
Received October 26, 2018, accepted November 9, 2018, date of publication November 19, 2018,
date of current version December 27, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2882255

MSV: An Algorithm for Coordinated Resource
Allocation in Network Function Virtualization
HANG LI 1,2,3, LUHAN WANG 1,2,3, XIANGMING WEN1,2,3,
ZHAOMING LU1,2,3, AND JINYAN LI4
1School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100088, China
2Beijing Laboratory of Advanced Information Networks, Beijing University of Posts and Telecommunications, Beijing 100088, China
3Beijing Key Laboratory of Network System Architecture and Convergence, Beijing 100876, China
4China Telecom Technology Innovation Center, Beijing 102209, China

Corresponding author: Luhan Wang (wluhan@bupt.edu.cn)

This work was supported in part by the Fundamental Research Funds for the Central Universities under Project 2018RC06, in part by the
111 Project B17007, in part by the Beijing Municipal Science and Technology Commission Research under Project Z171100005217001,
and in part by the National Science and Technology Major Project under Grant 2018ZX03001016.

ABSTRACT The proposition of network function virtualization (NFV) aims to solve the difficulty and
ossification in current network’s management and service provision caused by ever-growing NFs with
dedicated hardware. By decoupling the NFs from dedicated hardware to virtualized platform, NFV promises
flexible deployment and management of service function chains (SFCs). However, an optimal resource
allocation for requested SFC in NFV-based infrastructures should coordinately consider following three
stages: virtual network functions (VNFs) chain composing, VNF forwarding graph embedding, and VNFs
scheduling, which is a tough task as the decision of these three phases is mutually dependent. In this paper,
staring from the challenges in solving coordinated NFV resource allocation (NFV-RA), we first formulate a
typical three-stage coordinated NFV-RA model as a mixed integer programming (MIP) and, then, propose
a heuristic solution called merge–split viterbi (MSV). MSV can automatically determine the appropriate
number of VNF instances without given maximum number threshold, and it does not take the iterative
deployment strategy, which is commonly used in current solutions. The main idea of MSV is to first find a
global basic solution and, then, to further optimize the basic solution through some improvement procedures,
and this makes it not be easily trapped in local optimality and avoid complex anti-local-optimal measures
as well. Extensive experiments demonstrate that MSV can get solutions in global range with reasonable
execution time and achieves total cost ratio within 115% compared to the MIP implement.

INDEX TERMS NFV, coordinated resource allocation, service function chain.

I. INTRODUCTION
Service function Chain (SFC) [1] is an ordered sequence of
network functions (NFs) which should be traversed by a given
traffic flow to compose a certain service. Traditionally, these
network functions such as firewalls, proxies, Deep Packet
Inspections (DPIs), are integrated in specialized hardware
called middle-boxes [2], [3]. However, middle-boxes are gen-
erally expensive, vendor specific and location fixed which
makes flexible and dynamic resource management challeng-
ing. To this end, a novel network architecture called network
function virtualization (NFV) [4], [5] is proposed to decouple
network functions from dedicated hardware. In NFV, NFs are
placed within virtual machines (VMs) on commodity servers
in the form of software appliance which are referred to as
virtual network functions (VNFs). In this way, NFV enables

flexible SFC deployment based on geography or customer
sets since VNFs can be deployed on any servers in the
network.

Despite the much flexibility provided by NFV, a new chal-
lenging problem is how to achieve fast, scalable and flexi-
ble composition of SFC and resource allocation for VNFs
which is called NFV Resource Allocation (NFV-RA) [6].
NFV-RA mainly includes three stages [6], [7], VNFs Chain
Composing (VNFs-CC), VNF ForwardingGraph Embedding
(VNF-FGE) and VNFs Scheduling (VNFs-SCH). The VNFs-
CC is to decide the order of VNFs and the instance amount
of each VNF. The VNF-FGE mainly considers placing VNF
instances to appropriate locations to optimize certain objec-
tives. And the VNFs-SCH mainly deals with the problem
that how to schedule traffic among VNF instances. Fig. 1

76876
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-0036-2602
https://orcid.org/0000-0002-7056-5416

H. Li et al.: MSV: An Algorithm for Coordinated RA in NFV

FIGURE 1. An example of three stages in resource allocation. (a) Service function chain. (b) VNFs-CC. (c) VNF-FGE. (d) VNFs-SCH.

shows an example of above three stages. Existing researches
about NFV-RA mainly focus on studying one [8], [9] or two
stages [10], [11] (including two-stage coordination [12], [13])
of NFV-RA (readers could refer to [6] for more details),
however, these three stages are actually mutually dependent.
An optimal NFV-RA should consider above three stages coor-
dinately while the related resource and location constraints
are satisfied. Therefore, a recent trend in NFV-RA is to
study the coordination of NFV-RA’s three stages and in this
work we call it three-stage coordinated NFV-RA (TSC NFV-
RA) problem. Although there are a considerable number of
researches and investigations on NFV-RA in recent years,
most of works focus on one or two stages and use other stages
as input parameters or known conditions. Only a few works
study the TSCNFV-RA problem and propose the correspond-
ing solutions. However, there are still some shortcomings
in these solutions. Thus, further study on TSC NFV-RA is
needed.

To the best of our knowledge, following works study the
TSC NFV-RA problem. In [7], a heuristic based algorithm
JoraNFV is proposed to solve the VNFs-CC, VNF-FGE and
VNFs-SCH in a coordinated way. In [14], the TSC NFV-RA
problem is formulated as a joint service-function deployment
and traffic scheduling (SUPER) problem and an approxi-
mation algorithm based on the Markov approximation tech-
nique is proposed. Jang et al. [15] jointly optimize the three
stages of NFV-RA by proposing a polynomial time algorithm
based on linear relaxation and rounding. Ghaznavi et al. [16]
formulate the TSC NFV-RA problem as a distributed ser-
vice function chaining (DSFC) problem then develop a local
search heuristic called Kariz to solve it. Considering the
NP-hardness and high complexity of TSC NFV-RA problem,
almost all related works propose heuristic or approximation
algorithms to reduce the time complexity in orchestrating
resource allocation. However, there are still some chal-
lenges in designing the solution of TSC NFV-RA problem as
follows.

Challenge in determining the number of VNF instances.
In TSC NFV-RA problem, each type of VNF can have mul-
tiple instances to be deployed and the designed algorithm
should automatically determine the appropriate amount of
instances according to actual conditions of network dur-
ing the deployment. Such uncertainty of instance number
increases the difficulty of designing algorithms thus some
works [7], [14] set the maximum number of VNF instances.
In other words, the number of instances of each VNF cannot

exceed a preset threshold during the deployment. However,
finding the appropriate threshold is difficult. Some good
solutions may be missed when the threshold is set to be small
while big threshold will lead to the waste of the execution
time and space.

Challenge in iterative deployment strategy. Consider-
ing the characteristic of SFC, most of heuristic solu-
tions [7], [16]–[18] of coordinated NFV-RA take the iterative
deployment strategy: starting from the first VNF, VNFs in
SFC are deployed orderly and all the related NFV-RA stages
are coordinately solved during each VNF’s deployment pro-
cess. Here note that such strategy has the risk of being trapped
in a local optimal solution thus above heuristic solutions have
taken some extra measures to enlarge the search space. How-
ever, designing such anti-local-optimal measures is difficult
especially in balancing the complexity and the performance.
Some designed measures can effectively avoid the local opti-
mality but they may have high complexity in both time and
space. Conversely, some measures have low complexity but
their performance may be unsatisfactory.

Starting from above two challenges, in this work, we first
formulate a typical TSC NFV-RA model then propose a
heuristic solution called Merge-Split Viterbi (MSV) to solve
it. For each VNF of SFC, MSV can determine the appropriate
number of VNF instances without given maximum number
threshold. Besides, MSV does not take the iterative deploy-
ment strategy thus it avoids complex anti-local-optimal mea-
sures and realizes relatively low time complexity. The main
idea of MSV is to first find a global basic solution then
further to optimize this solution through some improvement
procedures.

This paper makes the following contributions specifically:
i) a typical TSC NFV-RA model is formulated as a mixed
integer programming (MIP) which is incorporated to account
for VNF deployment cost, bandwidth cost and delay cost.
ii) a heuristic solution MSV is proposed to solve above
TSC NFV-RA model. MSV does not require predefined
maximum instance number threshold and does not take the
iterative deployment strategy which makes it have relatively
low time complexity. To the best of our knowledge, MSV is
the first heuristic solution which does not take the iterative
deployment strategy in solving the TSC NFV-RA problems.
iii) extensive simulations are performed to evaluate MSV
from cost performance and execution time two perspectives.
The experimental result shows that MSV achieves competi-
tive cost performance compared to MIP implement and can

VOLUME 6, 2018 76877

H. Li et al.: MSV: An Algorithm for Coordinated RA in NFV

TABLE 1. Notations used in system model.

get the solution in global range with reasonable execution
time. The rest of the paper is organized as follows: The system
model is formulated in section II. Our solution is proposed
in section III and the evaluation of solution is presented in
section IV. Lastly, a short conclusion of the work is given in
section V.

II. SYSTEM MODEL
In this section, we introduce the mathematical system model
and related definitions. Table 1 shows the notations used in
model.

A. NETWORK TOPOLOGY
The substrate network topology is modeled as a graph
G = (N ,E) where N and E denote the set of nodes and
links respectively. Set N consists of the set Nfw of forward-
ing nodes and the set Nsv of service nodes set, i.e., N =
Nfw ∪ Nsv. Forwarding nodes only forward traffic flows to
other forwarding nodes or service nodes while service nodes
can not only forward flows but also carry the VNFs. Each
service node is considered as a commodity server hosting
multiple VMs and is endowed a set of available physical
resources (e.g., CPU, memory, storage, etc.) denoted by

Ares = {ar |r = 1, 2, . . . ,R}. Meanwhile, we use carm to
represent the resource capacity for type ar ∈ Ares of node
m ∈ Nsv. em,n ∈ E is the link between node m and node n
(m, n ∈ N) and dtm(em,n) denotes the transmission delay of
link em,n ∈ E . Here note that, for the better expression of
intra-node delay, we assume dummy link em,m ∈ E (m ∈ N)
and use dtm(em,m) to denote the intra-node delay of node
m ∈ N .

B. SERVICE FUNCTION CHAIN
An SFC is denoted as S = {min, v1, . . . , vws ,mout } where
v1, v2, . . . , vws are required VNFs and min,mout ∈ Nfw are
traffic ingress node and traffic egress node respectively. Traf-
fic flow coming from min is processed by VNFs in SFC then
forwarded to mout finally. Here we assume that there are no
duplicate VNFs in an SFC and use wS and lS to represent
the numbers of VNFs in SFC S and the length of SFC S
respectively, i.e., lS = wS + 2. Both VNFs and min,mout
are regarded as components of SFC and we use ux to denote
the x-th (x = 1, 2, . . . , lS) component in SFC S. Thus,
the ux satisfies u1 = min, ulS = mout and ux = vx−1
(x = 2, 3 . . . , lS − 1). Considering that each type of VNF
can be deployed multiple times, we use ux,i to represent the
i-th instance of ux .
As mentioned before, VNFs are deployed in VMs running

on the servers, so each VNF would require a certain amount
of resources which are often relevant with the traffic volume
passing through it. In this work, to reduce the complexity,
we assume it is a linear relationship between the traffic
volume and required resources and use parux to represent the
resource demand coefficient of a ux instance for resource type
ar ∈ Ares. So when f denotes the traffic volume handled
by a ux instance, the required resource type of ar ∈ Ares is
darux = parux f (note that ∀ar ∈ Ares : p

ar
u1 = parulS = 0).

Note that some VNFs can modify the traversing traffic vol-
ume [19] such as a video transcoder can change the encoding
of the video which may result in the change of traffic volume.
So we define the data rate scaling ratio of ux as ηux =

tout
tin

,
where tin and tout represent input and output traffic volume
respectively (note that ηu1 = ηulS = 1).

C. HOMOGENEOUS LINK
For the better description of later mathematical expressions,
we define the concept of homogeneous link [20]. In an SFC,
a link consisting of two adjacent components is called a
homogeneous link. For example, in Fig. 2, the SFC contains
four different homogeneous links. Here we use H = {hx |x =
1, 2, . . . , lS−1} to represent the homogeneous link set of SFC
S and call the traffic on hx as ‘‘traffic with type hx’’. We set fS
is the request traffic volume of SFC S and use fhx to denote the
request traffic volume on homogeneous link hx (i.e., fh1 = fS ,
fh2 = ηu2 fS , . . . , fhlS−1 = ηulS−1 fhlS−2).

D. DECISION VARIABLES
In this model, we introduce three kinds of decision vari-
ables: instance number decision variable σux ∈ σ , location

76878 VOLUME 6, 2018

H. Li et al.: MSV: An Algorithm for Coordinated RA in NFV

FIGURE 2. Homogeneous link.

decision variable ςmux,i ∈ ς and traffic volume decision vari-
able τ em,nhx ,i,j ∈ τ . Variable σux denotes the number of ux
instances. Variable ςmux,i is a binary value, which represents
whether ux,i is deployed on node m ∈ N .

ςmux,i =

{
1
0

if ux,i is deployed on node m,
otherwise.

(1)

Variable τ em,nhx ,i,j represents the traffic volume scheduled
from ux,i to ux+1,j (x = 1, 2, . . . , lS − 1) on edge em,n ∈ E .
Here we use X = (σ, ς, τ) to represent a solution of model.

E. CONSTRAINTS
1) BASIC CONSTRAINT
Eq. 2 ensures that each ux must be deployed at least once
while Eq. 3 ensures the relationship between σux and ςmux,i .
Eq. 4 makes ensure that each ux,i, i ∈ {1, 2, . . . , σux } can be
deployed only once.

∀ux ∈ S : σux ≥ 1 (2)

∀ux ∈ S :
∑
m∈N

σux∑
i=1

ςmux,i = σux (3)

∀ux ∈ S, i ∈ {1, 2, . . . , σux } :
∑
m∈N

ςmux,i = 1 (4)

2) LOCATION CONSTRAINT
Eq. 5 ensures that u1 and ulS are deployed only on min ∈ Nfw
and mout ∈ Nfw respectively and can be placed only once.

σu1 = 1, ςminu1,1 = 1

σulS = 1, ςmoutulS ,1
= 1 (5)

3) NODE CAPACITY CONSTRAINT
Eq. 6 guarantees that the resource capacities of nodes are not
violated.

∀ar ∈ Ares : ∀m ∈ N : ∀en,m ∈ E :
lS−1∑
x=2

σux∑
i=1

σux−1∑
j=1

paruxς
m
ux,iτ

en,m
hx−1,j,i

≤ carm (6)

4) TRAFFIC VOLUME DEMAND CONSTRAINT
Eq. 7 ensures that the traffic volume request of each homoge-
neous link is satisfied.

∀hx ∈ H : ∀em,n ∈ E :
∑
m∈N

σux∑
i=1

σux+1∑
j=1

ςmux,iτ
em,n
hx ,i,j = fhx (7)

5) FLOW CONSERVATION CONSTRAINT
Eq. 8 makes sure that for each type of traffic, the inflow
volume to an unprocessed node is equal to the outflow volume
from this node.

∀hx ∈ H : ∀em,n, en,o ∈ E : ∀i ∈ {1, 2, . . . , σux } :

∀j ∈ {1, 2, . . . , σux+1} :
∑
m∈N

τ
em,n
hx ,i,j =

∑
o∈N

τ
en,o
hx ,i,j (8)

F. OPTIMIZATION OBJECTIVE
In this model, the final optimization objective is to minimize
the total cost consisting of VNF deployment cost, delay cost
and bandwidth cost.

1) VNF DEPLOYMENT COST
Owing to the license cost and the standby energy cost [21],
deploying one VNF instance needs a certain amount of cost
and here we take this as VNF deployment cost. Eq. 9 is the
VNF deployment cost of SFC S where coefficient αux is the
deployment cost of one ux instance (note that αu1 = αulS = 0).

Cdeployment =
∑
ux∈S

αuxσux (9)

2) BANDWIDTH COST
The network provider always expects to minimize the total
bandwidth consumption in order to reduce the chance of
congestion and related operational cost. So we consider the
bandwidth consumption as one of the optimization objectives
in the form of bandwidth cost. Eq. 10 is the bandwidth
cost of SFC S where coefficient β is the cost coefficient of
transmitting one unit traffic.

Cbandwidth =
∑
hx∈H

∑
em,n∈E

σux∑
i=1

σux+1∑
j=1

βτ
em,n
hx ,i,j (10)

3) DELAY COST
The increase of end-to-end delay may hurt the service’s
performance and the users’ experience. So we also take the
end-to-end delay as one of the optimization objectives. Con-
sidering that high end-to-end delay will lead to low service
revenue, here we treat delay as a penalty to service revenue.
Thus, the delay cost means a kind of penalty cost and we
consider the end-to-end delay in the form of delay cost.
Although the precise relationship between end-to-end delay
and delay penalty cost should be modeled by investigating
historic marketing statistics, we assume that it is a linear
relationship for simplicity. Eq. 11 is the delay cost of SFC
S where coefficient δ is the delay penalty cost coefficient.

Cdelay =
∑
hx∈H

∑
em,n∈E

σux∑
i=1

σux+1∑
j=1

δdtm(em,n)τ
em,n
hx ,i,j (11)

In addition, we call the sum cost of bandwidth cost and
delay cost as link cost. It can be observed that the link cost
is proportional to the traffic volume and here we call the link

VOLUME 6, 2018 76879

H. Li et al.: MSV: An Algorithm for Coordinated RA in NFV

Algorithm 1 MSV Algorithm

1: (X ,Aleftres)←SplitChainViterbi(G,Ares, S, fS , λ);
2: for x = 2; x ≤ lS − 1; x ++ do
3: Classify(G,Aleftres , fS , λ, ε, ux);
4: end for
5: for x = 2; x ≤ lS − 1; x ++ do
6: if ux is not BigVNF then
7: (X ,Aleftres)←Merge(G,Aleftres , S, fS , λ,X , ux);
8: end if
9: end for
10: for x = 2; x ≤ lS − 1; x ++ do
11: if ux is BigVNF then
12: (X ,Aleftres)←Split(G,Aleftres , S, fS , λ,X , ux);
13: end if
14: end for
15: checkround ← 0;
16: while checkround < � do
17: for x = 2; x ≤ lS − 1; x ++ do
18: if ux is BigVNF then
19: (X ,Aleftres)←Update(G,Aleftres , S, fS ,X , ux);
20: end if
21: end for
22: checkround ← checkround + 1;
23: end while
24: End

cost under unit traffic volume as unit link cost. For each link
em,n ∈ E , we can calculate its unit link cost and thus we can
further obtain each path’s unit link cost. We define the unit
link cost between two nodes as the unit link cost of path who
has the smallest unit link cost between them.

4) OBJECTIVE FUNCTION
So the TSC NFV-RA model can be formulated as following
MIP model.

min (c1Cdeployment + c2Cbandwidth + c3Cdelay)

subject to (2)− (8) (12)

Here c1, c2 and c3 are relative importance coefficients.

III. MERGE-SPLIT VITERBI
In this section, we propose a heuristic solution called Merge-
Split Viterbi (MSV) to address above TSC NFV-RA model.
As mentioned before, MSV can automatically determine the
appropriate instance number of each VNF without given the
maximum threshold and MSV does not take the iterative
deployment strategy. The main idea of MSV is first to find
a global basic solution then further to optimize this solution
through some improvement procedures. The basic steps of
MSV are given in Alg. 1. MSV first gets the basic solu-
tion through SplitChainViterbi(.) procedure (line 1). Then
all the VNFs in SFC are classified by Classify(.) procedure
(lines 2-4). After that, MSV starts improvement procedures.
MSV first processes all the VNFs which meet the trigger

Algorithm 2 Procedure SplitChainViterbi(.)
1: procedure SplitChainViterbi(G,Ares, S, fS , λ)
2: Aleftres ← Ares;
3: for k = 1; k ≤ λ; k ++ do
4: ∀x ∈ {2, . . . , lS − 1},mi ∈ Nsv;
5: ξpath(ux ,mi)← Null;
6: ∀mi ∈ Nsv:
7: if cleftmi > pu2

fS
λ
then

8: ccum(u2,mi)← LinkCost(min,mi, fS/λ);
9: ξpath(u2,mi)← mi;
10: end if
11: for x = 3; x ≤ lS − 1; x ++ do
12: ∀mi ∈ Nsv,mj ∈ Nsv;

13: if cleftmj > pux
fS
λ

x−1∏
i=1

ηui then

14: ccum(ux ,mj) ← min{ccum(ux−1,mi) +

LinkCost(mi,mj,
fS
λ

x−1∏
i=1

ηui)};

15: ξpath(ux ,mj)← mi which makes
16: minimum ccum(ux ,mj);
17: end if
18: end for
19: ∀mi ∈ Nsv:
20: cfinalcum ← min{ccum(ulS−1,mi) +

LinkCost(mi,mout ,
fS
λ

lS−1∏
i=1

ηui)};

21: ξ
final
path ← mi which makes

22: minimum cfinalcum ;
23: Construct path ρ= (ξfinalpath , ξpath(ulS−1, ξ

final
path), . . .);

24: Get split chain deployment πk
25: according to path reverse(ρ);
26: Aleftres ← refresh(Aleftres);
27: end for
28: Get basic solution X according to π1, . . . , πλ;
29: return X and Aleftres ;
30: end procedure

condition in SFC with Merge(.) (line 5-9). Then MSV
continues to use Split(.) to process eligible VNFs in SFC
(line 10-14). At last,MSV usesUpdate(.) procedure to further
update the solution (line 15-23).

Note that MSV does not explicitly differentiate the types of
resources. For each service nodem ∈ Nsv, MSV calculates its

abstract total resource capacity cm =
R∑
r=1

χrc
ar
m in advance.

The χr (r = 1, 2, . . .R) can be set according to the impor-

tance of each resource. Similarly, MSV uses pux =
R∑
r=1

χrp
ar
ux

to represent the abstract total resource demand coefficient of
a ux instance and thus the required abstract total resource
of a ux instance is dux = pux f . In the following part of
introducing MSV, the resource indicates above abstract total
resource.

Still to introduce each main part of MSV in detail.

76880 VOLUME 6, 2018

H. Li et al.: MSV: An Algorithm for Coordinated RA in NFV

FIGURE 3. Modeling with multi-stage graph.

A. FIND BASIC SOLUTION
The procedure SplitChainViterbi(.) shown in Alg. 2 is used
for finding the global basic solution. The SplitChainViterbi(.)
is based on Viterbi algorithm and here we first intro-
duce the Viterbi algorithm and how it is applied in our
solution.

Viterbi algorithm [22] is a dynamic programming algo-
rithm for finding the most likely sequence of states from a
set of observed states. The main process of Viterbi algorithm
is as follow: Viterbi algorithm first constructs a multi-stage
graph consisting of the states and their relationships as shown
in Fig. 3(a). Each stage includes all possible states and there
is a transition cost ctrans(xi−1,j, xi,k) between all pairs of
states in successive stages. Then Viterbi algorithm computes
per state cumulative cost ccum(xi,k) for all xi−1 in the pre-
vious stage to xi’s stage which is computed by ccum(xi,k) =
min{ccum(xi−1,j)+ctrans(xi−1,j, xi,k)|j = 1, . . . ,mi−1} (here
i≥2 and ∀$: ccum(x1,$)=0). Above computation continu-
ously proceeds in the increasing order of stage until finishing
the final stage’s computation. Finally, by tracing from the
final stage back to the first stage, the most likely sequence
of states is constructed by the path which accumulates the
minimum cost. Viterbi algorithm can find the most likely

sequence of states in 2

(
n−1∑
i=1

mimi+1

)
time.

Inspired by [23], under our model, if we assume the request
traffic volume fS is fully small (or the resources of each
service node are infinite), thus each VNF of SFC is only need
to be deployed once (i.e., each VNF has only one instance),
we can establish this reduction model’s multi-stage graph
and solve it with Viterbi algorithm as shown in Fig. 3(b).
Here each stage is each type of VNF, each state is available
location of VNF (i.e., each service node) and the transition
cost between states is the link cost between nodes under
the matched traffic volume fhx . Now finding the most likely
sequence of states is to find the deployment path whose total
cost is minimum and this path is also the optimal solution of
this reduction model. Thus, Viterbi algorithm can solve this
reduction model optimally (lines 4-25 in Alg. 2) in2

(
wSN 2

)
time where N = Card(Nsv).

However, in our model, the request traffic volume fS may
be large and the resources are limited. So if we do not
consider multiple instances, the resource demands for VNFs
are large that none of service nodes can carry them. Thus,
extra instances may have to be added to split the traffic
flow to reduce the resource occupation of per VNF. But the
Viterbi algorithm requests that each VNF should be deployed
only once and thus above case may lead Viterbi algorithm to
find an empty solution. Although Viterbi algorithm cannot
solve our model directly, considering its global optimality,
we manage to apply it to find the global basic solution.

As discussed above, under the resource constraint, the
Viterbi algorithm is applicable only when the request traffic
volume is small. So here we divide the original SFC into
λ same split chains as shown in Fig. 4(b). Each split chain
is identical with original SFC in construction but its request
traffic volume is one λ-th of original request traffic volume,
i.e., fS/λ. Then we use the Viterbi algorithm to deploy the
split chains one by one. Here note that the size of λ must
ensure all the split chains can be deployed successfully by
the Viterbi algorithm. Here the success means for each of
split chain, Viterbi algorithm can find a nonempty solution.
In this work, the λ is regard as an input parameter and it
can be any reasonable value which satisfies above condition.
As all the split chains have the same ingress nodes and egress
nodes, after deploying all the split chains, we actually obtain
a solution for our model as shown in Fig. 4(c). Now we take
this solution as the basic solution (or start solution).

Above is the main idea of how the procedure
SplitChainViterbi(.) finds the basic solution. As each split
chain is deployed by Viterbi algorithm with a global per-
spective, the obtained solution is also a global relatively
high-quality solution and we start from this solution, further
optimize it through some improvement procedures.

B. IMPROVEMENT PROCEDURE
1) PROCEDURE OF CLASSIFYING
Before taking the improvement procedures, we first clas-
sify all the VNFs through Classify(.) as shown in Alg. 3.
The Classify(.) classifies the VNFs mainly according to

VOLUME 6, 2018 76881

H. Li et al.: MSV: An Algorithm for Coordinated RA in NFV

FIGURE 4. Find basic solution. (a) Service function chain. (b) Split chains. (c) Basic solution (logical representation).

Algorithm 3 Procedure Classify(.)

1: procedure Classify(G,Aleftres , fS , λ, ε, ux)
2: count ← 0;
3: for each m ∈ Nsv do

4: if cleftm < pux
fS
λ
·

x−1∏
i=1

ηui then

5: count ← count + 1;
6: end if
7: end for
8: if count > bε · Card(Nsv)c then
9: this VNF is BigVNF ;
10: end if
11: end procedure

each VNF’s pux and the detailed steps are as follow. The
Classify(.) procedure first calculates each instance’s resource
occupation dux of VNF in basic solution. Here note that all
the instances’ resource occupations of this VNF are same
because all the split chains have same traffic volume. Then
Classify(.) counts the number of service nodes whose remain-
ing resource is smaller than dux and if this number is larger
than bε · Card(Nsv)c, the Classify(.) classifies this VNF as
‘‘Big VNF’’. Here ε is the predefined precision parameter and
0<ε< 1. The Classify(.) procedure terminates when all the
VNFs in SFC have been classified.

After the classification, for the VNFs which are not ‘‘Big
VNFs’’, we first use the improvement procedure Merge(.) to
process their instances then we continue to use the improve-
ment procedure Split(.) to process the instances of ‘‘Big
VNFs’’. Here note that after these procedures, some split
chains will be changed and in the following part of introduc-
ing improvement procedures, the ‘‘split chain’’ represents the
original split chain in the basic solution of the hop or branch
that is currently being processed.

2) PROCEDURE OF MERGING
It can be observed in obtained basic solution that the instance
number of each VNF is same. However, for some VNFs,
especially which have the small size of resource demand
coefficient pux , the instance number in basic solution may
be superfluous. So here we introduce the first improvement
procedure Merge(.) as shown in Alg. 4. If one VNF meets
the trigger condition ofMerge(.), theMerge(.) starts from the
first split chain in current solution and tries to continuously

FIGURE 5. Procedure of merging.

Algorithm 4 Procedure Merge(.)

1: procedure Merge(G,Aleftres , S, fS , λ,X , ux)
2: Xcur ← X , count ← 1;
3: for k = 1; k ≤ λ - 1; k ++ do
4: Xorg← Xcur ;
5: Release ux,k , ux,k+1;
6: for each m ∈ Nsv do

7: if cleftm > pux (count + 1) fS
λ
·

x−1∏
i=1

ηui then

8: Assume ux,k is deployed on m;
9: Get this assumed solution Xasu;
10: if TotalCost(Xasu)<TotalCost(Xcur) then
11: Xcur ← Xasu;
12: Aleftres ← refresh(Aleftres);
13: end if
14: end if
15: end for
16: if Xorg = Xcur then
17: count ← 1;
18: else
19: count ← count + 1;
20: end if
21: end for
22: return X ← Xcur , A

left
res ;

23: end procedure

merge the instance in next following split chain, as shown
in Fig. 5. Here the ‘‘merge’’ indicates using one instance to
replace the spare instances. The detailedmerging process is as
follow. We first assume that the Merge(.) procedure has now
successfully merged k instances of ux (the initial value of k
is one), in other words, these k instances have been replaced

76882 VOLUME 6, 2018

H. Li et al.: MSV: An Algorithm for Coordinated RA in NFV

FIGURE 6. An example of SFC deployment.

by a new instance and the traffic volume on this new instance
becomes to k times of the original traffic volume reaching

to each instance of ux in basic solution, i.e., k · (fS
λ

x−1∏
i=1

ηui).

And we also assume the total cost of current solutions is
Ccur (the initial value of Ccur is the total cost of basic solu-
tion). Now the Merge(.) procedure continues to try to merge
above instance with the instance in next following split chain
(assuming this split chain is the l-th chain) with following
steps. The Merge(.) first eliminates these two instances to
release their resource occupations and it searches all the
service nodeswhich have enough resources to carry the traffic

with amount of (k+1)·(fS
λ

x−1∏
i=1

ηui). Each node meeting above

condition is a candidate node to deploy next new merging
instance and theMerge(.) calculates each candidate solution’s
total cost then selects theminimumone. If the total cost of this
selected solution is also smaller thanCcur , the current solution
will be replaced by the selected solution and the Merge(.)
continues next merging process. However, if no nodes can
carry above traffic volume or the minimum cost is larger than
Ccur , this merging process is considered to be failed. In this
case, the value of k is reset to one and theMerge(.) procedure
restarts from the l-th split chain. The Merge(.) procedure
terminates when all the instances have been processed.

3) PROCEDURE OF SPLITTING
In the basic solution, each split chain is deployed by Viterbi
algorithm. As mentioned above, Viterbi algorithm can obtain
optimal solution, however, such optimality is strictly under
the condition that each VNF has only one instance. So if
we consider the case of multiple instances, there may be
better deployment for each split chain. For example, in Fig. 6,
we deploy the chain shown in Fig. 6(a) to the substrate
network. If we use Viterbi algorithm to deploy this chain,
it will deploy the chain as shown in Fig. 6(b). However,
the deployment shown in Fig. 6(c) is obviously much better
than the former as the links ea,c and ec,e have very large
transmission delay. Viterbi algorithm has ignored the links
with small transmission delay such like ea,b and ea,d because
the integrant nodes b and d do not have enough resource to
carry the 10 units traffic volume. Above example indicates

Algorithm 5 Procedure Split(.)

1: procedure Split(G,Aleftres , S, fS , λ,X , ux)
2: Xcur ← X ;
3: for k = 1; k ≤ λ; k ++ do
4: Xorg← Xcur ;
5: Release ux,k ;
6: ∀mi ∈ Nsv,mj ∈ Nsv:
7: Assume split instances u1x,k , u

2
x,k are

8: deployed on mi, mj respectively;
9: τ←HopSCH (Nsrc,Fsrc,Ncur ,Csc,Rrem,Ndes,Ccd);
10: Get this assumed solution Xasu;
11: if TotalCost(Xasu) < TotalCost(Xcur) then
12: Xcur ← Xasu;
13: Aleftres ← refresh(Aleftres);
14: end if
15: end for
16: return X ← Xcur , A

left
res ;

17: end procedure

that Viterbi algorithm may miss some good paths whose
integrant nodes do not have enough resource. Besides, above
case more likely occurs in deploying the VNFs which have
the big size of resource demand coefficient pux because under
the same traffic volume, they request more resources so that
the Viterbi algorithmmay miss more nodes. So here we intro-
duce the second improvement procedure Split(.) as shown in
Alg. 5. If one VNF meets the trigger condition of Split(.),
the Split(.) starts from the first split chain in current solution
and tries to split each instance of the VNF, as shown in Fig. 7.
Here the ‘‘split’’ indicates using two instance to replace the
original instance so that the traffic can be split. The detailed
splitting process is as follow. We assume the total cost of
current solutions is Ccur . The Split(.) first eliminates the
target instance to release its resource occupation then starts to
search the appropriate nodes for two new instances through
procedure HopSCH (.). For every two nodes, the Split(.)
assumes the two new instances are deployed on these two
nodes then the HopSCH (.) scheduling the optimal traffic
of generated hops by using linear programming which can
be solved in polynomial time. The input parameters include
nodes set hosting source VNF (i.e. previous type of VNF)

VOLUME 6, 2018 76883

H. Li et al.: MSV: An Algorithm for Coordinated RA in NFV

FIGURE 7. procedure of splitting.

instances Nsrc = {mi|i = 1, 2, . . . , I }, traffics from each
source VNF instances Fsrc = {fi|i = 1, 2, . . . , I } (here
I = 1 or I = 2 as previous VNF may also be split),
nodes set hosting current VNF (i.e. current type of VNF)
instances Ncur = {mj|j = 1, 2}, unit link cost Csc = {cij|i =
1, 2, . . . , I ; j = 1, 2} between Nsrc and Ncur , remaining
resource on current nodes Rrem = {rj|j = 1, 2}, nodes set
hosting destination VNF instances Ndes = {mk |k = 1}, unit
link cost Ccd = {cjk |j = 1, 2; k = 1} between Ncur and
Ndes. When we use τij to denote the traffic allocating between
source and current VNF instances, the linear programming
can be formulated as:

min
I∑
i=1

2∑
j=1

cijτij +
2∑
j=1

1∑
k=1

cjk
I∑
i=1

ηuτij

s.t.

C1 :

2∑
j=1
τij = fi, i ∈ {1, 2, . . . , I }

C2 :
I∑
i=1

puτij ≤ rj, j ∈ {1, 2}
(13)

Here ηu and pu are the data rate scaling ratio and resource
demand coefficient of current VNF instance respectively.
Constraint C1 ensures all traffics from source VNF instances
are allocated while constraint C2 ensures the resources on
current nodes can carry the allocated traffic volume. Fig. 8
shows the HopSCH (.) procedure when I = 2. Note that
if above linear programming comes out to be no solution,
we set the cost of this generated hops to infinite. After the
HopSCH (.) procedure, the Split(.) calculates this newly gen-
erated solution’s total cost. For every two nodes, the Split(.)
repeats above steps then finds the solution with minimum
total cost. This solution is considered as a candidate solution
by Split(.) and if the total cost of it is smaller than Ccur ,
the current solution will be replaced by it and the Split(.) con-
tinues next split chain’s splitting process. If not, the Split(.)
starts next split chain’s splitting process. The Split(.) proce-
dure terminates when all the instances have been processed.

4) PROCEDURE OF UPDATING
The Split(.) procedure may generate new instances and
some instances may be allocated small traffic volume
while some instances may be allocated large traffic vol-
ume by HopSCH (.). It is highly possible that these

FIGURE 8. Hop scheduling.

small-traffic-allocated instances generated from different
split chains can also be merged. On the other hand, these
large-traffic-allocated instances may also have the possi-
bility to further be split. So the Update(.) procedure as
shown in Alg. 6 further updates these newly generated
instances. The Update(.) first sorts all the instances in
ascending order by the amount of allocated traffic volume,
then starting from the first instance, the Update(.) imple-
ments the Merge(.) procedure. After the Merge(.) procedure,
the Update(.) continues to implement the Split(.) proce-
dure and thus a round of Update(.) is completed. Note that
the Split(.) procedure in Update(.) may also generate new
instances which means Update(.) procedure can be imple-
mented again. So here we set a parameter�which represents
the total number of Update(.) rounds. One can set the �
to be larger to get better result but it will also spend more
time.

Algorithm 6 Procedure Update(.)

1: procedure Update(G,Aleftres , S, fS ,X , ux)
2: I = {Ii|i = 1, . . . , κ}←GetNewInstanceSet(X , ux);
3: Isort ← SortByTraffic(I);
4: (X ,Aleftres)← Merge(G,Aleftres , S, Isort ,X , ux);
5: (X ,Aleftres)← Split(G,Aleftres , S, Isort ,X , ux);
6: end procedure

C. TIME COMPLEXITY ANALYSIS
For the SplitChainViterbi(.) procedure, as the each split
chain is deployed by Viterbi algorithm in 2

(
wSN 2

)
(here

N = Card(Nsv)), the SplitChainViterbi(.) runs in Tscv =
O
(
wSλN 2

)
. Obviously, the Classify(.) runs in Tclassify =

O (wSN). For each type of VNF, the Merge(.) processes
its instances in Tmerge = O ((λ− 1)N). For the Split(.)
procedure, let φ (L) be time complexity of solving the

76884 VOLUME 6, 2018

H. Li et al.: MSV: An Algorithm for Coordinated RA in NFV

linear programming in Eq. 13. Actually, φ (L) is very small
as there are a few variables and constraints in Eq. 13.
Thus, for each type of VNF, the Split(.) processes its
instances in Tsplit = O

(
λφ (L)N 2

)
. For the Update(.) pro-

cedure, let ϕ (G) be the time complexity of sort function
for sorting G numbers. For the j-th VNF in SFC, when we
use λi,j1 and λi,j2 to denotes the number of instances pro-
cessed by Merge(.) and Split(.) in the i-th round Update(.)
procedure respectively, the procedure runs in T i,jupdate =

O
(
ϕ
(
2λi,j1

)
+(2λi,j1 − 1)N+2λi,j2 φ (L)N

2
)
. Finally, in the

worst case, considering that the complexity of Split(.) is
higher than Merge(.), we assume all the VNFs in SFC are
‘‘Big VNFs’’ thus the MSV runs in Tscv+Tclassify+wSTsplit+
�∑
i=1

wS∑
j=1

T i,jupdate. Note that this time complexity cannot reflect

the typical time complexity of the MSV as it is analyzed
under the worst case. In most case, MSV runs much faster
than above upper bound.

According to above equation, MSV has the time complex-
ity of O

(
N 2
)
for node number N overall and this is much

lower than JoraNFV’s [7] and Kariz’s [16] (to the best of our
knowledge, [7] and [16] are the only works we have known
so far which also propose heuristic solutions to solve the TSC
NFV-RA problem). In [7], although the time complexity of
JoraNFV is not exactly examined, according to the pseudo
code of JoraNFV, we can infer that the time complexity of
JoraNFV for node number is higher thanO

(
N 2
)
. On the other

hand, the Kariz achieves the time complexity ofO
(
N 3 logN

)
for node number. Both JoraNFV and Kariz take the iter-
ative deployment strategy so some extra anti-local-optimal
measures are added to them in order to avoid being trapped
in local optimality. But these measures also increase their
time complexity. On the contrary, MSV does not take the
iterative deployment strategy thus it does not require complex
anti-local-optimal measures and achieves relatively low time
complexity.

IV. PERFORMANCE EVALUATION
A. SIMULATION SETUP
1) SIMULATED NETWORK
The actual characteristic of substrate network topologies are
not well understood now as the network virtualization is a
new emerging field. So here we use three typical network
models: Random Network, Small-World Network [24] and
Scale-Free Network [25] as the simulated networks which
are generated with principle proposed in [20]. For each
simulated network, the node number is one of {10, 15,
20, 45, 50} and 30% nodes are forwarding nodes while
the others are service nodes. For the sake of simplicity,
we directly use the abstract total resource capacity intro-
duced in §III to represent the resource capacity on each
service node. Resource on each service node, transmission
delay on each link and intra-node delay of each node are
randomly generated following a uniform distribution given
in Table 2.

TABLE 2. Network simulation parameters.

TABLE 3. Virtual network function parameters.

2) SFCS AND VNFS
The ingress node and egress node in SFC are randomly
selected from forwarding nodes. The request traffic volume
is one of {20, 30} units and the SFC is one of following.

• Length-3: {min→VNF1→mout }
• Length-4: {min→VNF1→VNF2→mout }
• Length-5: {min→VNF1→VNF2→VNF3→mout }

Here Length-i contains all VNFs of Length-(i-1) and the
detailed parameters of above VNFs are given in Table 3.

3) PARAMETERS
We evaluate MSV in respect to substrate network type, node
number, length of SFC and split chains number. In each
experiment, a new network and a new SFC are generated
according to above setup and we use MSV to deploy this
SFC to this network. We repeat each experiment under the
same parameters 10 times and report the average. Note that
under above setup (generating principle of resource capacity
and setting of request traffic volume), obviously, the SFCs
whose request traffic volume is 20 units need to be split to
at least two split chains while 30 units SFCs need at least
three split chains. So when using MSV to deploy 20 units
SFCs, we set λ = 2 while for 30 units SFCs, we set λ = 3.
Note that in rare cases, especially when the scale of generated
network is small, the accompanied generated SFC requires
more split chains than above settings. In this case, we aban-
don above SFC and network then regenerate the SFC and
network in order to unify the number of split chains for later
time performance evaluation as the number of split chains
has influence on the execution time according to previous
time complexity analysis. Besides, the precision parameter
ε in Classify(.) procedure is set to ε = 0.4 and the round
parameter � is set to � = 1.

4) EVALUATION METHOD AND ENVIRONMENT
We evaluate the MSV from following two perspectives: cost
performance compared to MIP implement by CPLEX (we
consider the solutions obtained byMIP implement as optimal
solutions) and time performance. We carry out our simu-
lations in a PC with four 3.5GHz CPU cores and 32GB
memories using CPLEX 12.6.0.0 (MIP implement) and Mat-
lab 2016b (SFC and network generation, MSV implement).

VOLUME 6, 2018 76885

H. Li et al.: MSV: An Algorithm for Coordinated RA in NFV

FIGURE 9. Cost Performance of MSV with 20 units traffic volume (λ = 2). (a) Random Network. (b) Small-World Network. (c) Scale-Free Network.

FIGURE 10. Cost Performance of MSV with 30 units traffic volume (λ = 3). (a) Random Network. (b) Small-World Network. (c) Scale-Free Network.

TABLE 4. Cost Factors.

Besides, we use the linear programming function using the
Dual-Simplex algorithm in Matlab optimization toolbox to
solve the linear programming in HopSCH (.) procedure and
use Matlab’s own sort function to sort the branches in
Update(.) procedure.

B. COST PERFORMANCE
The related cost factors are set as in Table 4 and all the
relative importance coefficients are set to one. We compare
the MSV’s cost performance with MIP’s as shown in Fig. 9
and Fig. 10. The reported values are the ratio of MSV’s
costs and MIP’s costs. Here note that as the MIP implement
by CPLEX takes too much time when the scale of network
becomes larger, we compare MSV with MIP from 10 nodes
scale to 30 nodes scale (20 nodes scale network at most
for 5 length SFCs with λ = 3) for each type of network.
The result shows that the cost performance of MSV mainly
influenced by the length of SFC. With the increase of SFC
length, the performance gradually becomes worse. It can be
observed that among three kinds of networks, the Scale-Free
Network’s performance is influenced most by the growth of
the SFC’s length. On the other hand, the split chains number
do not have obvious impact on the performance. Besides, for

each different length SFC in each type of network, we can
observe that the total cost ratio does not have an obvious
change or fluctuation when the number of nodes increase
which means MSV does not be affected by the scale of
network and can always find the solution in global range.
The reason is that the procedures of finding basic solution and
improvement are always proceeded from global perspective
thus MSV can always get the solution in global range and
effectively avoid being trapped in local optimality. Overall,
the result showsMSV can usually get the solution whose total
cost within 1.15 times of MIP’s.

MSV also performs well when compared to JoraNFV [7]
and Kariz [16] in total cost performance (both [7] and [16]
consider a total cost consisting of various costs as the final
optimal objective and take the cost ratio of sub-solution
found by algorithms to optimal solution as the main eval-
uation method of algorithms). When we consider 5-length
SFC deployment, MSV performs better than JoraNFV and
achieves comparable performance to Kariz. According to the
performance evaluation in [7], the ratio to optimal solution of
JoraNFV is about 1.15 in average and within 1.25. However,
we can observe that the ratio to optimal solution of MSV
is about 1.1 in average and within 1.15 from Fig. 9 and
Fig. 10. On the other hand, the ratio to optimal solution of
Kariz is about 1.05 in average and within 1.1 according to
the performance evaluation in [16]. Although MSV performs
slightly worse than Kariz on the ratio to optimal solution,
it has much lower time complexity than Kariz’s.

76886 VOLUME 6, 2018

H. Li et al.: MSV: An Algorithm for Coordinated RA in NFV

FIGURE 11. Time Performance of MSV with 20 units traffic volume (λ = 2). (a) Random Network. (b) Small-World Network. (c) Scale-Free Network.

FIGURE 12. Time Performance of MSV with 30 units traffic volume (λ = 3). (a) Random Network. (b) Small-World Network. (c) Scale-Free Network.

C. TIME PERFORMANCE
To evaluate the time performance ofMSV,we plot the average
execution time on each type of network, as shown in Fig. 11
and Fig. 12. The result shows that in each type of net-
work, the average execution time increases as the number of
nodes and the length of SFC increase. Besides, by comparing
Fig. 11 and Fig. 12, we can also find that MSV takes more
time when the number of split chains increases. The type
of substrate network does not impact much on execution
time as the MSV takes similar time to deploy a SFC on
different type network.Here note that in both Fig. 11 and
Fig. 12, the 5-length SFCs’ average execution time is much
larger than other different length SFCs when the scale of
network is relatively small. The reason is that, as shown
in Table. 3, the resource demand coefficient of VNF1 is set
to be relatively large thus in most case, VNF1 is considered
as ‘‘Big VNF’’ by MSV and their instances are processed
by Split(.) procedure. Conversely, VNF2’s instances are pro-
cessed by Merge(.) procedure at most case as its resource
demand coefficient is relatively small. However, the VNF3’s
resource demand coefficient is set to be middle thus it is
processed differently in different scale of network. In small
scale networks, it is usually judged as ‘‘Big VNF’’ by MSV
and processed by Split(.) procedure. However, with the num-
ber of nodes increase, VNF3 is gradually considered as not
‘‘Big VNF’’ then processed by Merge(.) procedure instead.
As mentioned before, the complexity of Split(.) is higher
than Merge(.), so the 5-length SFCs’ average execution time
increases rapidly at first then tends to slow.

TABLE 5. Average execution time.

Table. 5 shows the average execution time comparison
between MSV and MIP implement when deploying 5-length
SFC (here λ = 3) on random network. It can be observed
that the MIP takes about 45 hours to deploy a 5-length SFC
on 20 nodes scale random network while MSV just only
takes about 6.048 seconds under aforementioned environ-
ment. Thus, the performance shows MSV can deploy SFC
in relatively short time and can be used for real-time SFC
deployment.

V. CONCLUSION
In this work, we propose a heuristic solution MSV to solve
a typical three-stage coordinated NFV resource allocation
model. MSV can automatically determine the appropriate
number of VNF instances without a predefined maximum
instance number threshold. Besides, MSV does not take the
iterative deployment strategy thus avoids complex anti-local-
optimal measures. The main idea of MSV is first to obtain a
global basic solution then further to improve it through some
improvement procedures. The experimental result shows that
MSV can get the solution in global range and achieves total
cost ratio within 115% compared to the MIP implement.
In addition, MSV can also deploy SFC in relatively short

VOLUME 6, 2018 76887

H. Li et al.: MSV: An Algorithm for Coordinated RA in NFV

time. In our future work, we would like to continue to inves-
tigate some more effective heuristic approaches to solve the
three-stage coordinated NFV resource allocation.

REFERENCES
[1] P. Quinn and T. Nadeau,Problem Statement for Service Function Chaining,

document RFC 7498, 2015.
[2] C-RAN: The Road Towards Green RAN; White Paper. Version 2.5, China

Mobile Res. Inst., Beijing, China, Oct. 2011.
[3] J. Wu, Z. Zhang, Y. Hong, and Y. Wen, ‘‘Cloud radio access network

(C-RAN): A primer,’’ IEEE Netw., vol. 29, no. 1, pp. 35–41, Jan. 2015.
[4] N. Operators, ‘‘Network functions virtualization, an introduction, benefits,

enablers, challenges and call for action,’’ in Proc. SDN OpenFlow SDN
OpenFlow World Congr., 2012.

[5] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, ‘‘Network function virtu-
alization: Challenges and opportunities for innovations,’’ IEEE Commun.
Mag., vol. 53, no. 2, pp. 90–97, Feb. 2015.

[6] J. G. Herrera and J. F. Botero, ‘‘Resource allocation in NFV: A com-
prehensive survey,’’ IEEE Trans. Netw. Service Manage., vol. 13, no. 3,
pp. 518–532, Sep. 2016.

[7] L. Wang, Z. Lu, X. Wen, R. Knopp, and R. Gupta, ‘‘Joint opti-
mization of service function chaining and resource allocation in net-
work function virtualization,’’ IEEE Access, vol. 4, pp. 8084–8094,
2016.

[8] J. Liu, Y. Li, Y. Zhang, L. Su, and D. Jin, ‘‘Improve service chaining
performance with optimized middlebox placement,’’ IEEE Trans. Services
Comput., vol. 10, no. 4, pp. 560–573, Jul. 2017.

[9] T. Wang and M. Hamdi, ‘‘Presto: Towards efficient online virtual network
embedding in virtualized cloud data centers,’’ Comput. Netw., vol. 106,
pp. 196–208, Sep. 2016.

[10] A. Gupta, M. F. Habib, P. Chowdhury, and M. Tornatore, ‘‘On service
chaining using virtual network functions in network-enabled cloud sys-
tems,’’ in Proc. IEEE Int. Conf. Adv. Netw. Telecommun. Syst., Dec. 2016,
pp. 1–3.

[11] T. Lukovszki and S. Schmid,Online Admission Control and Embedding of
Service Chains. Cham, Switzerland: Springer, 2014.

[12] M. T. Beck and J. F. Botero, ‘‘Scalable and coordinated allocation of ser-
vice function chains,’’ Comput. Commun., vol. 102, pp. 78–88, Apr. 2016.

[13] X. You, X. Wang, A. Chen, and G. Luo, ‘‘A coordinated algorithm with
resource evaluation for service function chain allocation,’’ in Proc. IEEE
Int. Conf. Big Data Cloud Comput., Oct. 2016, pp. 45–49.

[14] H. Huang, P. Li, S. Guo, W. Liang, and K. Wang, ‘‘Near-optimal
deployment of service chains by exploiting correlations between net-
work functions,’’ IEEE Trans. Cloud Comput., to be published, doi:
10.1109/TCC.2017.2780165.

[15] I. Jang, D. Suh, S. Pack, and G. Dán, ‘‘Joint optimization of service
function placement and flow distribution for service function chaining,’’
IEEE J. Sel. Areas Commun., vol. 35, no. 11, pp. 2532–2541, Nov. 2017.

[16] M. Ghaznavi, N. Shahriar, S. Kamali, R. Ahmed, and R. Boutaba, ‘‘Dis-
tributed service function chaining,’’ IEEE J. Sel. Areas Commun., vol. 35,
no. 11, pp. 2479–2489, Nov. 2017.

[17] M. T. Beck and J. F. Botero, ‘‘Coordinated allocation of service function
chains,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2015,
pp. 1–6.

[18] X. You, X. Wang, A. Chen, and G. Luo, ‘‘A coordinated algorithm
with resource evaluation for service function chain allocation,’’ in Proc.
IEEE Int. Conf. Big Data Cloud Comput. (BDCloud), Social Comput.
Netw. (SocialCom), Sustain. Comput. Commun. (SustainCom) (BDCloud-
SocialCom-SustainCom), Oct. 2016, pp. 45–49.

[19] S. Mehraghdam, M. Keller, and H. Karl, ‘‘Specifying and placing chains
of virtual network functions,’’ in Proc. IEEE 3rd Int. Conf. Cloud
Netw. (CloudNet), Oct. 2014, pp. 7–13.

[20] H. Li, L. Wang, X. Wen, Z. Lu, and L. Ma, ‘‘Constructing service func-
tion chain test database: An optimal modeling approach for coordinated
resource allocation,’’ IEEE Access, vol. 6, pp. 17595–17605, 2018.

[21] M. Bouet, J. Leguay, T. Combe, and V. Conan, ‘‘Cost-based placement of
vDPI functions in NFV infrastructures,’’ Int. J. Netw. Manage., vol. 25,
no. 6, pp. 490–506, 2015.

[22] G. D. Forney, Jr., ‘‘The Viterbi algorithm,’’ Proc. IEEE, vol. 61, no. 3,
pp. 268–278, Mar. 1973.

[23] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B. Duarte,
‘‘Orchestrating virtualized network functions,’’ IEEE Trans. Netw. Service
Manage., vol. 13, no. 4, pp. 725–739, Dec. 2016.

[24] D. J. Watts and S. H. Strogatz, ‘‘Collective dynamics of ‘small-world’
networks,’’ Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[25] A.-L. Barabási and E. Bonabeau, ‘‘Scale-free networks,’’ Sci. Amer.,
vol. 288, no. 5, pp. 60–69, 2003.

HANG LI received the B.S. degree in communica-
tion engineering from Jilin University, Changchun,
China. He is currently pursuing the M.S. degree in
communications engineeringwith the BeijingUni-
versity of Posts and Telecommunications, China.
His current research interests include network
architecture and network function virtualization.

LUHAN WANG received the Ph.D. degree from
the Beijing University of Posts and Telecommu-
nications (BUPT) in 2017. In 2017, he joined
the School of Information and Communication
Engineering, BUPT, as an Assistant Professor. His
current research interests include network archi-
tecture, network function virtualization, and soft-
defined networks.

XIANGMING WEN received the B.E., M.S., and
Ph.D. degrees in electrical engineering from the
Beijing University of Posts and Telecommunica-
tions (BUPT), Beijing, China. He is currently the
Vice President of BUPT, where he is also a Pro-
fessor with the Communication Network Center
and the Director of the Beijing Key Laboratory of
Network System Architecture and Convergence.
He is also the Vice Director of the Organiza-
tion Committee of the China Telecommunication

Association. In the last five years, he has been the author of more than
100 papers published. His current research is focused on broadband mobile
communication theory, multimedia communications, and information pro-
cessing. He is the Principle Investigator of more than 18 projects, including
the National Key Project of Hi-Tech Research and Development Program of
China (863 program) and the National Natural Science Foundation of China.

ZHAOMING LU received the Ph.D. degree from
the Beijing University of Posts and Telecom-
munications in 2012. He joined the School of
Information and Communication Engineering,
Beijing University of Posts and Telecommunica-
tions, in 2012. His research includes open wireless
networks, QoE management in wireless networks,
software-defined wireless networks, cross-layer
design for mobile video applications, and so on.

JINYAN LI received the master’s degree from
the Beijing University of Post and Telecommu-
nication. She is currently a Senior Engineer with
the China Telecom Technology Innovation Cen-
ter. Her research focuses on the standardization
and technique evolution of mobile networks, espe-
cially in the areas of architecture evolution and
service deployment.

76888 VOLUME 6, 2018

http://dx.doi.org/10.1109/TCC.2017.2780165

	INTRODUCTION
	SYSTEM MODEL
	NETWORK TOPOLOGY
	SERVICE FUNCTION CHAIN
	HOMOGENEOUS LINK
	DECISION VARIABLES
	CONSTRAINTS
	BASIC CONSTRAINT
	LOCATION CONSTRAINT
	NODE CAPACITY CONSTRAINT
	TRAFFIC VOLUME DEMAND CONSTRAINT
	FLOW CONSERVATION CONSTRAINT

	OPTIMIZATION OBJECTIVE
	VNF DEPLOYMENT COST
	BANDWIDTH COST
	DELAY COST
	OBJECTIVE FUNCTION

	MERGE-SPLIT VITERBI
	FIND BASIC SOLUTION
	IMPROVEMENT PROCEDURE
	PROCEDURE OF CLASSIFYING
	PROCEDURE OF MERGING
	PROCEDURE OF SPLITTING
	PROCEDURE OF UPDATING

	TIME COMPLEXITY ANALYSIS

	PERFORMANCE EVALUATION
	SIMULATION SETUP
	SIMULATED NETWORK
	SFCS AND VNFS
	PARAMETERS
	EVALUATION METHOD AND ENVIRONMENT

	COST PERFORMANCE
	TIME PERFORMANCE

	CONCLUSION
	REFERENCES
	Biographies
	HANG LI
	LUHAN WANG
	XIANGMING WEN
	ZHAOMING LU
	JINYAN LI

