the reflectarray analysis is
presented, with an efficient formulation taking into account a
spatial shift which may cause a pointing error in the far field
if it is not considered. Then, the MoM-LP is replaced with a
machine learning algorithm, SVM, to greatly accelerate the
analysis time while keeping a high degree of accuracy with
regard to the electromagnetic tool simulations. Thanks to the
use of the SVM, the analysis and layout design of a very
large reflectarray comprised of several thousand elements
are accelerated more than three orders of magnitude. Next,
the computation of the gradient is considerably accelerated by
employing differential contributions to the far field, thanks to
the linearity of Maxwell’s equations, which provides a linear
relationship between the tangential field at the aperture and
the radiated field (either near or far field). This approach is
most useful when the radiation pattern employs fine grids,
which is necessary in very large arrays with high directiv-
ity. In addition, most space applications impose very tight
cross-polarization requirements. By directly optimizing the
cross-polarization figure of merit instead of the crosspolar
far field (for instance, the crosspolar discrimination in DBS
applications), the optimization is accelerated and the antenna
performance is improved. Finally, the presented framework
is used to design a reflectarray for a DBS application with
European coverage, starting from an efficient phase-only syn-
thesis and layout design using SVM, to a cross-polarization
performance optimization using the generalized Intersection
Approach, employing all the techniques previously intro-
duced. A thorough computational time study is carried out
to assess the impact of the techniques in the crosspolar opti-
mization algorithm.

The paper is organized as follows. Section II presents
the efficient analysis of reflectarray antennas, including the
formulation for the displacement of phase-shifters and cell
modeling with SVM. Section III presents the optimization
algorithm and the technique of differential contributions to
accelerate the gradient computation. Section IV shows an
efficient procedure to design a contoured beam reflectarray
for DBS applications. In Section V, the results of the crosspo-
lar optimization using all previous techniques are presented,

as well as a thorough computing time study to assess the
impact of those techniques in the optimization algorithm.
Finally, Section VI contains the conclusions.

II. EFFICIENT ANALYSIS OF REFLECTARRAYS
A. CLASSIC APPROACH
FIGURE 2 shows a sketch of the single-offset reflectar-
ray geometry under consideration. It consists of a planar
reflectarray illuminated by a feed, usually a horn antenna,
which generates a tangential incident field on the reflectarray
surface:

EEX/Yinc (x, y) = EX/Yinc,x(x, y) x̂ + E
X/Y
inc,y(x, y) ŷ, (1)

where the superscript indicates the linear polarization of the
horn antenna, the subscript the component of the field with
regard to the reflectarray coordinate system (see FIGURE 2)
and (x, y) is a point in the reflectarray surface. Only the
tangential field at the aperture is of interest to later compute
the radiation pattern. On the other hand, the reflected field is
obtained, at each reflectarray element, as:

EEX/Yref (xk , yk ) = Rk · EE
X/Y
inc (xk , yk ), (2)

where (xk , yk ) are the coordinates of the k th element and Rk
is a 2× 2 matrix known as the reflection coefficient matrix:

Rk =

(
ρxx,k ρxy,k
ρyx,k ρyy,k

)
. (3)

The reflection coefficients do not depend on the polarization
of the feed. For a given feed polarization and oblique inci-
dence, the incident field presents two tangential components
x̂ and ŷ as expressed by (1), which then will be multiplied
by (3) to obtain the tangential reflected field. The reflec-
tion coefficients are complex numbers that characterize the
behavior of the unit cell in a periodic environment. ρxx and
ρyy are known as the direct coefficients, and they control
the shape of the copolar pattern through their phases and the
losses through their magnitude. On the other hand, ρxy and
ρyx are the cross-coefficients and considerably contribute to
the crosspolar pattern. Matrix Rk is computed with a FW-LP
tool [2] and the value of the reflection coefficients depends on
several parameters, such as the unit cell geometry, frequency,
periodicity, angle of incidence of the impinging wave and
substrate properties. The magnetic tangential field is easily
obtained from (2) following [21].

Once the tangential reflected field has been obtained
with (2), the far field in spherical coordinates may be
computed according to the first principle of equivalence in
electromagnetics, also known as Love’s equivalence princi-
ple [22]. For this purpose, the spectrum functions are com-
puted as the Fourier transform of the tangential field at the
aperture:

PX/Yx/y (u, v) =
∫∫

S
EX/Yref,x/y(x, y) e

jk0(ux+vy) dx dy,

QX/Yx/y (u, v) =
∫∫

S
HX/Y
ref,x/y(x, y) e

jk0(ux+vy) dx dy, (4)
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FIGURE 3. Sketch of the reflectarray unit cell and the construction of the reflection coefficients matrix Rk using the SVM. The unit cell is comprised of
two sets of parallel dipoles, one controlling polarization X (dipoles oriented in x̂) and another controlling polarization Y (dipoles oriented in ŷ), in two
different layers (black dipoles in the top layer and gray dipoles in the middle layer) backed by a ground plane (bottom layer). For the SVM training, only
two geometrical variables are considered, Tx and Ty, with the lengths of the dipoles proportional to them as in [26]. Then, Tx and Ty are the input
variables of the SVM, whose output is the electromagnetic response of the unit cell for a given angle of incidence (θ, ϕ) of the impinging plane wave,
i.e., the reflection coefficient matrix Rk , whose elements are obtained as a linear combination of the SVM kernels.

where u = sin θ cosϕ, v = sin θ sinϕ; S is the surface
of the aperture and k0 is the wavenumber in vacuum. The
reflected magnetic field can be obtained from (2) assuming a
locally incident plane wave coming from the feed as in [21].
In addition, the integrals in (4) may be efficiently evaluated
with the FFT algorithm [2]. Finally, the copolar and crosspo-
lar components are obtained using Ludwig’s third definition
of cross-polarization. Explicit transformation matrices from
spherical to copolar and crosspolar components for both lin-
ear polarizations may be found in [18].

B. ANALYSIS CONSIDERING UNIT CELLS WITH PHYSICAL
DISPLACEMENT OF PHASE-SHIFTERS
The unit cell is an important factor for the reflectarray per-
formance. In particular, the unit cell should provide enough
phase-shift to perform a layout design, low losses and low
cross-polarization. In addition, decoupling between polar-
izations would facilitate the design, since each polarization
could be controlled independently. An adequate unit cell is
the one proposed in [23] and shown in FIGURE 3. This cell is
comprised of two sets of four parallel dipoles in two different
layers, one for each linear polarization. The set of four dipoles
oriented in x̂ controls the phase shift for polarization X, while
the set oriented in ŷ controls the phase shift for polarization Y.
In addition, both sets of dipoles are shifted half a period
in order to give enough room for the dipoles to provide a
large phase shift by increasing their length while avoiding
overlapping. The FW-LP tool which analyses the cell is the
Method of Moments based on Local Periodicity (MoM-LP)
described in [24], which has been extensively validated by
full-wave simulations of the whole antenna [13] as well as
with prototype measurements [23], [25]–[27]. This unit cell

has been chosen since it provides low cross-polarization and
a large phase-shift range with enough degrees of freedom to
perform reflectarray optimization [21], [23].

As it can be seen in FIGURE 3, the phasing cell of the
reflectarray element in one polarization is shifted by half
a period with respect to the orthogonal polarization. This
shift has to be taken into account in the illumination of the
reflectarray by considering that the positions of the dipoles
oriented in the ŷ axis are displaced half a period with respect
to the other set of dipoles. If this spacial shift is not taken
into account, the pointing direction of the main beam is not
well predicted when comparing simulations with measure-
ments [27]. Although the shift in the main beam is small,
it may have a significant impact for highly directive antennas,
as it will be shown later. Taking as reference the phase shifter
for polarization X (in the case of the chosen unit cell, the
dipoles oriented in x̂), let (x, y) be its reference coordinates.
Then, the reference coordinates of the phase shifter for polar-
ization Y (x ′, y ′) are related to (x, y) through:

x ′ = x +1x,

y ′ = y+1y. (5)

With this correction, (2) is modified as follows [27]:EX/Yref,x

EX/Yref,y

 = Rk

EX/Yinc,x(xk , yk )
∣∣∣
on pol. X dipoles

EX/Yinc,y(x
′
k , y
′
k )
∣∣∣
on pol. Y dipoles

 (6)

Since the incident field is obtained at different spatial coor-
dinates for each component, they cannot be directly added to
form the reflected field. In this regard, (6) incurs on abuse of
notation and this will be fixed shortly. Instead, the contribu-
tions from each phase-shifter will be added in the far field.
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FIGURE 4. Illustration of the physical displacement effect of the
phase-shifters on the integration surface to compute the spectrum
functions.

Please note that the reflection coefficients in (3) are the
same for both reference coordinates since they are computed
assuming local periodicity.

In this way, using (6) in (4) for the electric field it follows:

PX/Yx =

∫∫
S1
ρxx E

X/Y
inc,x(x, y)e

jk0(ux+vy) dx dy

+

∫∫
S2
ρxy E

X/Y
inc,y(x

′, y ′)ejk0(ux
′
+vy ′) dx ′ dy ′, (7)

PX/Yy =

∫∫
S1
ρyx E

X/Y
inc,x(x, y)e

jk0(ux+vy) dx dy

+

∫∫
S2
ρyy E

X/Y
inc,y(x

′, y ′)ejk0(ux
′
+vy ′) dx ′ dy ′. (8)

Each integral is calculated in different integration surfaces,
S1 and S2 as illustrated in FIGURE 4. To compute (7) and (8)
with the FFT as in [2] both integrals need to be related to
the same coordinates. Thus, considering (5) and after a few
operations it follows:

PX/Yx =

∫∫
S1
ρxx E

X/Y
inc,x(x, y)e

jk0(ux+vy) dx dy

+ ejk0(u1x+v1y)
∫∫

S1
ρxy E

X/Y
inc,y(x

′, y ′)ejk0(ux+vy) dx dy,

(9)

PX/Yy =

∫∫
S1
ρyx E

X/Y
inc,x(x, y)e

jk0(ux+vy) dx dy

+ ejk0(u1x+v1y)
∫∫

S1
ρyy E

X/Y
inc,y(x

′, y ′)ejk0(ux+vy) dx dy.

(10)

Now, each spectrum function may be computed with two
FFTs instead of one due to the spatial shift between the two
sets of dipoles. As a consequence, the spectrum functions
computation time is doubled, although a more accurate anal-
ysis of the reflectarray radiation pattern is achieved [27].

It must be highlighted that now the integrals in (9) and (10)
are only integrated in surface S1 so the FFTmay be employed,
but the ŷ component of the incident field is obtained in the
(x ′, y ′) coordinates, which depend on (x, y) through (5).
The procedure for the magnetic field spectrum functions

is analogous. Once they have been obtained, the copo-
lar and crosspolar components may be readily calculated
following [18].

C. SURROGATE MODEL OF THE UNIT CELL
Following the steps detailed above, the calculation of the Rk
matrix in (3) with a FW-LP tool is the most time consum-
ing step in the radiation pattern computation. Thus, for an
efficient optimization process, where the reflectarray analy-
sis is performed hundreds or even thousands of times, it is
interesting to accelerate the computation of Rk . In this work,
the chosen strategy is to model the behavior of the unit cell
with a machine learning algorithm known as Support Vector
Machine (SVM) [28].
SVMs are automatic and supervised learning algorithms

which are used to solve regression and classification prob-
lems. In the present case, the SVM regression characteristics
are adapted to seek a surrogate model of the unit cell. A com-
plete description of the SVM theory background and training
strategies may be found in [29]. Only the basic features will
be described here for completeness.
Given a training set of inputs and outputs, S =

{Exi, yi}i=1,2,...,Nr , with Exi ∈ χ ⊆ RL and yi ∈ R, the SVM
is used to obtain a function f which estimates the output ỹ
that corresponds to a new input Ex as:

ỹ = f (Ex) , (11)

where f follows the expression:

f (Ex) = b+
Ns∑
i=1

[(
α−i − α

+

i

)
K (Exi, Ex)

]
, (12)

and b is known as the offset, Ns is the total number of support
vectors, α+i and α−i are the optimal Lagrange multipliers,
and K is the kernel function, which in the present case is a
Gaussian kernel:

K (Ex, Ex ′) = exp
(
−γ ‖Ex − Ex ′‖2

)
, (13)

where ‖ · ‖ is the Euclidean norm and γ a tunable parameter.
Therefore, function f may be interpreted as a linear combi-
nation of Gaussian functions placed at the support vectors
plus an offset, where the width of the Gaussian functions is
inversely proportional to γ .

The obtained function f in (12) minimizes a regular-
ized risk functional that accounts for the empirical errors
(weighted by a tunable parameter C) and for the flatness of
f in the feature space (or its smoothness in the input space).
On the one hand, when the flatness is maximized, f has good
generalization properties. On the other hand, the empirical
errors (absolute difference between the value of the output
training samples and the output of the regression function)
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are the metric for howwell it fits the training samples. ThusC
provides a trade-off between the two. The parameters γ and
C determine the shape of function f and must be carefully
selected through a grid search in the (C, γ ) plane [29].

FIGURE 5. For the reflection coefficient ρyx with (θ = 35◦ϕ = 35◦),
comparison between (a), (b) the MoM-LP simulation and (c), (d) SVM
simulation for the (a), (c) magnitude in dB and (b), (d) phase in degrees.
Difference of the (e) magnitude is in dB and of the (f) phase in degrees.

The SVM is used to obtain the surrogate model of the
reflection coefficients matrix Rk for the chosen unit cell (see
FIGURE 3). As in [29], only two geometric variables are
considered, Tx and Ty, and the length of the dipoles will be
proportional to those variables, as specified in FIGURE 3.
In addition, one SVM will be trained per angle of incidence
(θ, ϕ). Due to the low losses the direct coefficients ρxx and ρyy
are smooth as a function of Tx and Ty, and thus the regression
error is very low. It is more difficult to obtain an accurate
surrogate model of the cross-coefficients. FIGURE 5 shows

a comparison in magnitude and phase of the cross-coefficient
ρyx for an oblique angle of incidence (θ = 35◦, ϕ = 35◦).
The magnitude difference is very low, always below−40 dB.
However, the phase difference shows high values where there
are abrupt changes which the SVM simulation tends to soften.
In any case, the mean absolute deviation (MAD) is 4◦ for
this case, and 4.5◦ for the phase of ρxy, which are consid-
ered very low values for a cross-coefficient (for the phases
of ρxx and ρyy the MAD is lower than 0.6◦). The average
relative error of the training for all reflection coefficients is
−33 dB following [29, eq. (11)], which will provide a high
degree of accuracy in the predicted radiation patterns. This
average relative error has been computed for the real and
imaginary part of all trained reflection coefficients over all
the considered incident angles.

Finally, it has been opted for a 2D problem to achieve
a highly accurate SVM model. In light of the results of
other works in the literature dealing with machine learning
algorithms in higher dimensions, it may be possible the use
of SVMs to increase the number of available degrees of free-
dom for reflectarray optimization. Nevertheless, as it will be
shown in Section V, the improvement of the achieved results
with two variables per element is significant with regard to
the starting point.

III. OPTIMIZATION FRAMEWORK FOR VERY
LARGE REFLECTARRAYS
A. GENERALIZED INTERSECTION APPROACH
In this section, the optimization algorithm for very large
reflectarrays is presented. It is based on the framework pro-
vided by the generalized Intersection Approach (IA) pre-
sented in [30] and particularized for reflectarray antennas
in [21]. FIGURE 6 shows a schematic flowchart of the
algorithm. Starting from the initial layout (or phase distri-
bution for a phase-only synthesis), it applies iteratively two
operations: the forward and the backward projections. In the
forward projection, the far field is computed and trimmed
according to some specification templates given in the form
of upper and lower masks. Then, in the backward projection
the trimmed pattern is employed as reference for a local
optimization procedure. This process is repeated until the
algorithm has converged.

The generalized IA can be employed either for phase-
only synthesis (POS) or to perform direct optimization of the
layout. For POS, the target is to obtain phase distributions for
the direct coefficients ρxx and ρyy. In this case, the reflectarray
unit cell is modeled as an ideal phase shifter with no losses
and no crosspolarization, in such a way that the optimization
of the copolar far field is independent for both linear polar-
izations, as detailed in [31]. These simplifications made in the
reflectarray unit cell analysis produce a computationally very
efficient and fast algorithm, which along with the improved
convergence properties of the generalized IA [32] allows to
perform copolar synthesis in a fast and reliable fashion. As a
drawback, the crosspolar pattern is not correctly character-
ized with this methodology, and thus there is no control over it
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FIGURE 6. Flowchart of the generalized Intersection Approach
particularized for the optimization of reflectarray antennas.

during the synthesis process. Once the phase distributions that
radiate the required copolar pattern are obtained, the dimen-
sions of the dipoles are adjusted using Tx and Ty to match
the phase shift of ρxx and ρyy, respectively, using a zero
finding routine [2]. A complete mathematical description of
the generalized IA for reflectarray POS may be found in [6],
using the Levenberg-Marquardt Algorithm (LMA) [31] as the
local optimizer in the backward projection.

On the other hand, thework presented in [21] for crosspolar
optimization employed a MoM-LP as analysis technique to
obtain an accurate prediction of the electromagnetic behav-
ior of the unit cell. However, that version of the algorithm
increases its computational cost due to the MoM-LP, and
thus makes it unfeasible to optimize very large reflectarrays
unless workstations are employed. In any case, the good
convergence properties of the algorithm allows to handle
tens of thousands of optimizing variables while obtaining
good results. This is done by minimizing the number of
local minima by working with the squared field amplitude
(or equivalently the gain) and performing the optimization in
several steps, increasing the number of optimizing variables
as suggested in [30].

From a computational point of view, despite the com-
putational improvements introduced to the generalized IA

in [21] and [31], there is still room for further improvements.
For instance, the use of SVMs instead of MoM-LP will
substantially accelerate the computation of the cost function
and Jacobian matrix. However, the acceleration of the latter
is limited since each column of the Jacobian only analy-
ses one reflectarray element, while for the radiation pattern
computation several FFTs are needed. For that reason, it is
proposed to accelerate the computation of the Jacobianmatrix
by employing the technique of differential contributions to
calculate the radiated field in each derivative. This technique
is the subject of the next subsection.

B. ACCELERATING JACOBIAN MATRIX COMPUTATION
WITH DIFFERENTIAL CONTRIBUTIONS
When doing POS, there is a direct expression relating the
optimizing variables and the cost function which is relatively
easy to derive analytically [33], [34]. However, this is not
the case when doing a direct optimization of the layout for
cross-polarization improvement, and finite differences must
be used [20], [21], which slows the computation of the gradi-
ent (Jacobian matrix). Thus, it is interesting to accelerate the
computation of the gradient, which is typically the most time
consuming operation in the optimization process.

There are a number of possibilities to accelerate the com-
putation of the gradient. The Adjoint VariableMethod (AVM)
is a class of techniques that allow to compute the derivatives
with regard to any number of optimizing variables with only
two simulations of the whole structure [35]. However, it typ-
ically deals with S parameters [36], [37], and it may not still
be used for pattern synthesis [36]. Another technique, specif-
ically developed for array antenna pattern synthesis, is the
technique of differential contributions (DFC) [38]. It accel-
erates the computation of the derivative by only considering
the differential contribution of the modified element. This is
possible thanks to the linearity ofMaxwell’s equations, which
provides a linear relation between the tangential field at the
aperture and the radiated field (either near or far field).

The Jacobian matrix may be formed with the gradient of a
multidimensional scalar cost function of the form:

∇R(Er, ξ̄ ) =
(
∂R(Er, ξ̄ )
∂ξ1

, · · · ,
∂R(Er, ξ̄ )
∂ξi

, · · · ,
∂R(Er, ξ̄ )
∂ξP

)
,

(14)

where ξ̄ = (ξ1, . . . , ξi, . . . , ξP) is a vector of P optimizing
variables and Er ∈ {Er1, . . . , Ert , . . . , ErT } an observation point
where the radiated field is computed. For the case of the far
field, Ert = (u, v)t and since the generalized IA uses the LMA
as theminimizing algorithm,R is the residual of the cost func-
tion [31]. When there is no analytical expression to calculate
each derivative, they are computed using finite differences.
Using a backward lateral difference, the derivative is:

∂R(Er, ξ̄ )
∂ξi

=
R(Er, ξ̄ )− R(Er, ξ̄ − hêi)

h
+O(h), (15)
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where h is a small positive scalar and êi is the i th unit vector.
To alleviate notation, henceforth we drop the dependence on
Er to focus on the optimization variables ξ̄ .
For the computation of the derivative by means of (15),

the residual R(ξ̄ ) depends on the far field EEff(ξ̄ ) and it is com-
mon to all P derivatives in (14), so it is only computed once.
On the other hand, R(ξ̄ − hêi) depends on EEff(ξ̄ − hêi), and is
computed for each derivative. Since the reflectarray analysis
assumes local periodicity, the modification of one element
(variable) does not affect the others, and the perturbed field
may be computed with the differential contribution:

EEff(ξ̄ − hêi) = EEff(ξ̄ )+1EEff(ξi), (16)

where 1EEff(ξi) is the differential contribution to the far field
produced by the reflectarray element depending on variable i:

1EEff(ξi) = EEff(ξi − h)− EEff(ξi). (17)

Thanks to the linearity ofMaxwell’s equations, there exists
a linear dependence of the radiated field (either near or far
field) at each point with respect to each contribution of the
tangential field at the aperture. If we denote by EEref,k (ξi)
the reflected tangential field of element k and depending on
variable ξi, (17) can be expressed writing the radiated field as
a function of the tangential field:

1EEff(ξi) = EEff(EEref,k (ξi − h))− EEff(EEref,k (ξi)). (18)

Since the radiated field is linear with respect to the tangential
field:

1EEff(ξi) = EEff(1EEref,k (ξi)), (19)

where:

1EEref,k (ξi) = EEref,k (ξi − h)− EEref,k (ξi). (20)

Thus, (19) indicates that to compute one derivative, only
the differential contribution of one element is necessary.
In practise, this means that, starting from the tangential field,
the time cost of computing the far field is reduced from
O(T logT ) when using the FFT to O(T ) using the Differ-
ential Contributions (DFC) technique in the computation of
each derivative [38]. The impact of this technique in the
optimization process will be analyzed in Section V.

IV. DESIGN OF A CONTOURED BEAM REFLECTARRAY
This section employs the generalized IA described in
Section III to perform the design of a contoured beam reflec-
tarray for DBS application with a European coverage. The
SVM is employed to greatly accelerate the layout design,
achieving speed up factors greater than three orders of mag-
nitude for the analysis and layout design.

A. ANTENNA SPECIFICATIONS
A sketch of the antenna geometry is shown in FIGURE 2. The
considered reflectarray is elliptical, has a total of 4 068 ele-
ments in a regular grid with 74 and 70 cells in its main axes.
The periodicity of the unit cell is 14 mm × 14 mm and

FIGURE 7. Discretization of the angles of incidence. (a) θ . (b) ϕ.

the working frequency is 11.85 GHz. The feed is modeled
as a cosq θ function with q = 23, generating an illumina-
tion taper of −17.9 dB. Also, the feed is placed at Erf =
(−358, 0, 1070) mm, while the whole antenna is on a satellite
in geostationary orbit at 10◦ E longitude. In addition, one
SVM is trained per angle of incidence, which are discretized
as shown in FIGURE 7. This discretization guarantees a high
accuracy in the computation of the radiation pattern with the
SVM [29]. A total of 136 pairs of (θ, ϕ) angles are obtained,
which are further reduced to 68 pairs using symmetries. For
the unit cell, the bottom layer has a height of hA = 2.363 mm
and a complex relative permittivity εr,A = 2.55 − j2.295 ·
10−3, while the top layer has a height of hB = 1.524 mm and
a complex relative permittivity εr,B = 2.17− j1.953 · 10−3.

FIGURE 8. Europe footprint with two coverage zones for DBS application
with (u,v) coordinates in the antenna coordinate system.

FIGURE 8 shows the contour requirements for Europe
with two coverage zones. This coverage is specified in the
antenna coordinate system, and for the synthesis it must be
transformed to the reflectarray coordinate system shown in
FIGURE 2 [2]. The copolar requirements are 28.5 dBi for
zone 1 and 25.5 dBi for zone 2. The outer contours for each
coverage zone represent the specifications taking into account
typical satellite pointing errors: 0.1◦ in roll, 0.1◦ in pitch and
0.5◦ in yaw. The optimization will be carried out in dual-
linear polarization using the same template specifications for
both polarizations.
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B. PHASE-ONLY SYNTHESIS
In the first step of the contoured beam reflectarray design,
the generalized IA is used to obtain a phase distribution such
that the desired copolar pattern is obtained for both linear
polarizations. Since this is a local search algorithm, a suitable
starting point is necessary to obtain good results. It has been
demonstrated that a properly focused reflectarray provides a
good starting point [39]. Thus, the initial phase distribution is
given by [2]:

6 ρ(xk , yk ) = k0 (dk − (xk cosϕ0 + yk sinϕ0) sin θ0), (21)

where 6 ρ(xk , yk ) corresponds to the phase of ρxx,k in polar-
ization X or ρyy,k in polarization Y, (θ0, ϕ0) is the pointing
direction of the reflectarray main beam, and dk the distance
between the k th reflectarray element and the phase center of
the feed. Two phase distributions are needed, one for each
linear polarization. In addition, the initial phase distribution
will be different for both polarizations since the phase-shifters
of the unit cell in FIGURE 3 are shifted half period, so dk in
(21) will be different for both linear polarizations at the k th
element.

FIGURE 9. For polarization X: (a) starting phase distribution (deg) for the
POS obtained with eq. (21) and (b) synthesized phase distribution (deg)
after the POS with the generalized Intersection Approach.

The result from this step is two phase-distributions which
generate the desired copolar pattern for both linear polariza-
tions that comply with certain requirements. Fig. 9(a) shows
the initial phase distribution for polarization X obtained
with (21). It generates a pencil beam pointing at (θ0, ϕ0) =
(16.6◦, 0◦), which approximately corresponds to the center of
zone 1 in the reflectarray coordinate system. The phase distri-
bution for Y polarization is similar. After the POS, the phase
distribution of Fig. 9(b) is obtained for X polarization. It must
be noted that these results were obtained taking into account
the formulation for the spatial displacement of the dipoles for
Y polarization. If this displacement is not taken into account,
the radiation pattern would be shifted. However, this only
occurs to polarization Y, and the copolar pattern of polariza-
tion X would remain the same [27], as shown in FIGURE 10.
The shift in the radiation pattern is close to 0.3◦, and in the
present case causes a significant drop in theminimum copolar
gain, as it will be later evaluated. Another space application in
which it is fundamental to consider this shift is in multibeam

FIGURE 10. Copolar radiation pattern in dBi for (a) polarization X and
(b) polarization Y when computed not taking into account the
displacement of the unit cell phase shifters.

applications, where the spacing between adjacent beams is
very narrow, of the order of 0.5◦-0.6◦ [4].

C. LAYOUT DESIGN
Once the desired phase-shift has been obtained, the next
step consists in finding the element dimensions that produce
the required phase-shift for each linear polarization. The
design procedure followed in this work is summarized in
FIGURE 11. For each reflectarray element, it performs the
following steps. First, it generates a table of phase-shifts
by varying Tx and Ty either with the MoM-LP tool or the
SVM. This is done independently for each variable since the
phase-shift is practically uncoupled for both variables [23].
We select two values for Tx and Ty which provide, for each
case, a phase-shift which is above and below the objective
value. Then, the estimated value of the length that provides
the required phase-shift is obtained using a linear equa-
tion approximation. Finally, using a zero-finding routine, for
instance the Newton-Raphson (NR) method, the exact value
of Tx and Ty is sought, taking into account the coupling
between phase-shifters that there may exist.
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FIGURE 11. Flowchart of the design procedure from the required
phase-shift to the final reflectarray layout.

FIGURE 12. Initial layout for upper layer obtained from the phase
distribution shown in Fig. 9(b).

Following the aforementioned procedure and employing
the unit cell shown in FIGURE 3, the layout of FIGURE 12
for the upper layer is obtained. When the layout is simulated
with SVM, the radiation patterns shown in FIGURE 13 are
obtained for polarization X. As it can be seen, it perfectly
complies with the specifications for the two coverages. Mini-
mum copolar gain for zone 1 is 29.29 dBi while for zone 2 is
26.03 dBi. Similar results were obtained for polarization Y,
where the minimum gain for zone 1 and 2 is 29.32 dBi and
26.03 dBi, respectively. These results were obtained taking
into account the physical displacement of the phase-shifter
for Y polarization. Otherwise, the copolar radiation pattern of
FIGURE 10 would be obtained, where the minimum copolar
gain for Y polarization drops to 27.72 dBi and 24.00 dBi for
zones 1 and 2, respectively, and thus not complying with the
requirements after the POS.

FIGURE 13. Radiation pattern in dBi for polarization X. (a) Copolar.
(b) Crosspolar.

The design has been carried out in a desktop computer
with an Intel Core i7-7700 at 3.60 GHz with eight CPUs
(four physical plus four virtual using hyperthreading). The
procedure has been parallelized to use all available threads.
With the MoM-LP it took 1 635.6 seconds (27 minutes and
15.6 seconds), while with SVM it took only 0.5 seconds,
which supposes an acceleration factor of 3 271. When ana-
lyzing the reflectarray layout comprised of 4 068 elements to
obtain the Rk matrices, using MoM-LP took 57.6 seconds,
while with SVM it took a mean time of 17.56 milliseconds,
which supposes an acceleration factor of 3 279. Thus, both the
analysis and design are accelerated more than three orders of
magnitude using the SVM instead of the MoM-LP tool in the
present case.

V. CROSSPOLAR OPTIMIZATION OF
REFLECTARRAY ANTENNAS
A. CROSS-POLARIZATION PERFORMANCE
The cross-polarization performance of antennas for space
applications such as DBS is usually measured with
the crosspolar discrimination (XPD) and the crosspolar
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isolation (XPI). The XPD is defined, in linear scale, as the
ratio point by point of the copolar and crosspolar gains for
a certain coverage zone. Sometimes, the worst XPD value
is considered, which corresponds to its minimum (XPDmin).
On the other hand, the XPI is defined in linear scale as the
ratio between the minimum copolar gain and the maximum
crosspolar gain for a given coverage zone. Please note that
due to their definition, the XPI is a stringent parameter than
the XPD to evaluate the cross-polarization performance in a
coverage zone.

For the reflectarray designed in Section IV, the simulated
layout with SVM gives a XPDmin of 31.46 dB for polar-
izations X and Y in zone 1, while they are 27.98 dB and
28.45 dB in zone 2 for polarizations X and Y, respectively.
The lower value in zone 2 is mainly due to the lower value of
the gain due to the copolar requirements. Similarly, the val-
ues for the XPI are 30.13 dB for polarizations X and Y in
zone 1, and 25.92 dB and 26.44 dB in zone 2 for polar-
izations X and Y, respectively. Although the specifications
for the XPD and XPI vary with the application, mission and
even with the coverage zone [26], they typically demand
values higher than 30 dB, which is not achieved in zone 2,
and by a small margin in zone 1. Thus, the goal will be to
improve the cross-polarization performance by carrying out
an optimization of the reflectarray layout.

B. DIRECT OPTIMIZATION OF
CROSS-POLARIZATION PARAMETERS
A direct optimization of the reflectarray layout to improve
the cross-polarization performance presents some challenges
with regard to the POS. First, the number of potential opti-
mizing variables considerably grows, since the number of
available degrees of freedom increases. This presents some
drawbacks: although it has the potential to provide better
results, the number of local minima grows exponentially
with the number of variables, making convergence more
difficult; and computationally, the algorithm becomes slower.
In addition, in the POS for two linear polarizations, they can
be synthesized independently, so the number of optimizing
variables is just one per reflectarray element (the phase of
ρxx or ρyy, depending on the polarization). This is not the case
when optimizing the cross-polarization performance, since
the radiation patterns for both linear polarizations depend
on the whole Rk matrix, and thus at least two variables per
element are required, while considering more components
of the far field. To overcome those issues, a number of
techniques were introduced in Sections II and III. The gen-
eralized Intersection Approach, with improved convergence
properties, is able to handle tens of thousands of optimizing
variables while achieving good results [21]. Also, SVMswere
introduced to accelerate the reflectarray analysis and the DFC
technique to speed up the computation of the gradient, which
is typically the most time consuming operation in gradient-
based local optimizers.

On the other hand, the usual approach to perform crosspo-
lar optimization is to impose some requirements directly on

the crosspolar pattern with the aim of reducing it [20], [21].
However, in some space applications, such as DBS, the fig-
ure of merit for cross-polarization performance is the
XPD or the XPI. If the crosspolar pattern is optimized,
the XPD and XPI are improved indirectly, providing subopti-
mal results. Thus, it is proposed to directly optimize the XPD
and XPI in order to further improve the cross-polarization
performance of the antenna [40].

The next step is to perform the crosspolar optimization
using as starting point the layout designed in Section IV
and shown in FIGURE 12. For this task, two approaches
will be employed: optimize the crosspolar pattern on the
one hand, and the crosspolar discrimination or crosspolar
isolation on the other hand. The aim is to show that, when
the figure of merit for the cross-polarization performance of
a reflectarray antenna is the XPD or XPI, it is best to directly
optimize the figure of merit. For the crosspolar optimization,
the same approach presented in [21] is employed, setting the
crosspolar template in the forward projector (see FIGURE 6)
40 dB below the maximum copolar gain. On the other hand,
to improve the minimum value of the XPDmin in both cover-
age zones, a minimum template of 40 dB is set in substitution
of the crosspolar template following [40]. The same applies
to the optimization of the XPI.

The different approaches were tested with the generalized
Intersection Approach, which was left to run 80 iterations
until the error stagnated for a better comparison. The evo-
lution of the XPDmin and XPI on the two coverage zones
(see FIGURE 8) for the three optimizations is shown in
FIGURE14. As it can be seen, the presented strategy provides
better results in the final value of XPDmin and XPI, which
are better when they are directly optimized. For instance, for
zone 1 the XPDmin reaches a value of 35.10 dB when opti-
mizing the crosspolar pattern, but it improves to 39.64 dB and
39.53 dBwhen optimizing the XPDmin and XPI, respectively,
in polarization X. This supposes an increment of more than
4 dB with the new proposed strategy over the usual approach,
and more than 8 dB over the starting point (31.46 dB). This
improvement occurs for both polarizations and both coverage
zones as shown in Table 1, where the final results for the
three optimization approaches are provided, including the
minimum copolar gain in both coverage zones.

FIGURE 15 shows the final radiation pattern for polariza-
tion X when the XPDmin is optimized. Comparing it with the
radiation pattern at the starting point of FIGURE13, the copo-
lar pattern is very similar, in fact it also complies with the
requirements after the optimization as shown in Table 1. The
crosspolar pattern is now lower, specially inside the coverage
zones where the XPDmin was considerably improved.
All the results shown in Table 1 were obtained using the

SVM as simulation tool. To compare the SVM simulations
with MoM-LP, the layout obtained after the XPI optimization
using the SVM was also simulated with MoM-LP and the
results are shown in Table 2. Two different MoM-LP simu-
lations were carried out to study the source of discrepancies
between the SVM and MoM-LP, one using the real angle
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TABLE 1. Results of the direct optimization using SVM of a reflectarray antenna with a European footprint with two coverage zones comparing different
strategies: the usual approach of optimizing the crosspolar component of the radiation pattern (XP opt.) and the new strategy of directly optimizing the
figure of merit (XPDmin opt. and XPI opt.). Values of CPmin are in dBi and values of XPDmin and XPI are in dB.

TABLE 2. Comparison between the SVM and MoM-LP simulations of the layout obtained after the XPI optimization. For the MoM-LP simulation two cases
are considered: using the real angles of incidence (MoM-LP), and the same angles of incidence as the SVM (MoM-LP; SVM angles). Values of CPmin are in
dBi and values of XPDmin and XPI are in dB.

FIGURE 14. Evolution of the (a) XPDmin and (b) XPI for the three different
optimization strategies studied in this work.

of incidence at each reflectarray element, and another using
the same discretization of the angles of incidence as the
SVM (see FIGURE 7). As it can be seen, when the layout

is simulated using the same angles of incidence as the SVM,
the differences between the SVM and MoM-LP predictions
are reduced. In this case, the only source of discrepancy is
the accuracy of the SVM model, which is demonstrated to
be reliable [29]. Nevertheless, even when simulating with the
real angles of incidence, the results are quite close to those
predicted by the SVM simulation. Since the optimization was
carried out with the SVM, it is feasible to accelerate com-
putations with the SVM and finally obtain a more accurate
prediction with a single MoM-LP analysis.

All the optimizationswere carried out at a single frequency.
However, since reflectarrays have inherently a low band-
width, it could be improved by performing optimization at
several frequencies [14], [20] using the techniques presented
in this work to considerably accelerate computations and
improve the performance of the antenna.

Finally, FIGURE 16 shows the differences in mm between
the initial and optimized layout (upper layer, see FIGURE 12)
for the Tx and Ty variables as defined in FIGURE 3. The
maximum variation in Tx is 1.94 mm while in Ty is 2.74 mm.
On the other hand, the mean absolute deviation for Tx is
0.15 mm while for Ty is 0.17 mm. Similar results were
obtained for the bottom layer.

C. COMPUTATIONAL PERFORMANCE
This section provides a thorough account of the compu-
tational performance of the optimization framework intro-
duced in this work, which employs the generalized IA
algorithm and integrates a number of techniques that improve
both, computational performance of the algorithm and cross-
polarization performance of the antenna with regard to the
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FIGURE 15. Obtained radiation pattern in dBi for polarization X after the
XPDmin optimization. (a) Copolar. (b) Crosspolar.

FIGURE 16. Differences in mm between the initial and optimized layout
of the upper layer for (a) Tx and (b) Ty.

baseline scenario [21]. On the one hand, the computational
performance is greatly improved by using SVMs instead
of MoM-LP for the reflectarray analysis during the opti-
mization loop. In this regard, there is an initial one-time
cost accounting for the 680 SVM trainings (68 angles and
10 coefficients per angle), that for the case at hand took
less than an hour using a workstation; this is the case since

the training of one SVM is independent from the rest and
can be easily parallelized. A new training should be per-
formed if the reflectarray element is changed, but the obtained
SVMs may be used for multiple designs and optimizations
with different radiation pattern requirements. In addition,
the gradient computation is accelerated by using the tech-
nique of differential contributions (DFC). On the other hand,
the final cross-polarization performance of the antenna is
improved by directly optimizing the figure of merit, which
it can be the XPD or XPI, depending on the application.
Moreover, the memory footprint is also reduced with regard
to the usual approach of directly optimizing the crosspolar
pattern, and also the algorithm is slightly accelerated since
the Jacobian matrix multiplication (see FIGURE 6) is faster.
All the results for the computational study of the optimization
algorithm were obtained in a workstation with two Intel
Xeon E5-2650v3, each with ten cores that handle a total
of 40 threads at 2.3 GHz.

TABLE 3. Computational time study of the optimization algorithm for an
FFT resolution of 512×512 (44 748 points considered in the optimization)
and 7 993 optimizing variables. All values are in seconds.

Table 3 shows the computational results for the building
blocks of the LMA comparing several techniques. The FFT
resolution is 512×512 and the number of points considered
in the UV grid for the pattern optimization is T = 11 187.
Since two copolar and two crosspolar patterns are required
for dual-linear polarized reflectarrays, the total number of
points is 4T = 44 748. In addition, for the computation of the
radiation patterns with the first principle of equivalence, eight
spectrum functions are required, and two FFTs per spectrum
functions are used using the analysis detailed in Section II,
thus using a total of 16 FFTs in the computation of the far
field.

In principle, the most time consuming operation to cal-
culate the cost function is the analysis with MoM-LP to
obtain Rk . The DFC technique does not have any impact,
since it only applies to the computation of the gradient
(Jacobian matrix). Thus, the cost function is only accelerated
with the SVM, which considerably speeds up the unit cell
analysis. In fact, when only considering the computation of
Rk , the analysis is accelerated more than three orders of
magnitude with regard to the MoM-LP simulation, as shown
in Section IV. In the case of the cost function, also the
computation of 16 FFTs needs to be included, which accounts
for the remaining time shown in Table 3 and that are not
accelerated by the SVM.

The Jacobian matrix computation is substantially acceler-
ated by the combination of the SVM and DFC. By itself,
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the DFC technique accelerates the computation of the
Jacobian, going from taking almost 91 seconds to approx-
imately 62 seconds. Using only the SVM the computing
time is almost reduced by half. However, combining both
techniques, the gradient computation is acceleratedmore than
one order of magnitude, reaching a speed up factor of 22.3 in
the present case.

The matrix multiplication (JT J ) and the linear equation
solver are not accelerated neither by the use of SVMnorDFC,
so their computing time remain approximately the same. The
matrix multiplication depends on the size of the Jacobian
(total number of points in the UV grid times the number
of optimizing variables) while the time of the solver only
depends on the number of optimizing variables. The linear
equation solver is based on the Cholesky decomposition,
which is the fastest exact solver [31]. On the other hand,
the matrix multiplication is now the slowest operation in the
optimization process after the acceleration in the Jacobian
matrix computation. However, the computing time shown in
Table 3 corresponds to the classical approach of optimizing
the crosspolar pattern. When the XPD or XPI are optimized,
the number of points in the UV are reduced, since only one
cross-polarization parameter is taken into account per cover-
age zone. If T is the number of points in which the copolar
pattern is computed and P is the total number of optimizing
variables, the size of the Jacobian is reduced from 4T × P
when optimizing the crosspolar pattern to∼2T×Pwhen opti-
mizing the XPDmin or XPI. So not only the memory footprint
is approximately reduced by half, the matrix multiplication
computing time is also reduced. For the present case, this time
is reduced to 9.51 seconds. Thus, the time per iteration goes
from approximately 140 seconds of the standard approach to
15 seconds, a total acceleration of one order of magnitude
per iteration for the optimization process when all techniques
presented in this work are employed at the same time.

TABLE 4. Computational time study of the optimization algorithm for an
FFT resolution of 128×128 (2 800 points considered in the optimization)
and 7 993 optimizing variables. All values are in seconds.

Finally, Table 4 shows the same computing time study for
a reduced FFT resolution, which is now 128×128. Although
such low number of UV points does not provide enough reso-
lution for highly directive reflectarrays, it may be enough for
some small or medium sized antennas. Since now the FFT is
considerably faster than in the previous case, the acceleration
provided by the DFC technique has less impact in the overall
acceleration, where the SVM plays a more important role.
In addition, the Jacobian size is considerably reduced, and
thus the matrix multiplication is faster. Since the number

of optimizing variables is the same, the linear equation
solver takes the same time. The time per iteration is now
reduced from 97 seconds to 3.4 seconds, an acceleration
factor close to 30.

VI. CONCLUSIONS
This paper has presented a general and efficient framework
for the optimization of very large reflectarrays for space
applications. It is based on a two-step procedure, both using
the generalized Intersectation Approach. The first step con-
sists of a Phase-Only Synthesis (POS) which provides a
good starting point for the second step, where the crosspo-
lar optimization is carried out. With the aim of accelerat-
ing computations and improving antenna performance, three
strategies are employed. First, a machine learning algorithm
based on Support Vector Machines (SVMs), is used to obtain
a surrogate model of the reflectarray unit cell. This model
is used in substitution of a full-wave analysis tool based on
local periodicity, accelerating reflectarray analysis by more
than three orders of magnitude without compromising accu-
racy. Then, the technique of differential contributions on
the radiated field is employed to substantially accelerate the
computation of the gradient in array optimization. This novel
technique is based on the linearity of Maxwell’s equations,
which provides a linear relation between the tangential field
at the aperture and the radiated field (either near or far field).
In this way, only the contribution of one element is taken
into account for the computation of each column of the
Jacobian matrix, saving time. Finally, antenna performance is
improved by directly optimizing the figure of merit of inter-
est, either the crosspolar discrimination (XPD) or crosspolar
isolation (XPI), instead of the crosspolar pattern, which is the
usual approach.

This framework has been tested on a very large reflectar-
ray for a DBS mission with a European footprint and two
coverage zones, working in dual-linear polarization. The first
step provides a layout that fully complies with the copolar
gain requirements in both coverage zones and polarizations.
Then, a direct optimization of the reflectarray layout is per-
formed to improve the cross-polarization performance. Three
approaches are compared: optimation of the crosspolar pat-
tern, XPDmin and XPI. It is shown that directly optimizing
the figure of merit (XPDmin or XPI) provides better results in
less time than the usual strategy of optimizing the crosspolar
pattern.With regard to the starting point, the XPDmin and XPI
are improved more than 9 dB and 7 dB, respectively, while
maintaining the copolar pattern within specifications. Finally,
a study of the computational improvements of the techniques
described in this work is presented. The reflectarray analysis
and design are accelerated more than three orders of magni-
tude thanks to the use of SVMs while keeping a high degree
of agreement with MoM-LP simulations. On the other hand,
when SVMs and DFC are combined, the time per iteration
of the crosspolar optimization is accelerated more than one
order of magnitude.

72308 VOLUME 6, 2018



D. R. Prado et al.: General Framework for the Efficient Optimization of Reflectarray Antennas

ACKNOWLEDGMENT
The authors would like to thank Prof. J. A. Encinar and
Prof. R. R. Boix for the fruitful technical discussions on
reflectarray analysis.

REFERENCES
[1] W. A. Imbriale, S. Gao, and L. Boccia, Eds., Space Antenna Handbook.

Hoboken, NJ, USA: Wiley, 2012.
[2] J. Huang and J. A. Encinar, Reflectarray Antennas. Hoboken, NJ, USA:

Wiley, 2008.
[3] D. R. Prado, A. Campa, M. Arrebola, M. R. Pino, J. A. Encinar, and

F. Las-Heras, ‘‘Design, manufacture andmeasurement of a low-cost reflec-
tarray for global Earth coverage,’’ IEEE Antennas Wireless Propag. Lett.,
vol. 15, pp. 1418–1421, 2016.

[4] E. Martínez-de-Rioja, J. A. Encinar, A. Pino, B. González-Valdés,
S. V. Hum, and C. Tienda, ‘‘Bifocal design procedure for dual-reflectarray
antennas in offset configurations,’’ IEEE Antennas Wireless Propag. Lett.,
vol. 17, no. 8, pp. 1421–1425, Aug. 2018.

[5] C. Tienda, M. Younis, P. López-Dekker, and P. Laskowski, ‘‘Ka-band
reflectarray antenna system for SAR applications,’’ in Proc. 8th Eur. Conf.
Antennas Propag. (EUCAP), The Hague, The Netherlands, Apr. 2014,
pp. 1603–1606.

[6] D. R. Prado, M. Arrebola, M. R. Pino, and F. Las-Heras, ‘‘Improved reflec-
tarray phase-only synthesis using the generalized intersection approach
with dielectric frame and first principle of equivalence,’’ Int. J. Anten-
nas Propag., vol. 2017, pp. 1–11, May 2017. [Online]. Available:
https://www.hindawi.com/journals/ijap/2017/3829390/abs/

[7] J. A. Zornoza and J. A. Encinar, ‘‘Efficient phase-only synthesis of
contoured-beam patterns for very large reflectarrays,’’ Int. J. RF Microw.
Comput.-Aided Eng., vol. 14, no. 5, pp. 415–423, Sep. 2004.

[8] A. Capozzoli, C. Curcio, A. Liseno, and G. Toso, ‘‘Fast, phase-only
synthesis of aperiodic reflectarrays using NUFFTs and CUDA,’’ Prog.
Electromagn. Res. A, vol. 156, pp. 83–103, 2016.

[9] D.-C. Chang and M.-C. Huang, ‘‘Multiple-polarization microstrip reflec-
tarray antenna with high efficiency and low cross-polarization,’’ IEEE
Trans. Antennas Propag., vol. 43, no. 8, pp. 829–834, Aug. 1995.

[10] H. Hasani, M. Kamyab, and A. Mirkamali, ‘‘Low cross-polarization
reflectarray antenna,’’ IEEE Trans. Antennas Propag., vol. 59, no. 5,
pp. 1752–1756, May 2011.

[11] J. A. Encinar and M. Arrebola, ‘‘Reduction of cross-polarization in con-
toured beam reflectarrays using a three-layer configuration,’’ in Proc.
IEEE Antennas Propag. Soc. Int. Symp., Honolulu, HI, USA, Jun. 2007,
pp. 5303–5306.

[12] C. Tienda, J. A. Encinar,M. Arrebola,M. Barba, and E. Carrasco, ‘‘Design,
manufacturing and test of a dual-reflectarray antenna with improved band-
width and reduced cross-polarization,’’ IEEE Trans. Antennas Propag.,
vol. 61, no. 3, pp. 1180–1190, Mar. 2013.

[13] R. Florencio, J. A. Encinar, R. R. Boix, G. Pérez-Palomino, and G. Toso,
‘‘Cross-polar reduction in reflectarray antennas by means of element
rotation,’’ in Proc. 10th Eur. Conf. Antennas Propag. (EuCAP), Davos,
Switzerland, Apr. 2016, pp. 1–5.

[14] J. A. Encinar, M. Arrebola, L. F. de la Fuente, and G. Toso, ‘‘A
transmit-receive reflectarray antenna for direct broadcast satellite appli-
cations,’’ IEEE Trans. Antennas Propag., vol. 59, no. 9, pp. 3255–3264,
Sep. 2011.

[15] O. M. Bucci, A. Capozzoli, G. D’Elia, and S. Musto, ‘‘A new
approach to the power pattern synthesis of reflectarrays,’’ in Proc.
URSI Int. Symp. Electromagn. Theory (EMTS), Pisa, Italy, May 2004,
pp. 1053–1055.

[16] O. M. Bucci, A. Capozzoli, G. D’Elia, and S. Russo, ‘‘Power pattern
synthesis of reflectarrays: Comparison between two approaches,’’ in Proc.
15th Riunione Nazionale Elettromagn. (CD-ROM), Cagliari, Italy,
Sep. 2004, pp. 1–4.

[17] O. M. Bucci, A. Capozzoli, G. D’Elia, and S. Russo, ‘‘An advanced
technique for reflectarray power pattern synthesis and its experimental
validation,’’ in Proc. Int. Symp. Antennas Propag. (ISAP), Seoul, South
Korea, Aug. 2005, pp. 561–564.

[18] D. R. Prado, M. Arrebola, M. R. Pino, and F. Las-Heras, ‘‘Complex
reflection coefficient synthesis applied to dual-polarized reflectarrays with
cross-polar requirements,’’ IEEE Trans. Antennas Propag., vol. 63, no. 9,
pp. 3897–3907, Sep. 2015.

[19] H. Legay, D. Bresciani, E. Labiole, R. Chiniard, and R. Gillard, ‘‘A multi
facets composite panel reflectarray antenna for a space contoured beam
antenna in Ku band,’’ Progr. Electromagn. Res. B, vol. 54, pp. 1–26,
Aug. 2013.

[20] M. Zhou, S. B. Sørensen, O. S. Kim, E. Jørgensen, P. Meincke, and
O. Breinbjerg, ‘‘Direct optimization of printed reflectarrays for contoured
beam satellite antenna applications,’’ IEEE Trans. Antennas Propag.,
vol. 61, no. 4, pp. 1995–2004, Apr. 2013.

[21] D. R. Prado et al., ‘‘Efficient crosspolar optimization of shaped-beam
dual-polarized reflectarrays using full-wave analysis for the antenna ele-
ment characterization,’’ IEEE Trans. Antennas Propag., vol. 65, no. 2,
pp. 623–635, Feb. 2017.

[22] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 3rd ed.
Hoboken, NJ, USA: Wiley, 2012.

[23] R. Florencio, J. A. Encinar, R. R. Boix, V. Losada, and G. Toso,
‘‘Reflectarray antennas for dual polarization and broadband telecom
satellite applications,’’ IEEE Trans. Antennas Propag., vol. 63, no. 4,
pp. 1234–1246, Apr. 2015.

[24] R. Florencio, R. R. Boix, and J. A. Encinar, ‘‘Enhanced MoM analysis
of the scattering by periodic strip gratings in multilayered substrates,’’
IEEE Trans. Antennas Propag., vol. 61, no. 10, pp. 5088–5099, Oct. 2013.

[25] E. M. de Rioja, J. A. Encinar, M. Barba, R. Florencio, R. R. Boix, and
V. Losada, ‘‘Dual polarized reflectarray transmit antenna for operation
in Ku− and Ka-bands with independent feeds,’’ IEEE Trans. Antennas
Propag., vol. 65, no. 6, pp. 3241–3246, Jun. 2017.

[26] J. A. Encinar et al., ‘‘Dual-polarization reflectarray in Ku-band based on
two layers of dipole arrays for a transmit–receive satellite antenna with
SouthAmerican coverage,’’ Int. J.Microw.Wireless Technol., vol. 10, no. 2,
pp. 149–159, 2018.

[27] J. A. Encinar et al., ‘‘Reflectarray antennas with improved performances
and design techniques,’’ Eur. Space Agency, Paris, France, Tech. Rep. FR-
ITT7064-UPM-15062016, Jun. 2016.

[28] B. Schölkopf and A. J. Smola, Learning With Kernels, 1st ed. Cambridge,
MA, USA: MIT Press, 2001.

[29] D. R. Prado, J. A. López-Fernández, G. Barquero, M. Arrebola, and
F. Las-Heras, ‘‘Fast and accurate modeling of dual-polarized reflectarray
unit cells using support vector machines,’’ IEEE Trans. Antennas Propag.,
vol. 66, no. 3, pp. 1258–1270, Mar. 2018.

[30] O. M. Bucci, G. D’Elia, G. Mazzarella, and G. Panariello, ‘‘Antenna
pattern synthesis: A new general approach,’’ Proc. IEEE, vol. 82, no. 3,
pp. 358–371, Mar. 1994.

[31] D. R. Prado, J. Álvarez, M. Arrebola, M. R. Pino, R. G. Ayestarán, and
F. Las-Heras, ‘‘Efficient, accurate and scalable reflectarray phase-only
synthesis based on the Levenberg-Marquardt algorithm,’’ Appl. Comput.
Electromagn. Soc. J., vol. 30, no. 12, pp. 1246–1255, Dec. 2015.

[32] D. R. Prado, M. Arrebola, M. R. Pino, and F. Las-Heras, ‘‘Improving
convergence in crosspolar optimization of reflectarray antennas,’’ in Proc.
11th Eur. Conf. Antennas Propag. (EuCAP), Paris, France, Mar. 2017,
pp. 100–103.

[33] J. Álvarez et al., ‘‘Near field multifocusing on antenna arrays via non-
convex optimisation,’’ IET Microw., Antennas Propag., vol. 8, no. 10,
pp. 754–764, Jul. 2014.

[34] T. H. Ismail, D. I. Abu-Al-Nadi, andM. J. Mismar, ‘‘Phase-only control for
antenna pattern synthesis of linear arrays using the Levenberg–Marquardt
algorithm,’’ Electromagnetics, vol. 24, no. 7, pp. 555–564, 2004.

[35] M. Bakr, A. Elsherbeni, and V. Demir, Adjoint Sensitivity Analysis of
High Frequency Structures With MATLAB. Edison, NJ, USA: SciTech
Publishing, 2017.

[36] M. Ghassemi, M. Bakr, and N. Sangary, ‘‘Antenna design exploiting
adjoint sensitivity-based geometry evolution,’’ IET Microw. Antennas
Propag., vol. 7, no. 4, pp. 268–276, Mar. 2013.

[37] S. Koziel and A. Bekasiewicz, ‘‘Fast EM-driven size reduction of antenna
structures by means of adjoint sensitivities and trust regions,’’ IEEE Anten-
nas Wireless Propag. Lett., vol. 14, pp. 1681–1684, 2015.

[38] D. R. Prado, A. F. Vaquero, M. Arrebola, M. R. Pino, and F. Las-Heras,
‘‘Acceleration of gradient-based algorithms for array antenna synthesis
with far-field or near-field constraints,’’ IEEE Trans. Antennas Propag.,
vol. 66, no. 10, pp. 5239–5248, Oct. 2018.

[39] J. A. Encinar and J. A. Zornoza, ‘‘Three-layer printed reflectarrays for con-
toured beam space applications,’’ IEEE Trans. Antennas Propag., vol. 52,
no. 5, pp. 1138–1148, May 2004.

[40] D. R. Prado and M. Arrebola, ‘‘Effective XPD and XPI optimization in
reflectarrays for satellite missions,’’ IEEE AntennasWireless Propag. Lett.,
vol. 17, no. 10, pp. 1856–1860, Oct. 2018.

VOLUME 6, 2018 72309



D. R. Prado et al.: General Framework for the Efficient Optimization of Reflectarray Antennas

DANIEL R. PRADO was born in Sama de
Langreo, Asturias, Spain, in 1986. He received
the B.Sc., M.Sc., and Ph.D. degrees in telecom-
munication engineering from the University of
Oviedo, Gijón, Spain, in 2011, 2012, and 2016,
respectively.

From 2010 to 2011, he was with the Institute
of Electronics, Communications and Information
Technology, Queen’s University Belfast, Belfast,
U.K., where he was involved in the design of

leaky-wave antennas as part of his B.Sc. research project. From 2011 to 2017,
he was a Research Assistant with the Signal Theory and Communications
Area, University of Oviedo, where he was involved in the development of
efficient techniques for the analysis and synthesis of reflectarray antennas.
In 2014, he was a Visiting Scholar with the School of Electrical Engineering,
KTH Royal Institute of Technology, Stockholm, Sweden, where he was
involved in transformation optics applied to dielectric lenses. Since 2018,
he has been with the Institute of Sensors, Signals and Systems, Heriot-
Watt University, Edinburgh, U.K. His current research interests include the
analysis of nonuniform arrays and the development of efficient techniques for
the analysis and optimization of near and far fields of reflectarray antennas.

Dr. Prado was a recipient of a Pre-Doctoral Scholarship financed by
the Gobierno del Principado de Asturias and a Post-Doctoral Fellowship
partially financed by the European Union.

JESÚS A. LÓPEZ FERNÁNDEZ was born in
Avilés, Asturias, Spain. He received the M.Sc. and
Ph.D. degrees in telecommunication engineering
from the University of Vigo, Spain, in 1999 and
2009, respectively.

From 2002 to 2003, he was a Marie-Curie Vis-
iting Fellow with the Mechanical and Manufac-
turing Engineering Department, Trinity College
Dublin. Since 2003, he has been with the Electrical
Engineering Department, University of Oviedo,

Asturias, where he is currently an Associate Professor teaching courses on
digital communications and radar systems. His research interests include
iterative methods and speed-up schemes applied to scattering problems,
parallel algorithms, and signal processing techniques.

MANUEL ARREBOLA (S’99–M’07–SM’17) was
born in Lucena (Córdoba), Spain. He received the
M.Sc. degree in telecommunication engineering
from the University of Málaga, Málaga, Spain,
in 2002, and the Ph.D. degree from the Techni-
cal University of Madrid (UPM), Madrid, Spain,
in 2008.

From 2003 to 2007, he was a Research Assis-
tant with the Electromagnetism and Circuit Theory
Department, UPM. In 2005, he was a Visiting

Scholar with the Microwave Techniques Department, Universität Ulm, Ulm,
Germany. In 2007, he joined the Electrical Engineering Department, Univer-
sity of Oviedo, Gijón, Spain, where he is currently an Associate Professor.
In 2009, he enjoyed a two-month stay at the European Space Research
and Technology Centre, European Space Agency, Noordwijk, The Nether-
lands. In 2018, he was a Visiting Professor with the Edward S. Rogers Sr.
Department of Electrical and Computer Engineering, University of Toronto,
Toronto, ON, Canada. His current research interests include the development
of efficient analysis, design, and optimization techniques of reflectarray and
transmitarray antennas both in near and far fields.

Dr. Arrebola was a co-recipient of the 2007 S. A. Schelkunoff Transactions
Prize Paper Award by the IEEE Antennas and Propagation Society.

MARCOS R. PINO was born in Vigo, Spain,
in 1972. He received the M.Sc. and Ph.D.
degrees in telecommunication engineering from
the University of Vigo, Vigo, in 1997 and 2000,
respectively.

During 1998, he was a Visiting Scholar with the
ElectroScience Laboratory, The Ohio State Uni-
versity, Columbus, OH, USA. From 2000 to 2001,
he was an Assistant Professor with the University
of Vigo. Since 2001, he has been with the Elec-

trical Engineering Department, University of Oviedo, Gijón, Spain, where
he is currently an Associate Professor teaching courses on communication
systems and antenna design. His current research interests include antenna
design, measurement techniques, and efficient computational techniques
applied to EM problems, such as evaluation of radar cross section or scat-
tering from rough surfaces.

GEORGE GOUSSETIS (S’99–M’02–SM’12)
received the Diploma degree in electrical and
computer engineering from the National Technical
University of Athens, Athens, Greece, in 1998,
the B.Sc. degree (Hons.) in physics from Univer-
sity College London, London, U.K., in 2002,and
the Ph.D. degree from the University of Westmin-
ster, London, U.K., in 2002.

In 1998, he joined Space Engineering SpA,
Rome, Italy, as an RF Engineer. In 1999, he joined

the Wireless Communications Research Group, University of Westminster,
as a ResearchAssistant. From 2002 to 2006, hewas a Senior Research Fellow
with Loughborough University, Loughborough, U.K. From 2006 to 2009, he
was a Lecturer (Assistant Professor) with Heriot-Watt University, Edinburgh,
U.K. From 2009 to 2013, he was a Reader (Associate Professor) with
Queen’s University Belfast, U.K. In 2013, he joined Heriot-Watt University
as a Reader. Hewas promoted to Professor in 2014, where he currently directs
the Institute of Sensors, Signals and Systems. He has authored or co-authored
over 500 peer-reviewed papers, five book chapters, and one book. He holds
four patents. His current research interests include microwave and antenna
components and subsystems.

Dr. Goussetis was a recipient of a Research Fellowship from the Onassis
Foundation in 2001, the U.K. Royal Academy of Engineering from 2006 to
2011, and the European Marie-Curie Experienced Researcher Fellowships
from 2011 to 2012 and from 2014 to 2017. He was a co-recipient of
the 2011 European Space Agency Young Engineer of the Year Prize,
the 2011 EuCAP Best Student Paper Prize, the 2012 EuCAP Best Antenna
Theory Paper Prize, and the 2016 Bell Labs Prize. He has served as an
Associate Editor for the IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS.

72310 VOLUME 6, 2018


	INTRODUCTION
	EFFICIENT ANALYSIS OF REFLECTARRAYS
	CLASSIC APPROACH
	ANALYSIS CONSIDERING UNIT CELLS WITH PHYSICAL DISPLACEMENT OF PHASE-SHIFTERS
	SURROGATE MODEL OF THE UNIT CELL

	OPTIMIZATION FRAMEWORK FOR VERY LARGE REFLECTARRAYS
	GENERALIZED INTERSECTION APPROACH
	ACCELERATING JACOBIAN MATRIX COMPUTATION WITH DIFFERENTIAL CONTRIBUTIONS

	DESIGN OF A CONTOURED BEAM REFLECTARRAY
	ANTENNA SPECIFICATIONS
	PHASE-ONLY SYNTHESIS
	LAYOUT DESIGN

	CROSSPOLAR OPTIMIZATION OF REFLECTARRAY ANTENNAS
	CROSS-POLARIZATION PERFORMANCE
	DIRECT OPTIMIZATION OF CROSS-POLARIZATION PARAMETERS
	COMPUTATIONAL PERFORMANCE

	CONCLUSIONS
	REFERENCES
	Biographies
	DANIEL R. PRADO
	JESÚS A. LÓPEZ FERNÁNDEZ
	MANUEL ARREBOLA
	MARCOS R. PINO
	GEORGE GOUSSETIS


