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ABSTRACT In this paper, we present a general mode matching formulation to analyze the wave propagation
in glide-symmetric metallic surfaces drilled with periodic holes with an arbitrary cross section. A generalized
Floquet theorem is applied to reduce the computational cost by imposing boundary conditions only on one
of the two surfaces. With a small modification, the formulation can be used also for dispersion analysis of a
holey metallic surface with or without a metal plane above it. The method is fast and efficient, and it provides
physical insight on the specific symmetry properties of Floquet harmonics in glide-symmetric structures. The
formulation is applied to obtain dispersion diagrams of glide-symmetric structures with circular holes as this
kind of hole is usually used in practical applications to realize gap waveguides or wideband planar lenses.
The results agree well with the reference results from commercial software CST Microwave Studio.

INDEX TERMS Dispersive analyses, generalized Floquet theorem, glide symmetry, higher symmetries,
metasurfaces, mode matching, periodic structures.

I. INTRODUCTION
The emergence of metasurfaces has inspired new antenna
applications and technological solutions [1], [2]. Metasur-
faces provide the possibility of realizing graded-index
lenses [3], [4] and creating stop-bands to prevent the propa-
gation acting as electromagnetic band gap (EBG) structures.
For example, the latter metasurfaces are used to implement
gap waveguide technology, which has application in low-loss
high frequency microwave components and antennas [5], [6].

Graded-index metasurface lens antennas typically have
a narrow frequency bandwidth. Recently, it has been
demonstrated that by applying higher symmetries such as
glide [7]–[10], twist [11], [12] and polar-glide [13], [14] to
periodic structures, the frequency dispersion of the first
propagating mode is reduced. This technique offers the
possibility of designing wideband lens antennas [15]–[17].
These antennas find application in 5G communica-
tions systems [18], [19]. Moreover, glide-symmetric holey
structures have been proposed to produce low-cost
and broad-band EBG structures that can be used in

designing waveguiding structures [20], [21], flanges [22],
and microwave components [23] at millimeter-waves.

One-dimensional high-symmetric periodic structures were
first studied in the 1960s and 1970s [24]–[26] in connection
to the theory of periodic waveguides. In 1973, a generalized
Floquet theorem was proposed to explain the wave distri-
bution in these structures [27]. The recent discovery of the
promising properties and applications of two-dimensional
glide-symmetric structures has encouraged the development
of new fast and efficient methods to model and describe their
characteristics.

The homogenized impedance model has been widely used
to model different types of periodic structures [28], [29].
Unfortunately, this model is not applicable to glide-
symmetric structures due to the fact that in this case there
are two strongly coupled surfaces and higher-order modes
are inevitably required [30]. Therefore, glide-symmetric
structures cannot rigorously be modeled by the analy-
sis of just one of the surfaces [31]. The use of formula-
tions based on integral equations [32]–[37] would be very
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flexible in terms of geometries and materials. However,
a purely numerical approach would prevent from deriv-
ing a simple dispersion equation highlighting the difference
between glide and non-glide surfaces. Thus, a mode match-
ing technique [38] is here proposed. Previously, approaches
of this kind have been devoted to efficiently analyze
the dispersion characteristics of strongly interacting cor-
rugated surfaces [39], [40] and holey surfaces with square
holes [41], [42], including glide-symmetric ones [43]. These
recent works have provided information on the behavior of
the fields excited inside the holes and demonstrated that
considering only the dominant mode inside the hole, as in
non-glide holey structures [44], does not model the structure
accurately [41], [42]. In addition, the presented results in
these works have proved that the proposed mode-matching
method is faster and more efficient than commercial soft-
ware based on the finite-method algorithms such as CST
Microwave Studio, especially when the hole is large or the
gap between the two surfaces is very small.

In the mode matching formulation presented in [43],
to analyze glide-symmetric holey structures with rectangu-
lar holes, the higher symmetry and the generalized Flo-
quet theorem proposed in [27] were applied to reduce the
computational domain to one half of the unit cell. As a
result, the method not only becomes more efficient than
previous mode-matching methods [40], but also it provides
a physical insight into the specific properties of Floquet
harmonics propagating in the structures caused by the higher
symmetry. However, in practical applications, cylindrical or
conical holes are easier to manufacture, since they only
require of drilling, instead of milling. In this paper, we extend
the mode-matching formulation presented in [43] to ana-
lyze glide-symmetric holey structures with an arbitrary
shape of the hole. We demonstrate that the analysis of a
glide-symmetric holey unit cell with the distance g between
the layers (Fig. 1(a)), has the same complexity of its corre-
sponding non-glide unit cell consisting of one layer holey
surface with a perfectly electric conductor (PEC) plane at the
distance of g/2 above it (Fig. 1(b)). Note that the non-glide
structure is considered here with a gap of g/2 since we show
later that the analysis of the two unit cells can be carried out
similarly.

Our formulation is validated for the specific case of
cylindrical holes by comparing our mode matching with
the results obtained from the commercial software CST
Microwave Studio for different values of the unit cell param-
eters. The results confirm the possibility of tuning the effec-
tive refractive index by adjusting the geometric parameters,
as well as, the lack of the frequency dispersion for the
first propagating mode due to the absence of the stop-band
between the first and second modes. Thus, our method can
be applied to design the unit cell of all-metal glide-symmetric
holey metasurfaces that can be used in low-cost and low-loss
graded-index planar lenses and gap waveguide technology.

The paper is organized as below. In Section II, the gen-
eral mode matching formulation to analyze glide-symmetric

all-metal holey structures is presented. In Section III, numer-
ical implementations for the case with cylindrical holes is
explained. In Section IV, numerical results for the case with
cylindrical holes with different physical parameters are used
to validate our method and demonstrate the possibility of
tuning effective refractive index. Section V summarizes the
conclusions of our work.

II. FORMULATION
In this section, the structures illustrated in Fig. 1 are analyzed
in parallel using a mode matching technique. Both structures
are bounded along the z-direction and periodic along the x-
and y-direction with a periodicity of d . In addition, in both,
the holes and the gap between the layers are filled with air.
However, one of them is a glide-symmetric holeymetasurface
which has a gap of g between two layers (Fig. 1(a)) and the
other one is a conventional holey metasurface with a PEC
plane above it at the distance of g/2 (Fig. 1(b)). Note that the
plane z = 0 is located in the middle of the gap for the former
and on the PEC plane for the latter. We will demonstrate
that employing a generalized Floquet theorem, the dispersion
equation for these two structures is the same except a function
related to the vertical wave number of the Floquet modes.

FIGURE 1. Unit cell of (a) a glide-symmetric holey structure, (b) a periodic
holey structure with a PEC plane above it.

For both structures, the tangential fields inside the waveg-
uide can be expressed as

EWGt (ρ, z = −g/2) =
M∑
m=1

r−mCm8m(ρ) (1)

HWG
t (ρ, z = −g/2) =

M∑
m=1

r+m YmCm
[
ẑ×8m(ρ)

]
(2)

where Cm is the unknown coefficient of the m-th mode and
8m and Ym are the corresponding cross section modal func-
tion and wave admittance of the m-th mode. Note that, for
brevity, we do not distinguish between TE and TM modes
which means the value of m indicates if the mode is TE or
TM. Additionally,

r±m = 1± exp (−j2kzmh) (3)
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are the magnetic-field and electric-field reflection coeffi-
cients due to the short circuit at the end of the waveguide,

where kzm =
√
k20 − k

2
tm is the longitudinal wavenumber and

ktm is the transversal wavenumber.
Additionally, for both structures, the fields in the gap

region can be expressed based on Floquet harmonics:

EGap
t =

1
d2
∑
pq

e−j(kx,px+ky,qy)ẽGapt,pq (z) (4)

HGap
t =

1
d2
∑
pq

e−j(kx,px+ky,qy)h̃Gapt,pq (z) (5)

where kx,p = kx,0 + 2πp/d , ky,q = ky,0 + 2πp/d , and p and
q are the integer values identifying the order of the Floquet
harmonics. The amplitude of each Floquet harmonic of the
transversal electric and magnetic fields can be written as:

ẽGapt,pq (z) =
(
Axpq
Aypq

)
sin(kz,pqz)+

(
Bxpq
Bypq

)
cos(kz,pqz) (6)

h̃Gapt,pq (z) =
(
Dxpq
Dypq

)
sin(kz,pqz)+

(
Fxpq
Fypq

)
cos(kz,pqz), (7)

where kz,pq =
√
k20 − k

2
x,p − k2y,q is the vertical wave number

of the (p, q)th harmonic. From Maxwell equations, we can
derive the relation between the A and B coefficients in (6)
and the D and F coefficients in (7) [43].
Imposing the continuity of the tangential electric field at

the lower surface z = −g/2, we have, for both structures,

EGap
t (x, y, z = −g/2) = EWG

t (x, y, z = −g/2). (8)

Substituting the modal expansion (1) and Floquet expansion
(4) into (8),

1
d2
∑
pq

e−j(kx,px+ky,qy)ẽGapt,pq (z = −g/2)=
M∑
m=1

r−mCm8m(ρ),

(9)

and inverting, we obtain

ẽGapt,pq (z = −g/2) =
∑
m

r−mCm8̃m(kx,p, ky,q). (10)

The right hand side of the above equation is the Fourier trans-
forms ofEWG

t (ρ, z = −g/2) expressed in (1) and denoted by
ẼWG
t

(
kx,p, ky,q

)
. Thus,

ẽGapt,pq (z = −g/2) = ẼWG
t

(
kx,p, ky,q

)
. (11)

Consequently, 8̃m
(
kx,p, ky,q

)
are the Fourier transforms of

the modal functions 8m:

8̃m(kx,p, ky,q) = x̂φ̃xm(kx,p, ky,q)+ ŷφ̃
y
m(kx,p, ky,q)

=

∫
Shole

8m(ρ)ej(kx,px+ky,qy)ds (12)

For the non-glide structure, the continuity of the electric
field on the upper surface (z = 0) yields

EGap
t (x, y, z = 0) = 0. (13)

However, for the glide-symmetric case, the continuity of
the electric field on the upper surface (z = g/2) can be
written as

EGap
t (x, y, z = g/2)

= e−j(kx,0d+ky,0d)/2EWG
t (x −

d
2
, y−

d
2
, z = −

g
2
), (14)

using the generalized Floquet theorem [43]. If the Flo-
quet series (4) is replaced into (13) and (14) and inverted
by means of the Fourier-transform properties, we obtain,
respectively,

ẽGapt,pq (z = 0) = 0, (15)

ẽGapt,pq (z = g/2) = (−1)p+qẼWG
t

(
kx,p, ky,q

)
. (16)

Solving two vector equations (11) and (15) for the
non-glide structure and (11) and (16) for the glide-symmetric
case, the unknown coefficients A and B in (6) can be
expressed as functions of the modal-waveguide coeffi-
cients C .

For the non-glide case, we have(
Axpq
Aypq

)
= −

ẼWG
t

(
kx,p, ky,q

)
sin
(
kz,pqg/2

)(
Bxpq
Bypq

)
= 0. (17)

However, for the glide-symmetric case, if p+ q is even,(
Axpq
Aypq

)
= 0(

Bxpq
Bypq

)
=

ẼWG
t

(
kx,p, ky,q

)
cos

(
kz,pqg/2

) , (18)

and if p+ q is odd,(
Axpq
Aypq

)
= −

ẼWG
t

(
kx,p, ky,q

)
sin
(
kz,pqg/2

)(
Bxpq
Bypq

)
= 0. (19)

Considering these results, an interesting symmetry prop-
erty of Floquet harmonics can be seen in glide-symmetric
structures, i.e. if the parity of a (p, q) Floquet harmonic
is defined as the parity of the number p + q, it is
clear that even (odd) harmonics have an even (odd) trans-
verse electric field along the z direction with respect to
the glide plane (z = 0). The same conclusion has
been demonstrated for the glide-symmetric corrugation and
glide-symmetric holey structure with square holes in [43].
Indeed, as shown in (18) and (19), this conclusion is valid for
all glide-symmetric holey structures regardless of the shape
of the hole.

Now that the A and B coefficients are expressed in terms
of the C coefficients, using Maxwell equations, D and F
coefficients in (7) can be also expressed in terms of the

VOLUME 6, 2018 71745



F. Ghasemifard et al.: Analyzing Glide-Symmetric Holey Metasurfaces Using a Generalized Floquet Theorem

C coefficients. Substituting these expressions into (7), for
h̃Gapt,pq(z = −g/2) we obtain:

jk0η0h̃
Gap
x,pq(z = −g/2)

= +
kx,pky,q
kz,pq

f̃pq(kz,pq)
∑
m

r−mCmφ̃
x
m(kx,p, ky,q)

+
k20 − k

2
x,p

kz,pq
f̃pq(kz,pq)

∑
m

r−mCmφ̃
y
m(kx,p, ky,q) (20a)

jk0η0h̃
Gap
y,pq(z = −g/2)

= −
kx,pky,q
kz,pq

f̃pq(kz,pq)
∑
m

r−mCmφ̃
y
m(kx,p, ky,q)

−
k20 − k

2
y,q

kz,pq
f̃pq(kz,pq)

∑
m

r−mCmφ̃
x
m(kx,p, ky,q) (20b)

where f̃pq(kz,pq) is called the vertical spectral function and
defined as

f̃pq(kz,pq) = cot(kz,pqg/2) (21)

for the non-glide structure and

f̃pq =

{
− tan

(
kz,pqg/2

)
p+ q even

cot
(
kz,pqg/2

)
p+ q odd

(22)

for the glide structure.
Now, by enforcing the continuity of the tangential mag-

netic fields (2) and (5) across the hole aperture at z = −g/2,
the dispersion equation can be derived. Note that it is not
needed to enforce the continuity of the tangential magnetic
field on the upper surface z = g/2 in the glide structure
as the generalized Floquet theorem confirms its satisfaction
because of the symmetry of the structure. Thus, to obtain the
dispersion equation, first, we set (2) and (5) equal:

M∑
m=1

r+m YmCm
[
ẑ×8m(ρ)

]
=

1
d2
∑
pq

e−j(kx,px+ky,qy)h̃Gapt,pq(z = −g/2). (23)

Then, by the cross product of each waveguide modal func-
tion 8n(ρ) and the above boundary condition equation, and
integrating over the hole surface, we obtain

ẑ
M∑
m=1

r+m YmCmInm

=
1
d2
∑
pq

8̃n
(
−kx,p,−ky,q

)
× h̃Gapt,pq(z = −g/2), (24)

where

Inm =
∫
Shole

8n(ρ) ·8m(ρ)ds. (25)

Assuming that the structure is made of perfectly conducting
metals, the modal functions are orthogonal over Shole, regard-
less of the shape of the cross section [45]. Thus, Inm = 0

when m 6= n. Substituting (20) in (24) and rearranging the
equation, we obtain a set of linear equations:

M∑
m=1

αn,mCm = 0 n = 1, ...,M (26)

where M is the number of modal functions,

αn,m = jk0η0 d2YmInm +
r−m
r+m

∑
pq

f̃pq(kz,pq)βn,m(kpq) (27)

and

βn,m(kpq) = βn,m(kx,p, ky,q, kz,pq)

=
k20 − k

2
y,q

kz,pq
φ̃xm(kx,p, ky,q)φ̃

x
n (−kx,p,−ky,q)

+
kx,pky,q
kz,pq

φ̃ym(kx,p, ky,q)φ̃
x
n (−kx,p,−ky,q)

+
k20 − k

2
x,p

kz,pq
φ̃ym(kx,p, ky,q)φ̃

y
n(−kx,p,−ky,q)

+
kx,pky,q
kz,pq

φ̃xm(kx,p, ky,q)φ̃
y
n(−kx,p,−ky,q).

(28)

Setting the determinant of the coefficient matrix in (26) equal
to zero, the dispersion equation follows. The roots of this
equation can be found by either applying a zero-finding
algorithm [46] or simply searching for the minimum of the
magnitude of the determinant.

Note that the presented formulation is valid for all holey
periodic structures regardless of the shape of the hole, if the
structure possesses glide symmetry or not, and whether the
holey structure is bounded (by a metallic plane above) or
unbounded. For different shapes of the holes, the appropriate
modal functions 8m must be found and substituted in the
formulation. The difference between the non-glide and glide
cases are distinguished with the correct definition of f̃pq(kz,pq)
(see (21) and (22)). Finally, in the case of unbounded structure
(a holey periodic structure in the air), we have g → +∞
and all kz,pq are imaginary for bound (non-radiating) modes.
Thus, in (21), f̃pq(kz,pq) → j, which means it is enough
to replace f̃pq(kz,pq) with j in the formulation. In summary,
the vertical spectral function f̃pq(kz,pq) specifies if the holey
periodic structure is unbounded, bounded with a PEC plane
above it, or bounded in a glide-symmetric configuration.

III. NUMERICAL IMPLEMENTATION FOR
CYLINDRICAL HOLES
For holes with circular cross section,8m(ρ) = ρ̂Eρm+ϕ̂Eϕm.
For numerical implementation, we need to make a look up
table by arranging the propagating modes inside the holes
based on their cut-off frequencies. In case of a cylindrical
waveguide, the modes are sorted as TE11, TM01, TE21, TE01,
TM11, etc. For all TE and TM modes, except those that have
azimuthal symmetry such as TM01 or TE01, the variation
with respect to ϕ specifies two degenerate modes. However,
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we assume two terms in the series in (1) for all the modes
including those with azimuthal symmetry. This means we
assumeM = 2N in (1), where N is the number of considered
modes inside the holes, where n = 1 corresponds to the first
dominant mode (TE11), n = 2 corresponds to the second
one (TM01), and so on. Note that considering two terms
in the modal expansion for the azimuthal symmetric modes
produces all zero rows and columns in the final coefficient
matrix. These rows and columnsmust be excluded before cal-
culating the determinant of the matrix. Thus, for each mode
(each n), there are two terms in the series in (1), m = 2n− 1
andm = 2n.We allocate odd values ofm for themodeswhose
ϕ-dependency of their Eρm is expressed with a sine function
and even values of m for the modes whose ϕ-dependency
of their Eρm is expressed with a cosine function. Thus, if n
corresponds to a TEmode (let us say TErs), Ym = kzm/(η0 k0)
for m = 2n− 1 and m = 2n, and we have [45]

Eρm = +
r
ρ
Jr (

x ′r,s
a
ρ) sin(rϕ)

Eϕm =
x ′r,s
a
J ′r (

x ′r,s
a
ρ) cos(rϕ)

if m = 2n− 1, (29)


Eρm = −

r
ρ
Jr (

x ′r,s
a
ρ) cos(rϕ)

Eϕm =
x ′r,s
a
J ′r (

x ′r,s
a
ρ) sin(rϕ)

if m = 2n. (30)

Similarly, if n corresponds to a TM mode (let us say TMrs),
Ym = k0/(η0 kzm) for m = 2n − 1 and m = 2n, and we
have [45]

Eρm =
xr,s
a
J ′r (

xr,s
a
ρ) sin(rϕ)

Eϕm = +
r
ρ
Jr (

xr,s
a
ρ) cos(rϕ)

if m = 2n− 1, (31)


Eρm =

xr,s
a
J ′r (

xr,s
a
ρ) cos(rϕ)

Eϕm = −
r
ρ
Jr (

xr,s
a
ρ) sin(rϕ)

if m = 2n. (32)

Note that in the above field expressions, a is the radius of the
circular holes, Jr and J ′r are the Bessel function of the first
kind and its first derivative, and xr,s and x ′r,s are the s-th root
of Jr and J ′r .

After expressing the modal functions 8m(ρ), the integrals
in (12) and (25) must be calculated to obtain 8̃m(kx,p, ky,q)
and Imm. In this case, the results of these integrals can be
expressed in closed form. However, for an arbitrary cross
section, numerical integration methods might be used to
calculate the integrals. Finally, note once 8̃m(kx,p, ky,q) is
calculated, 8̃m(−kx,p,−ky,q) is readily known since they are
complex conjugate of each other.

IV. RESULTS
As mentioned in Section I, all-metal glide-symmetric mesur-
faces tailored with cylindrical holes are a good candidate

FIGURE 2. Dispersion diagram of the glide-symmetric unit cell with
cylindrical holes as described in Fig. 1(a) with parameters: d = 4 mm,
a = 1.6 mm, and g = 0.2 mm. The results were obtained for three values
of h. Our proposed mode matching technique is represented with solid
lines and CST simulations with dashed lines.

for designing low-loss graded-index planar lenses. In these
lenses, by changing the radius or the depth of the holes,
a spatial variation of the refractive index is achieved.

In this section, these structures are analyzed through their
dispersion diagrams using the mode matching formulation
presented in Section II. In addition, the possibility of tuning
the effective refractive index is demonstrated. The code is
implemented in Matlab and the results are compared with
the ones obtained from commercial software CSTMicrowave
Studio.
Our reference case has a gap between the surfaces with

g = 0.2 mm, its period is d = 4 mm, a hole depth of
h = 1.5 mm, and a hole radius of a = 1.6 mm. The influ-
ence of the relevant geometrical parameters on the equivalent
refractive index is here investigated. Note that, for a fair
comparison of the results, the same periodicity is assumed
in all cases.

Fig. 2 shows the dispersion diagram of the reference case
and its comparison with two cases with different depth of
holes: h = 0.5 mm and h = 0.8 mm. The mode match-
ing results are in good agreement with those of CST. The
results also demonstrate that by increasing the depth of the
holes, the equivalent refractive index increases too. However,
it should be noted that, depending on the size of the hole and
the frequency, after a certain depth, the equivalent refractive
index does not increase any more by increasing h. The reason
is that the hole size is subwavelength which causes the modes
inside the holes attenuating exponentially when they travel
toward the bottom of the hole. Increasing the hole depth
beyond a certain value does not change significantly the field
distribution in the overall structure.

In Fig. 3, the effect of variation of the hole radius is
investigated. Again, the reference case is analyzed along with
two cases with different values of hole radius: a = 1.3 mm
and a = 1 mm. For all cases, the mode matching results
are compared with CST simulations and a good agreement
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FIGURE 3. Dispersion diagram of the glide-symmetric unit cell with
cylindrical holes as described in Fig. 1(a) with parameters: d = 4 mm,
h = 1.5 mm, and g = 0.2 mm. The results were obtained for three values
of a. Our proposed mode matching technique is represented with solid
lines and CST simulations with dashed lines.

FIGURE 4. Dispersion diagram of the glide-symmetric unit cell with
cylindrical holes as described in Fig. 1(a) with parameters: d = 4 mm,
a = 1.6 mm, and h = 1.5 mm. The results were obtained for three values
of g. Our proposed mode matching technique is represented with solid
lines and CST simulations with dashed lines.

is achieved. By decreasing the radius, the propagation tends
to approach the free-space limit, which means the equivalent
refractive index becomes smaller. Smaller holes have a lower
effect in the propagation inside the paralell plate.

Although in common practical applications the gap thick-
ness is fixed and does not change to obtain a spatial varia-
tion of the refractive index, the influence of its variation on
the dispersion diagram is here investigated. The comparison
between the dispersion diagrams of the reference case and
two values of gap, g = 0.3 mm and g = 0.5 mm, are
depicted in Fig. 4. As in the two previous cases, a good
agreement between the mode matching and CST results is
achieved. By decreasing the thickness of the gap, the inter-
action between the surfaces becomes stronger, which causes
a higher equivalent refractive index.

To show the full potential of our method, the dispersion
diagram of the reference glide-symmetric structure and its

FIGURE 5. Dispersion diagram of the structures shown in Fig. 1(a)
and 1(b) with parameters: d = 4 mm, g = 0.2 mm, a = 1.6 mm, and
h = 1.5 mm, obtained with the proposed mode matching technique (solid
lines) and CST simulation (dashed lines).

corresponding non-glide structure over the irreducible Bril-
louin zone is depicted in Fig. 5 and compared with CST
simulation results. This type of simulation is typically carried
out for designing EBG structures, which find application, for
example, in gap waveguide technology.

In order to give an estimation of the speed of our method,
we launched the simulations of CST and our code in the
same computer. The computer had an Intel(R) Core(TM)
i7-4790 CPU @3.6 GHz with 32 GB of RAM. All the pre-
sented results were obtained by considering the first eight
dominant modes inside the cylindrical waveguide and setting
p = −2, ..., 2 and q = −2, ..., 2 in (4) and (5). Additionally,
the zeros of the determinant of the coefficient matrix in (26)
were found by searching for the minimum of the magnitude
of the determinant. With these choices, less than 0.5 s are
required to obtain the βx for a single frequency point with
our mode-matching code. However, it takes 20 s to obtain
the same result with CST. Only for the non-glide cases with
0.1 mm gap between the layers, the first eleven dominant
modes inside the circular waveguide and p, q = −3, ..., 3
are selected, which increased the mode matching time to
0.8 s. The proposed method could become even faster by
employing a zero-finding algorithm [46] to locate the zeros of
the determinant in (26), instead of searching for the minimum
of the magnitude of the determinant.

Finally, it is worth to comment on the number of modes
we took into account in the waveguide region and the gap
region. It is well-known that in mode-matching techniques,
the convergence can be achieved if the modes in different
regions match properly with each others. It usually requires
to maintain an optimal ratio between the number of modes
in different regions. For the presented cases, we found that
the optimal ratio between the number of waveguide modes to
Floquet modes is approximately 1.5.

V. DISCUSSION AND CONCLUSION
Here, we have proposed a general mode-matching formula-
tion for developing dispersion analyses of holey surfaces in
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the vicinity of a metal plane and a glide-symmetric holey
surface. Our method can be applied to an arbitrary shape
of the holes. As in our previous work presented in [43], for
the case with glide symmetry, the higher symmetry of the
structure and the generalized Floquet theorem are applied to
reduce the computational cost.

The formulation was tested and verified for cases with
cylindrical holes, which is of interest, in practice, for design-
ing of low-cost and low-loss graded-index planar lenses and
EBG structures. The code was checked for different values of
geometrical parameters and for propagation in different direc-
tions, obtaining the irreducible Brillouin zone. For all cases,
the mode-matching results show an excellent agreement with
CST results. However, small variations are found at very high
frequencies where the group velocity is near to zero. These
small discrepancies do not have a significant effect on the
obtained effective refractive indexes that would be used to
design lenses.

Our proposed method is faster than the CST eigenmode
solver since CST needs to mesh the whole volume of the
unit cell, while in the mode matching formulation only the
mode coefficients in one hole of the unit cell are calculated.
We demonstrated that the second glide-symmetric hole does
not add additional unknowns thanks to the enforced symme-
try condition. Finally, the proposed method can be extended
to account for losses and characterize complex wavenumbers.
However, this is not possible with CST eigenmode solver.
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