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ABSTRACT Steel surface demonstrates various sorts of defects due to the production technique and
environment. The appearance of defect is in much more random pattern than that of the normal texture
image. Therefore, it is challenging to capture the discriminant information to categorize the defects. The
defect image is out of image registration in grayscale, and thus, the local descriptor is inclined to be utilized
for feature extraction. In the previous works, involving a local descriptor for categorizing the defect images,
the thresholding operator participates in the hand-crafted feature extraction, such as local binary patterns
and histogram of oriented gradient, leading to sub-optimal features. By introducing the learning mechanism
into the construction of local descriptor, a novel algorithm named discriminant manifold regularized local
descriptor (DMRLD) is proposed to conduct the defect classification task in this paper. First, the DMRLD
computes the dense pixel difference vector (DPDV) to draw the local information of defect images. Then,
the manifold of these DPDVs can be constructed by searching for a number of linear models to represent the
feature. In order to enhance the discriminant ability of the feature, a projection on the manifold is learned for
achieving a low-dimensional subspace. Finally, the manifold distance defined in the subspace can accomplish
the matching task to get the category of the defect image. The proposed algorithm is first applied on the
Kylberg texture dataset to evaluate the texture feature extraction performance, and then the experiments on
the real steel surface defect dataset are conducted to illustrate the effectiveness of DMRLD compared with
other local descriptors.

INDEX TERMS Steel surface defect classification, local descriptor, discriminant manifold learning,
manifold metric.

I. INTRODUCTION

Steel is applied as the raw material in aerospace, automobile
manufacturing, and power energy. With the high requirement
of surface quality, steel surface defect classification plays an
important role during the production. Due to the influences of
material, rolling equipment, and the process craft, the quality
of steel may degrade heavily. As a result, the steel surface
appears sorts of defects, such as rolled-in scale, inclusion, and
scratches. In the production process, it is necessary to capture
the information of defects to avoid of defective products in the
market. For this purpose, the defect inspection system (DIS)
which devotes to controlling and improving the quality grade
of steel products for steel surface has been widely used in
steel industry [1]-[5].

Generally, the framework of DIS [6] which is visualized
in Fig. 1 consists of two subsystems: image acquisition sub-
system and processing subsystem. The two subsystems are
connected via the system cabinet. The surface sensor captures
the image data by employing the light and camera equipment.
The inspection terminal handles the data and controls the
system by transporting the user’s requirement. Normally,
the processing subsystem includes the computational server
and the host computer to analyze the image data and report
the real-time result. Given the image acquisition subsystem,
the main mission lies in the processing subsystem which is
the core of this paper as well.

The commonly-used techniques in the DIS employ the
image processing and pattern recognition algorithms to
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FIGURE 1. Procedure of the defect inspection system.

extract the feature of the defect target, and then categorize
the feature into the given attribution of the defects. Different
from the natural object image classification [7], [8], steel
surface defect image classification is more challenging due
to its random pattern. In recent years, there have been various
researches for steel surface defect classification. Most of the
related works on the feature extraction. Lee et al. [9] devel-
oped a feature extraction method to explore the textural char-
acteristics of the defects and employed four classical entropy
features in the spatial domain. As a result, the neural network
was adopted to classify the features. Dongyan et al. [10]
employed the multi-kernel function RVM which is solved
by SOCP algorithm to improve the performance of defect
classification recognition on steel strip surface. For the large
scale steel surface defect dataset, Chu et al. [11] proposed a
novel classification method based on enhanced twin support
vector machine and binary tree to obtain the high classifica-
tion accuracy and efficiency. Singhka et al. proposed artificial
neural network based methodology to classify the various
types of defects, such as blister, scratch and water droplet.
Hu et al. [4] applied the hybrid chromosome genetic algo-
rithm to establish the real-time defect detection and classifi-
cation system. After the preprocessing, four sorts of features
were extracted and the genetic algorithm was adopted to opti-
mize the classification model. Experiments on the large-scale
defect collection demonstrated the performance. Support vec-
tor machine is an effective classifier and has been used widely
in classification applications, especially in surface defect
classification [12]-[16]. Recently, Chu et al [17] employ
an improved support vector machine which uses multi-type
statistical features for steel surface defect classification and
achieve the promising results.

As one sort of the texture, the defect image presents a
more random pattern than other sorts of texture images. In the
defect image, the pixels are mainly divided into three cate-
gories: defect, background, and noise. The attribution of the
defect is determined by combining the information of edge,
shape and the reflection of the material. However, the pixels
of the normal texture image group in a fixed pattern and
repeat the pattern in the image, e.g. Fig. 2 (a), while the defect
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FIGURE 2. Example texture images: (a) normal texture image on the
Kylberg dataset, (b) inclusion defect surface of the steel strip, and (c)
pitted defect surface of the steel strip.

may present as an isolated target (Fig. 2 (b)) or repeat in the
image (Fig. 2 (c)). Therefore, the feature of the defect image
is much more challenging than that of the normal texture
images. Based on the generation of the steel production,
the background is beneficial to describe the distinguishable
feature as well. It is vital to represent the defect in an optimal
way to keep the balance between the background and defect
target during the feature extraction. Another special part of
the defect image lies in that the global structure is inconsistent
with the local structure. Only with the local patch, it is diffi-
cult to determine the attribution of the defect even it works
for the normal texture image.

Compared with the previous classification task which
treats the aligned images, the texture images are without
registration in most cases. Therefore, the local informa-
tion is inclined to be utilized for generating the feature.
In recent decades, there have been numerous local descriptors
and the corresponding variants, such as local binary pattern
(LBP) [18], histogram of oriented gradient (HOG) [19], and
scale-invariant feature transform (SIFT) [20]. However, these
hand-crafted descriptors introduce the thresholding opera-
tor which is sub-optimal for feature extraction. In addition,
these local descriptors are independent of the classifier con-
struction processing. Based on the properties of the local
descriptors aforementioned, there are some issues of these
descriptors for the steel surface defect image:

« LBP encodes the pixel with a real value by using the spa-
tial neighborhoods, and then constructs the histogram
of the defect image. The number of the defect pixels
existing in the image is changeable, and the edge and
shape cannot repeat frequently like the normal texture
images. Thus, the histogram may loss the discriminant
information of the defect image.

o HOG introduces the local information by encoding the
local region of the image using an oriented histogram
and concatenating these sub histograms to obtain the
final feature. Compared with LBP, HOG prefers to
extracting the edge information and taking into account
the structure information of the image. However, HOG
usually suffers from the problem of high dimension and
ignoring the texture information. The raw information
of the defect images are without registration, therefore,
the structured HOG may be out of work for extracting
the distinguishable feature of the defect images.
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TABLE 1. Notations used in this paper.

Notation Description

X = {x1,22, -+ ,x; - ,x,} € | The collection of the DPDVs, where L is the length of the DPDV, n is the
RLxn number of DPDVs in the image, and z; denotes the i-th DPDV.

W ={W,; }321122 o The affinity matrix which measure relation between the local model C; ,,

and C; ,,, where ¢, and c,, are the number of DPDVs in the local models
Cim and Cj ,,, respectively.

Mi = {Ci,17 Ci,Qa o 7Ci,m}

The i-th manifold consists of m local models.

Ci= {Igi)7:pgi)a"' axgllz)}

The i-th local model consists of n; DPDVs.

Sw’ Sb

The within-class and between-class scatter matrix.

o Compared with LBP and HOG, SIFT is totally a local
descriptor which encodes the key point of the image
using the histogram of gradient. SIFT achieves more
useful and discriminant feature than LBP to measure the
distinguishable feature of the defects. However, SIFT
has a high requirement of the quality of the image. In the
applications of the steel surface defect classification,
the image may be out of the base requirement and can-
not generate enough key points to supporting the SIFT
descriptors.

As discussed above, the local descriptor cannot rely on the
prior processing heavily. Besides, the local descriptor should
assist in representing the distinguishable character of the
image, preserving the principle component and decreasing
the redundant information possibly. For this, this work pro-
poses an algorithm named discriminant manifold regularized
local descriptor (DMDL) to address the problem of steel sur-
face defect classification. The proposed DMRLD measures
the feature of the defect image using the manifold struc-
ture derived from the dense pixel difference vector (DPDV),
and then transforms the defect classification task into the
manifold construction and matching problem. Different from
the previous algorithms of the local descriptor, the proposed
DMRLD represents the image using the structure of mani-
fold with learning mechanism rather than the histogram by
the hand-crafted construction. Furthermore, the discriminant
projection is employed to map the original manifold into
the low-dimensional, discriminant subspace to improve the
classification result.

The highlights of this work are mainly summarized as
follows:

1) The feature of steel surface defect image is repre-
sented using the manifold regularized local descriptor
via learning mechanism. The DPDVs of the image are
utilized to construct the manifold whose function is
equivalent to the histogram aforementioned.

2) The manifold distance is defined using the fused varia-
tion based and exemplar based distances for the defect
images.

3) Discriminant analysis is conducted on the manifold
to achieve the low-dimensional, discriminant subspace
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for extracting the distinguishable feature of the defect
images.

The rest of this paper is organized as follows:
Section 2 briefly introduces the related work; the pro-
posed DMRLD algorithm for steel surface defect classi-
fication is presented in Sec. 3, and the experiments are
conducted in Sec. 4. Section 5 concludes this paper in the
end.

Il. RELATED WORK

Since this work mainly discusses the local descriptor and
involves the structure of manifold, the related work will be
expanded around the previous works about the two points.
Before introducing the related work, the notations and the
corresponding descriptions used in this paper are declared
in Table 1.

A. LOCAL DESCRIPTOR

As aforementioned, the local descriptor of the image can
represent the global feature without the requirement of regis-
tration. Therefore, the local descriptor is beneficial to capture
the distinguishable feature compared with that made of the
raw gray value. As one of the representative local descriptor,
the scheme of LBP is introduced in this subsection. LBP
has been used in face recognition successfully due to its
effectiveness [21]-[23]. There are two steps for generating
the LBP feature descriptor. First, LBP computes the differ-
ence between the central pixel and its neighbors in the local
sphere, such as a square window. Meanwhile, the difference
is binarized using a fixed threshold, zero in general. Next,
these binary bins of the central pixel are encoded as a decimal
value in hand-crafted fashion. The whole processing of LBP
descriptor is illustrated in Fig. 3. It is worth noting that
the radius setting decides the number of binary bins and
the length of LBP feature descriptor in further. From the
construction of LBP feature descriptor, it can be observed
that the key step of LBP is defined in hand-crafted fashion.
For one thing, the encoding of the pixel is determined using
a fixed threshold. For another, the number of bins, which is
equivalent to the size of the codebook, is defined artificially
as well. Due to the description of the local information, LBP
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FIGURE 3. lllustrator of LBP feature: each pixel of the original image is

first mapped into a binary string and then represented using a decimal
number.

Original Image Step 1: Mapping Step 2: Encoding

and its variants have been widely used for the steel surface
defect classification task [3], [24].

B. MANIFOLD LEARNING
Most of the previous works on manifold learning devote
to achieving the low-dimensional, compact representa-
tions of the given high-dimensional data which lies on
or nearly on a manifold in unsupervised fashion. Accord-
ing to the learning objective, the related works of man-
ifold learning can fall into two categories: transductive
algorithms and the non-transductive algorithms. The
transductive algorithms haven’t the explicit mapping func-
tions while learning the low-dimensional representations,
such as Isomap [25], locally linear embedding [26], and
Laplacian Eigenmap [27]. Normally, these algorithms can
only achieve the low-dimensional representations of the
given/training data points and be conducted by preserving the
certain local or global properties of the manifold structure.
On the contrary, the non-transductive algorithms are with
the explicit mapping functions for the whole data space.
Hence, these algorithms can achieve the low-dimensional
representation of the new sample which doesn’t exist in
the training set. In this paper, the manifold structure is
motivated from the study [25] which has declared that local
linearity property holds everywhere on a global nonlinear
manifold, and thus manifold can be modeled by a collection
of local linear subspaces. Diverse from the previous local
linear model [28] which involves the clustering algorithm,
this work employs a flexible mechanism to generate the local
model (LM) on the manifold by employing the distances
defined in the literature [25].

Given the data set X € RLX", where L is the dimension and
n is the number of the data points, it is expected to assume that
all the data points come from a low-dimensional manifold M.
Therefore, the manifold learning is converted to search for a
number of LMs. Suppose there are N local models and denote
one of the LMs by C;, we have

X=CiUCyU---UC;jU---UCyp,
CGNC =0 #j,i,j=1,2,---,N),

N
@ x,(l?}, Zni=n. (1
i=1

Cl {xlsxz""’

From the property of LM formulated in (1), it can be seen
that the original data points, e.g. DPDVs of the defect image,
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can be partitioned into some non-overlapped sets. As for the
construction scheme, the LMs can be derived from X by
utilizing the Euclidean distance matrix and geodesic distance
matrix defined in [25]. The manifold represented using these
LMs can well formulate the whole data points for the next
pattern analysis applications.

Ill. DISCRIMINANT MANIFOLD REGULARIZED LOCAL
DESCRIPTOR FOR STEEL SURFACE DEFECT
CLASSIFICATION

The steel surface defect classification task aims at achieving
the category of the defect by extracting the distinguishable
feature and designing the proper classifier. In this section,
the motivation is specified, and then the proposed algorithm
for steel surface defect classification is presented in detail.

A. MOTIVATION

As discussed above, the local descriptor is commonly used
as the feature description of the unconstrained image clas-
sification, e.g. the texture image, typically, the industry sur-
face defect image. However, the previous local descriptor,
such as LBP, HOG, and SIFT, involve the threshold operator
and the hand-crafted definition as well as have the limita-
tions of applications. In this paper, the proposed DMRLD
describes the feature of the defect image based on the
learning mechanism from a new sprite of view. The core
idea of the proposed DMRLD lies in employing the learn-
ing strategy to construct the local information and preserve
the raw, discriminant, and intrinsic structure of the defect
image.

The proposed DMRLD algorithm for steel surface defect
classification is outlined in Fig. 4. As shown in Fig. 4, there
are three steps for the training procedure of DMRLD. Firstly,
the DPDV associated with each pixel of the defect image
is computed. Secondly, the manifold of the defect image is
constructed by searching for a number of LMs spanned by
these DPDVs. In the end, the projection is derived from the
discriminant manifold learning to draw the low-dimensional
subspace in which the discriminant property of the feature
is enhanced for classification. Different from the previous
local descriptors which extract the local information and
generate the representation of the whole image, the proposed
algorithm employs the manifold structure to regularize the
local descriptor for representing the feature of the image.
In order to boost the discriminant property of feature, man-
ifold discriminant learning is conducted to learn the projec-
tion. Therefore, the format of the previous local descriptors
is a vector, while the proposed DMRLD is in form of
manifold.

B. IMPLEMENTATION OF DMRLD

The proposed DMRLD attempts to search for the manifold
of the defect image in terms of LMs spanned by the DPDVs.
According to the motivation specified above, the first step of
DMRLD computes the DPDV associated with each pixel of
the defect image. In the first step of the DMRLD approach,
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FIGURE 5. Computation of the 48-dimensional DPDV associated with the
central pixel colored in blue, where the radius is set as 3.

each pixel is treated by computing the DPDV. The computa-
tion of DPDV associated with the pixel is illustrated in Fig. 5.
From the construction of the DPDVs, it can be verified that
the dimension L = (2R + 1) * (2R + 1) — 1, where R is the
radius of the window. Compared with the original gray value,
the DPDV describes the difference between the central pixel
of the window and the neighboring pixels. Thus, DPDV can
better reflect the spatial change of the pixel and encode the
significant visual patterns implicitly, e.g. edges and lines in
the image.

According to the DPDVs derived from the first step above,
a collection of these DPDVs belonging to one image can be
formulated as X = [xq,x2, --- , X, - - - , X,,], Wwhere x; denotes
the DPDV of the i-th pixel and » is the number of pixels in the
image. As aforementioned, the DPDVs in the collection are
expected to come from a low-dimensional manifold M. Next,
it is assumed that the manifold can be constructed using some

LMs. Suppose we aim to partition the manifold into m LMs,
and each LM is represented as C; as introduced before. Based
on the definition of LM, each LM can be constructed using the
DPDVs. Given a pair of DPDVs x; and x;, they belong to the
same LM only if x; € KNN(x;) and Dg(x;, x;) < nDg(x;, X)),
where KNN(x;) indicates the set collected using the K nearest
neighbors of x;, and 7 is a threshold parameter and indicates
the degree of linear perturbation of LM. Furthermore, Dg and
Dg are the geometric and Euclidean distance defined in [25],
where Dg(x;, xj) = ||x; — xj|| and Dg(x;, x;) is computed via
the two steps expressed in (2). From the generation of Dg,
it can be seen that the first step initializes the value of each
element and the second step refine the value by introducing
the comparison criterion.

After initializing Dg(x;, x;)) by employing Dg(x;, x;),
the geodesic distance Dg(x;, x;) is updated by computing the
distance of nearest connected path between x; and x;, e.g.for
each xi, the sum of distances between x; and x; and that
between x; and x; is compared with the original Dg(x;, X)),
and then the final value Dg(x;, x;) is replaced with the smaller
one. Actually, Step 2 searches for the shortest path of Dg
and can be implemented using the famous Dijkstra algorithm.
From the definition of LM, it can be observed that a larger
n leads to fewer LMs but larger linear deviation, and vice
versa. Hence, n controls the tradeoff between efficiency and
accuracy. By initializing ¢ seed points and integrating the
pairs of DPDVs which meet the requirement expressed in (1),
the LMs can be constructed to represent the manifold of
the image. The procedure of constructing the LMs using the
DPDVs is outlined in Algorithm 1.

Dg(x;, x;), if x; is one of the K nearest neighbors of x;, or vice versa.
Step 1: Dg(x;, X)) = £ (Xi> X)) Lil ) g Xj, Or VICE V!
00, otherwise.
Step 2: For each x; in turn, replace all elements Dg(x;, x;) = min{Dg(x;, x;), Dg(x;, xx) + Dg(xk, x;)}. 2)
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Algorithm 1: Construction of the Local Model Using the DPDV's

Input: The collection of DPDVs X, parameter 7.
Output: Local models X¢

1 Initialize i =1,C; = I, Xc = I, X7 = X;

2 While X7 # & do:

3 Randomly select a seed point from X7 as xgi), update C; = xl , Xr =X — xgi) .

4 Foranyxi andxi e C;:

5 If x. is one of the K nearest neighbors of xm , Xc € X7, and Dg(x., x,(li))/DE(xc, x,(f)) <,
6 Update C; = C; U xe, X = X1 — X

7 If there is no x.s can be added into C;, then go to Return.

8 end while;

9 Return: Xc =CiUCU---UC,L, X =X — X¢.

C. DISCRIMINANT ANALYSIS ON THE MANIFOLD
According to Algorithm 1, the manifold in terms of the LMs
using the DPDVs first extracts the local information and then
constructs the manifold utilizing the LMs. Due to the linear
property of the LMs, there exists redundant information.
Thus, the discriminant learning is conducted on the manifold
in this subsection to learn the projection.

Generally, it attempts to learn a projection which could
map the original data into a low dimensional subspace
in which the discriminant information of the data can be
explored for the classification task [29], [30]. Given the LMs
computed before, it is expected to learn the projection matrix
P ¢ RL*4 where d < L. Then, the projected data in the same
class should be close to each other and those from different
classes are far from each other. To achieve the goal, we define
two scatter terms S, and S}, as follows:

Sw =Y _IIP x; — PTxj|*Wi; = 2P"X(D — W)X P,
ij
Sp =Y 1P x; — Pl Wi = 2P"X(D — W)XTP, (3)
ij
where S, and S, characterize within-class compactness and
between-class separability respectively, D and D are the diag-
onal matrices of W and W, D;; = Z Wij, D” = Z W,]
Furthermore, W and W are the affinity matrices of the intrin-
sic and penalty graphs, respectively. . It should be noticed
that the non-zero weight in W and W should satisfy the
base requirement that x; is one of the K nearest neighbors
of x; or vice versa. Then, the corresponding elements can be
computed via:

CXP(M) S(X) — S(X)

Wij = t ’ ' !
0, otherwise

; exp(IF ) 5y 2 501

Wi = t ’ ! J 4)
0, otherwise

where 8(-) indicates the class label and 7 is the kernel width.
From the definition of the affinity matrix, it can be observed
that the neighboring LMs of the manifolds belonging to the
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same training class will not be allowed to be connected in the
penalty graph. In order to learn the discriminant projection,
the following problem is expected to be solved by maximiz-
ing the objective:

PTX(D - w)xTp

max 5)

PTX(D - W)XTp
It can be observed that the projection P can be constructed
using eigenvectors corresponding to the top d largest eigen-
values in PTX(D — W)XTP = APTX(D — W)XT P, where
A is the eigenvalue. Since the discriminant projection P can
extract the distinguishable feature for classification, the LMs
can be represented using the projected DPDVs before con-
ducting the classification task.

D. DMRLD FOR STEEL SURFACE DEFECT CLASSIFICATION
In the previous local descriptor works, the descriptor match-
ing is conducted for the classification task using the
commonly-used nearest neighbor classifier. However, this
work represents the feature of the defect image in terms
of local descriptor by utilizing the structure of manifold,
a collection of LMs. Therefore, it is expected to match the
manifolds belonging to different defect images.

Similar to the nearest neighbor classifier which adopts
the Euclidean distance, cosine values and other vector-based
metrics, the distance between one manifold and another is
expected to measure the similarity of two defect images in this
work. There have been developed numerous manifold metric
learning works in recent years. The definition of the distance
can be categorized into variation based and exemplar based
measure.

According to the canonical vectors defined in [31], we can
introduce the variation based distance as follows:

dv(Ci, Cj) = (6)

Zk 1A%
where A is the k-th largest singular value by conducting
singular vector decomposition to Z; Z;, and Z; and Z; are the
orthogonal basis of the two subspaces C; and Cj, respectively.
The measurement in terms of dy(C;, Cj) takes into account
the common variation of the DPDVs in the two defect images.
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In addition, the appearance of these DPDVs in the two defect
images should also be involved into the proposed distance.
Denote the mean vectors of the two defect images by e; and e;.
Then, we define the exemplar distance as follows:

lleill - 1lejl]

7
o ™

de(Ci, Cj) =

By integrating the two measurements into the final dis-
tance, we can obtain the weighted distance as follows:

d(Ci, C))=a-dy(C;, C)) + (1 —a)-de(C;, Cj)  (8)

where « is the weight parameter to keep the balance between
the two measurements. According to the distance computed
using these subspaces from the manifolds, it can determine
the similarity of the manifolds. The defect image classifi-
cation procedure using the proposed DMRLD algorithm is
outlined in Algorithm 2.

E. DISCUSSION

This work aims at learning the representation of the defect
image using the discriminant manifold regularized local
descriptor. Different from the previous local descriptor
works, the proposed algorithm devotes to adopting the learn-
ing mechanism rather than the hand-crafted manner. Corre-
spondingly, the distance of the two defect images is converted
to the distance between the subspaces.

Compared with the previous local descriptor, the proposed
DMRLD also has to compute the local difference-like infor-
mation, e.g. DPDVs. Then, each defect image can be rep-
resented employing Algorithm 1 acting on these DPDVs in
form of LMs. Another difference lies in that an integrated
measurement is introduced into this paper for completely
learning the manifold metric. From the view of feature extrac-
tion, the previous local descriptor is denoted by a vector while
the proposed algorithm represent the feature using a number
of LMs. Furthermore, the proposed DMRLD derives the
discriminant representation from the manifold discriminant
analysis to achieve the low-dimensional manifold represen-
tation which assists in classification.

In summary, the proposed DRMLD algorithm employ the
pixel difference information and incorporates the discrimi-
nate learning mechanism into the descriptor. The characteris-
tics of the common local descriptors are outlined in Table 2.
The related local descriptors are computed via the structure
of region, such as HOG divides the image via some cells
and blocks, or pixel-based structure, such as others including
the proposed DRMLD in which the descriptors are computed
using the neighborhoods of central pixel. In addition, both
HOG and SIFT determine the descriptor in terms of gradient,
while only the proposed DMRLD introduces the learning
mechanism without employing the histogram format.

IV. EXPERIMENT AND ANALYSIS

The proposed local descriptor employs the manifold structure
to extract the local information of the defect image. In this
section, the experiments on the steel surface defect image
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TABLE 2. Characteristics of the related local descriptors.

Method  Structure Gradient Histogram Learning
HOG Region Vv v X
SIFT Pixel Vv vV X
LBP Pixel X Vv X

CLBP Pixel X Vv X
AECLBP Pixel X vV X
DMRLD  Pixel X X v

dataset are conducted to verify the performance of the pro-
posed DMRLD algorithm, and then the experiments on the
Kylberg texture dataset are conducted to illustrate the texture
descriptor ability of the proposed DMRLD algorithm.

A. EXPERIMENT SETTINGS

In order to verify the performance of the proposed algo-
rithm, the famous local descriptor, such as LBP [18] and
the variants CLBP [24] and AECLBP [3], HOG [19], and
SIFT [20], are used for comparison. By computing the local
binary coding in a 3 x 3 window, each image is represented
as a 256-dimensional vector. As for HOG descriptor, there
are four parameters in total, cell size, block size, number of
overlapping, and number of bins. Considering the structure
of HOG, we tune the size of cell from 8 x 8 to 128 x 128
on the steel surface defect dataset and 8 x 8 to 256 x 256 on
the Kylberg texture dataset, respectively. In the applications,
the number of bins is set as 9 in default, the block size is
set as [22] which indicates there are 2 x 2 cells construct one
block, and the overlapping is set as blocksize /2. Then, we run
HOG based classification algorithm and select the cell size
for the best classification accuracy. In this experiment, the cell
size of HOG is set as 64 x 64 and generate 324-dimensional
feature descriptors on the NEU steel surface defect dataset.
The cell size of HOG corresponding to the best classification
accuracy on the Kylberg dataset is set as 128 x 128, then
each image is represented as a 324-dimensional vector. Due to
the distance employed in the proposed algorithm, the nearest
neighbors classifier is utilized in the experiment. All the
algorithms are implemented on the platform of Matlab 2014a
and Intel Core 15-4460 3.20GHz 8GB memory.

B. EXPERIMENTS ON THE STEEL SURFACE DEFECT
IMAGE DATASET

In this subsection, we construct the experiments on the
NEU steel surface defect dataset across six types of defects,
i.e., crazing (Cr), inclusion (In), patches (Pa), pitted sur-
face (PS), rolled-in scale (RS), and scratches (Sc), includes
1800 gray scale images: 300 samples each of six different
kinds of typical surface defects. Fig. 6 shows the example
images of six types of surface defects, and each image is
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Algorithm 2: Manifold Regularized Local Descriptor for Steel Surface Defect Classification

Input: The training defect images X and the testing defect image y.

Output: Defect category of y.

Step 2: Compute the scatter matrices S,, and S via (3).
Step 3: Learn the projection P by solving the problem (5).

N oA W N =

Step 1: Obtain the manifolds of training defect images and the testing defect image in terms of LMs using Algorithm 1.

Step 4: Compute the distance from manifold to manifold according to the fused distance in (8).
Step 5: Defect category of y can be determined by /, = argmind (PTc;, PTCj), where C; is one of the LMs from the

testing defect image and C; is one of the LMs from the training defect image.

2t 2
100 150 200 00 150 200

b 200 o T o RS :
50100 150 200 5000 150 200 50100 150 200

FIGURE 7. SIFT feature visualization of some defect images of the strip
steep surface. Defect category from left column to right column: crazing,
inclusion, patches, pitted surface, rolled-in scale, and scratches.

normalized into 300 x 300 pixels according to [3]. From
Fig. 6, it can be seen that the defects are several of shapes
and sizes, such as patches, pitted surface, and scratches.

Before evaluating the performance of the proposed algo-
rithm, we show the SIFT key points on the defect images
in Fig. 7 as well. The steel surface is too coarse to capture
the discriminant feature using SIFT descriptors. From the
visualization of the key points detected using SIFT method,
it can be observed that the numbers of key points across
different sorts of defects vary largely.
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FIGURE 8. Classification accuracies of the competitive algorithms versus
the number of training images on the strip steel surface defect dataset.

Considering the extreme case in which no key points are
detected in the defect image, the classification task using
SIFT cannot be accomplished. The classification results in
terms of mean and standard deviation by ten repeated experi-
ments on the steel strip defect dataset are reported in Table 3.
For completely reporting the classification results, the num-
ber of images for each class ptr varies from 1 to 7 to construct
the training set. Due to the complex patterns of the defects,
n = 0.8 and the number of nearest neighbors is set as 3 while
searching for the subspaces. Meanwhile, the kernel width ¢
is set as 2 and « = 0.7. From Table 3, it can be observed
that SIFT based methods cannot achieve the comparable
results among the competitive methods, which responses to
the visualization of the key points in the defect images. With
the increasing of the number of training images, the clas-
sification results improve gradually. Among the compared
methods, the LBP variants including CLBP and AECLBP
obtain the second tier best results. Without the requirement of
the key points, the proposed DMRLD still achieves the best
classification result.

The classification results of the competitive methods ver-
sus the number of training defect images per class are shown
in Fig. 8. From Fig. 8§, we can find that SIFT with maximum
operation achieves the worst classification result among the
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TABLE 3. Classification accuracies (Mean=Std.)% on the strip steel defect dataset.

Algorithm ptr =1 ptr =2 ptr =3 ptr =4 ptr =5 ptr =6 ptr =17
HOG 50.51 £4.27 57.70 £ 3.86 6098 £ 3.83 6457 £3.44 66.12 £3.56 67.51 £3.03 6894 + 3.11
SIFT+ 62.84 £ 4.67 67.37 +£3.33 71.46 £255 7328 £3.11 7423 £280 75.13 £2.89 77.53 +£2.12
SIFT* 46.68 £ 7.15 49.81 + 4.18 5458 £291 56.89 +2.39 58.60 £ 2.75 59.04 +£2.05 59.23 £ 1.93
LBP 60.21 £4.72 67.65 £ 4.68 71.67 £330 75.61 £2.47 7697 £2.12 7839 £ 193 79.27 + 2.00
CLBP 63.63 £523 68.26 £ 4.23 73.08 £2.75 7852 £ 3.07 80.75 +£291 81.68 £322 82.16 +2.27

AECLBP 64.06 +4.77 69.38 £3.72 75.11 £2.52 7932 £ 326 82.62 +2.69 84.36 £ 221 84.86 &+ 2.40

DMRLD  70.35 +4.35 7423 +3.81 80.89 £2.63 83.63 +2.62 8652+ 2.06 87.01 £ 1.80 87.36 £ 2.03

TABLE 4. Classification accuracies (Mean=Std.)% versus o on the NEU steel surface defect dataset.

« ptr =1 ptr =2 ptr =3 ptr =4 ptr =5 ptr =6 ptr =17

0.0 60.68 £3.96 64.86+4.03 69.60 & 239 7299 +244 7475 £ 156 7821 £2.86 80.65 + 1.86
0.1 6421 £4.01 67.68 £3.96 7549 +252 78224302 79.03 £2.74 81.67£2.55 83.05+ 1.88
02 6637 £3.88 6935 +277 7546 +£195 7738 £221 81.19 £ 176 8493 £ 1.32 8553 £ 2.33
0.3 66.52 £3.63 69.05 £ 355 7786 +248 79.42 £ 132 8235 +£2.23 8556+ 1.82 85.78 &+ 2.06
04 6735417 7021 £4.05 79.12 +244 7836 & 1.57 82.55 £ 237 8698 £2.19 8742 + 145
0.5 7035 +435 7423 £3.81 80.89 +2.63 83.63 +2.62 86.52=£206 87.01+1.80 87.36+ 2.03
0.6 72.13 £4.04 7353 £3.53 7972 +249 80.58 242 82.26 £ 1.83 86.12 £ 2.08 88.04 + 2.85
0.7 71.01 £3.65 73.12 £3.62 77.65+3.01 7889 +2.00 83.33 £2.84 85.63 £ 234 8722+ 2.55
0.8 70.70 £4.88 71.03 £3.76 73.83 £238 7523 £2.77 79.12 £231 81.59 £2.80 84.19 + 2.62
09 6998 £5.02 7058 £4.29 71.14 +£259 73.01 £3.26 7659 £ 2.44 80.05+£ 2.71 8226 £ 2.37
1.0 68.82 £4.77 6859 +£386 7092+ 279 7227 +£287 75.81 £3.06 80.83 £2.08 81.19 +2.74

compared methods. Since the keypoints are unreliable on the
real steel surface defect images, the performance of SIFT
based methods degrade obviously.

In addition, the weight « in the fused manifold distance
determines the importances of the two metrics. In order to
follow the classification accuracy versus «, we report the
experimental results versus different settings of « in Table 4.
From Table 4, it can be observed that bigger alpha assists in
achieving the higher classification accuracy. From the fused
distance, alpha indicates the weight of the variation based
distance. From Table 4, it can also be observed that the
classification accuracies when @ = 0 and o = 1 are relatively
worse than those of other settings. Therefore, the fused mech-
anism works for the manifold metric. Exactly, the variation
distance (¢ = 1.0) plays more important role than exemplar
distance (¢ = 0) in manifold metric learning.

In order to illustrate the analysis on this point, the con-
fused matrix based on the classification results using the
compared methods is presented in Fig. 9. By comparing the
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classification results versus the category, it can be observed
that the classification results on the defect labeled ’inclusion’
are heavily worse than those on the other category while using
SIFT based methods. Furthermore, the classes named ’pitted
surface’ and ’scratches’ confront the case that few keypoints
are available for generating the descriptors. By counting
the results using SIFT based methods, it can be found that
there are 64%, 5%, and 2% images lacking of keypoints
for the class ’inclusion’, ’pitted surface’, and ’scratches’,
respectively. Therefore, it can also illustrate that it has a high
requirement of the image to utilize the SIFT descriptor. Mean-
while, the proposed DMRLD method is robust to texture
image as well as the real steel surface defect image.

C. EXPERIMENTS ON THE KYLBERG TEXTURE DATASET

In this paper, the proposed DMRLD is designed for extracting
the discriminant yet completed local feature for steel surface
defect classification. However, the proposed DMRLD should
work for the normal texture feature. For this, we employ the
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FIGURE 9. Confused matrices by using the compared methods (a) HOG, (b) SIFT*, (c) SIFT+, (d) LBP, (e) CLBP, (f) AECLBP, and (g) DMRLD on the real

steel surface defect dataset.

famous Kylberg texture dataset to conduct the experiments
to evaluate the competitive methods. Kylberg texture dataset
is widely-used for evaluating the performance on texture
descriptors. Kylberg texture dataset [32] consists of 28 tex-
ture classes. There are 160 unique texture patches per class.
The patch size of the texture is 576 x 576. All patches are
normalized with a mean value of 127 and a standard deviation
of 40. Some of the samples are shown in Fig. 10. In this
experiment, a small subset of the dataset including 6 classes
with 40 samples are employed for evaluating the performance
of the competitive algorithms.

Since the variation of the appearance in the same class is
not large on the Kylberg texture dataset, we randomly select 1,
2, and 3 samples per class to construct the training set and
the rests are for testing. According to the property of the
compared algorithms, the SIFT feature is computed using
maximum and mean schemes on the whole 128-dimensional
vectors. If the SIFT is derived by averaging the whole features
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FIGURE 10. Example patches from each one of the 28 texture classes.

belonging to the image, we mark the corresponding algorithm
as SIFT+, otherwise, SIFT*. Fig. 11 shows some of key
points detected using SIFT on the Kylberg texture images.
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FIGURE 11. SIFT feature visualization of some patches on the Kylberg

dataset.

TABLE 5. Classification accuracies (Mean=+Std.)% on the kylberg texture

dataset.

Algorithm ptr =1 ptr =2 ptr =3
HOG 40.60 + 7.75 4632 £ 5.13 49.64 + 3.87
SIFT+ 9321 £3.75 96.84 +3.02 99.05 &+ 1.68
SIFT* 70.04 £ 545 77.11 £ 4.52  81.85 &+ 3.08
LBP 90.00 + 522 96.18 £ 2.57 97.43 £ 1.60
CLBP 92.21 + 489 9568 £ 236 97.55 + 1.88

AECLBP 92.63 + 3.86 96.52 £ 2.33 97.86 £ 1.92

DMRLD  94.75 £ 325 97.67 £2.17 99.82 + 1.68

It can be observed that there are dense points which cor-
respond to the features.Different from the texture images
on the Kylberg texture dataset, the real strip steel surface
demonstrates various patterns and has a terrible quality.

As for the proposed MRLD algorithm, we set n = 2 and
the number of nearest neighbors as 5 in Algorithm 1 for
constructing the local models. During the learning process,
the dimension of the projection d = 10 and the kernel
width + = 2 in Eq. (4). At last, the fused distance defined
in Eq. (10) is computed by setting « = 0.5. The results
in terms of mean and standard deviation by repeating the
procedure for 10 times are reported in Table 5. From the clas-
sification results in Table 5, it can be seen that the proposed
DMRLD performs better than other competitive algorithms.
Among the compared algorithms, SIFT+ and SIFT* achieve
the second tier best results due to the discriminant ability of
feature measurement. At the same time, it can be checked
from Fig. 11 that there are plenty of key points to support
the discriminant feature descriptors while employing SIFT
descriptors. Furthermore, the results of HOG performs worst
among the compared methods due to the strict feature extrac-
tion on the edge rather than the texture.

Meanwhile, we show the classification accuracies of the
competitive algorithms versus the number of training samples
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TABLE 6. Computation time (ms) on the two datasets using the
compared methods.

Method  Kylberg NEU steel surface
HOG 33.6 7.18
SIFT+ 3633.7 510.2
SIFT* 3638.6 511.3
LBP 342 5.79
CLBP 36.1 5.93
AECLBP 38.4 6.08
DMRLD 45.5 7.31

in Fig. 12. With plenty of training samples, the competitive
algorithms can achieve the similar, promising results. It can
be seen that the proposed DMRLD outperforms other meth-
ods in the case that there are small number of training samples
in the training set. It illustrates that the proposed DMRLD
takes the best result on the dataset while extracting the local
information to represent the texture image.

D. EXPERIMENT ANALYSIS AND DISCUSSION

From the experiment results on the Kylberg texture dataset
and the NEU steel surface defect dataset, we can achieve the
following observations:

1) The experiments on the Kylberg texture dataset illustrate
the performance of the proposed DMRLD. With the increas-
ing number of the training samples, the methods can achieve
similar classification accuracy. Typically, both DMRLD and
SIFT+ obtain 99%+. However, the proposed DMRLD still
gets the best classification accuracy and improves 1.5% when
ptr = 1 compared with SIFT+. In addition, DMRLD
improves 2% + compared with LBP variants. Therefore,
DMRLD can extract the texture descriptors on the normal
texture images.

2) NEU steel surface defect dataset consists of sorts
of defects. From the comparison, it can be observed that
AECLBP obtains the second best classification accuracy. The
proposed DMRLD improves about 5% than AECLBP with
different numbers of training samples. Another interesting
observations lies in that SIFT based methods fail to work for
defect classification. Due to the number of key points, SIFT+
cannot achieve the similar results on the Kylberg dataset.
Thus, DMRLD gets better than SIFT+ about 8%-10% in
terms of classification accuracy.

Since the local descriptor is designed for steel surface
defect image, the computation time is one of the key issues
during the application. Thus, we report the computation time
of classifying one defect image by employing the competitive
methods in Table 6. From Table 6, it can be observed that the
SIFT based methods take more time in classifying the image
than other compared ones due to the keypoints detection. The
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FIGURE 12. Classification accuracies of the competitive algorithms versus the number of training samples on the Kylberg texture dataset.

original LBP is more efficient than any other methods in
the classification task. Furthermore, the proposed DMRLD
gets the similar computation time with the LBP variants
during the experiment yet achieves the best classification
accuracy. According to the related production, the COGNEX
inspection production allows 2.1—2.6 meters per second for
the craft speed. From Table 6, it can be seen that the pro-
posed DMLRD algorithm can conduct 7000+ rounds classi-
fication task per second. Therefore, the proposed DMRLD
can be qualified to the defect classification task in the
application.

V. CONCLUSION

A new approach to the local descriptor algorithm is proposed
in this paper to solve the problem of steel surface defect
image classification. Considering the previous local descrip-
tors are constructed in hand-crafted fashion, the proposed
method introduces the structure of manifold into learning the
descriptors of the defect image. By defining the criterion as
well as involving the learning mechanism, the local models
in terms of DPDVs are achieved. Furthermore, the discrim-
inant information is utilized into the dimension reduction
processing to learn the projection. Finally, the integrated dis-
tance which simultaneously takes into account the variation
and exemplar distances is given for measuring the simi-
larity between the local models. Compared with the previ-
ous, famous local descriptors, the proposed DMRLD method
can better capture the distinguishable feature without high
requirement of the defect image quality. Therefore, the pro-
posed method is more robust than the compared methods in
the real steel surface defect classification. Experiments on the
open Kylberg texture dataset illustrate that DMRLD outper-
forms SIFT descriptor which is the best compared method.
Moreover, the experiments on the real steel surface defect
dataset show the effectiveness and robustness of DMRLD.
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Due to the performance of DMRLD, it will be employed to
guide the defect detection in the future work.
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