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ABSTRACT Membrane proteins occupy an important position in the life activities of humans and other
species. The elucidation of membrane protein types provides clues for understanding the structure and
function of proteins. With the fusion of various protein information including amino acid classification,
physicochemical property, and evolutionary information, this paper proposes a system for predicting
membrane protein types. In this system, a new feature selection method called MIC-GA is proposed to deal
with the curse of high-dimensional features. The findings show that this approach is effective in reducing
feature dimensions and improves prediction accuracy. Ensemble method based on stacked generalization is
also used to solve the problem of feature heterogeneity. The performance of the present method is evaluated
on two benchmark datasets. The overall prediction accuracies of eight types are 89.23% and 93.49% using
jackknife test and independent test, respectively. The final experimental results show that our method is more
effective than the existing methods for prediction of membrane protein types.

INDEX TERMS Prediction for membrane protein types, fusion representation, MIC-GA feature selection,
ensemble method, stacked generalization.

I. INTRODUCTION
Membrane proteins play a vital role in the life activities
of humans and other species. In the genome that has been
sequenced, the membrane protein accounts for 30% [1].
Membrane proteins participate in important reactions of the
cell, including transporting the substance into and out of
the cell as a carrier, acting as a specific receptor for the
hormone, carrying the recognition function of the cell and
being responsible for signal transduction and cell-cell inter-
actions [2]. In addition, membrane proteins are of partic-
ular importance in drug therapy as the targets for many
drugs [3], [4]. Currently, more than 50% of drugs on the
market are exerted by membrane proteins [5]. Because of
the closely relation between the type and function of mem-
brane proteins, knowing the type can provide clues for
the structure and function of the protein [6]. Many reports
proved that nuclearmagnetic resonance (NMR) is an effective
tool to determine the 3D structures of membrane proteins,

however, it is time-consuming and expensive [7], [8]. With
the incredibly growing number of protein sequences discov-
ered in the postgenomic era, there is an urgent need for
an effective method to predict membrane proteins and the
introduction of machine learning methods greatly solve the
problems.

According to their functions, membrane proteins can be
classified into three classes: integral, peripheral and lipid-
anchored. Based on the direct interaction relation between
membrane proteins and lipid bilayers, the three classes can be
further extended into eight basic types: (1) type I membrane
proteins, (2) type II membrane proteins, (3) type III mem-
brane proteins, (4) type IVmembrane proteins, (5) multi-pass
transmembrane proteins, (6) lipid chain-anchored membrane
proteins, (7) GPI-anchoredmembrane proteins, (8) peripheral
membrane proteins. Among them, Types I, II, III, and IV are
of single-pass transmembrane proteins and detailed descrip-
tion of their differences are given in [9].

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

75669

https://orcid.org/0000-0002-1927-8753
https://orcid.org/0000-0001-7714-1993


L. Guo et al.: Prediction for Membrane Protein Types

Feature representation is the basis of machine learning
algorithms, which plays an important part for accurate pre-
diction and classification tasks in biomedical scenarios [10].
In last few decades, many feature extraction methods had
been applied to the prediction of membrane protein types.
Amino acid composition (AAC) was firstly used to pre-
dict membrane protein types by Chou and Elrod [6].
However, the amino acid composition lost the order infor-
mation in the sequence. To overcome this drawback, dipep-
tide composition (DipC) [11], [12], as a powerful feature
extraction method, was proposed to improve the predic-
tion accuracy of membrane protein types. Subsequently,
considering both amino acid composition information and
amphipathic sequence-order information, Chou [13] pro-
posed pseudo-amino acid composition (PseAAC) to improve
the performance of prediction. Then, other different forms
of PseAAC [14]–[18] were proposed by many researchers
to represent protein samples. Besides sequence information,
feature extraction methods based on protein database infor-
mation such as functional domain composition (FunD) [19]
and gene ontology (GO) [20] were also applied into
the prediction of membrane protein types. Afterwards,
position-specific scoring matrix (PSSM) [21] based on evo-
lutionary information and various forms of PSSM [22]–[26]
were applied to many fields of bioinformatics. Many
researchers had illustrated that the evolutionary information
is more informative than the sequence itself [27]. How-
ever, the single feature extraction methods were still unable
to meet the expectation of researchers so that the fusion
representation by combining many features extracted from
different methods were widely used [12], [28]. Since fea-
ture vectors come from different feature extraction methods,
simple feature stitching may cause some problems, many
fusion strategies [29], [30] were proposed to solve the prob-
lem of feature heterogeneity. Although fusion representation
improves the accuracy of prediction, the high dimensionality
of features in turn increases the computing time and complex-
ity. To deal with the curse of high-dimensional features, many
researchers proposed their own methods: a two-step opti-
mal feature selection process based on minimum redundancy
maximum relevance (mRMR) method was used to reduce the
dimension of feature and obtained ideal result in prediction
of membrane protein types [31]. Supervised dimensional-
ity reduction methods like local linear discriminant analy-
sis reduction (LLDA) [32] and kernel discriminant analysis
(KDA) [33] were proposed to reduce the dimension and
achieved the desired result. Zou et al. [34] proposed a max-
relevance-max-distance (MRMD) feature ranking method,
which balanced accuracy and stability of feature ranking and
prediction task, and it was proved to be effective in image
classification and protein-protein interaction prediction.

Furthermore, classification algorithm is also crucial in
prediction of membrane protein types. General methods that
were applied in predicting membrane protein types are listed
here: k-nearest neighbor (KNN) classifier [11], naive nayes
(NB) [15], support vector machine (SVM) [35], [36], random

TABLE 1. The training dataset and independent dataset for eight types of
membrane proteins.

forest (RF) [37], neural network with back propagation train-
ing (NN) [36], probabilistic neural network (PNN) [38] and
multi-label elastic net (EN) classifier [39]. Apart from single
classifiers, various ensemble methods like stacking gener-
alization [40], bagged decision tree [36], numerous support
vector machines combined by vote rule [41] were applied into
the prediction of membrane protein types and they achieved
better results than single classifier did.

In this paper, a fusion representation method is used to
extract the information from membrane protein samples.
To reduce the dimensionality of features in the fusion rep-
resentation and obtain higher prediction accuracy, we pro-
pose a novel feature selection called MIC-GA. This method
incorporates maximum information coefficient (MIC) into
the general form of genetic algorithm (GA). It can get the
best feature subset and optimal classifier parameters for each
feature representation simultaneously. After feature selection,
to solve the problem of feature heterogeneity, being different
from previous researchers who proposed the fusion strategies
to combine features, we provide a strategy which combined
the outputs of the classifiers trained by different feature
extraction methods. By this way, the problem of feature het-
erogeneity would be transformed into classifier heterogeneity
problem which solve the heterogenous feature problem from
a new perspective. At last, two benchmark datasets including
training dataset and independent dataset are used to evaluate
the performance of our method. The overall accuracy of pre-
diction for eight types are respectively 89.23% and 93.49%
using the jackknife test and independent test.

II. DATASET AND METHODS
A. DATASET
The training dataset and the independent dataset we
adopt are from [42] and they have been used in various
papers [9], [12], [15], [32], [41], [43]. The datasets are
screened from SWISS-PROT database through three-steps
procedure which is presented in [9]. Then we get the train-
ing dataset consisting of 3249 samples and the independent
dataset consisting of 4333 samples. Detailed distribution of
samples is shown in Table 1.

B. FEATURE EXTRACTION
In order to establish an effective membrane protein prediction
system, the key point is how to convert an original membrane
protein sequence into a feature vector. To capture as much
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information of protein samples as possible, we apply such
feature extraction method as amino acid classification-based
methods, physicochemical property-based methods and evo-
lutionary information-based methods in our experiment.
Abundant features in this paper contain more information
than most previous methods do. Among these features, local
amino acid composition (LAAC), local dipeptide composi-
tion (LDC) [44] and tripeptide composition (TC) [45] are
amino acid classification-based methods; sum of physico-
chemical property index (SPPI), auto correlation function
(ACF) [46] are based on physicochemical property; reduced
position-specific score matrix (RPSSM), evolutionary dif-
ference position-specific score matrix (EDP) and pseudo
position-specific score matrix (PsePSSM) [9], [23], [24] are
evolutionary information-based methods. SPPI is used in our
study for the first time.

1) AMINO ACID CLASSIFICATION-BASED METHODS
Both the LAAC and LDC emphasize the amino acid classi-
fication information in the sequence composition. In the two
methods, amino acids are classified into different amino acid
groups according to certain classification methods which are
listed in Table 2. The original 20 kinds of amino acids are
divided into n groups. We use a symbol to represent all the
amino acids in each group. According to the grouping of these
amino acid classifications approaches, we can obtain 132 and
1302 dimensional feature vectors through LAAC and LDC
respectively.

Since TC can reflect amino acid related information from
spatial structure of the sequence, we also use tripeptide
composition to extract the protein information and construct
a prediction model. The tripeptide is a sequence consist-
ing of three adjacent amino acids in the sequence. Then,
we obtain 8000 feature vectors by using TC. Compared with
other feature expression, less researchers used TC to study
protein property due to its high dimensionality. In view of
this, this paper tries to do some distinctive work with it.
Detailed description will be presented in part II.

2) PHYSICOCHEMICAL PROPERTY-BASED METHODS
The physicochemical properties index of 20 kinds of amino
acids are very different, such as chargeability, hydrophilicity,
electron transferability and so on. The physicochemical and
biochemical properties of amino acids are also important
factors affecting the type of membrane protein. The AAindex
database [55] contains the index of physicochemical prop-
erties for each amino acid derive from previous published
papers. There is a total of 566 physicochemical properties
at present. In this study, the physicochemical property index
including NA missing value is screened out, and the remain-
ing 537 kinds of amino acid physicochemical properties index
are extracted for feature representation. Based on the physic-
ochemical properties of each amino acid, we can get the sum
of physicochemical property index for each sequence. For
example, the index of hydrophobicity is calculated as the

TABLE 2. Amino acid classifications approaches.

formula (1).

SH =
L∑
i=1

HI i. (1)

where HI i indicates the hydrophobicity index of i-th amino
acid and 537 features can be obtained based on SPPI.

The autocorrelation function based on the physicochem-
ical properties is also an important factor affecting the
type of membrane protein. We select five properties of
amino acids — (I) Codon diversity; (II) Electrostatic charge;
(III) Molecularvolume; (IV) Polarity; and (V) Secondary
structure. The autocorrelation function of a protein is defined
as:

rλ =
1

L − λ

L−λ∑
i=1

pipi+λ, λ = 1, 2, · · · ,m. (2)

where L is the length of the sequence of the membrane
protein, λ represents the sequence of molecules, pi represents
the i-th amino acid physicochemical property index. We set λ
to 30, then the number of features using ACF is 150.

3) EVOLUTIONARY INFORMATION-BASED METHODS
In this paper, we mainly use position-specific scoring
matrix (PSSM) to extract evolutionary information. PSSM
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is a general feature extraction obtained by searching pro-
tein sequences that have the evolutionary relationship with
searched sequence in the protein database. In the resulting
score matrix, each amino acid in the sequence is given a
specific score. It is expressed as follows:

PSSM =


M1→1 M1→2 · · · M1→20
M2→1 M2→2 · · · M2→20
...

...
. . .

...

ML→1 ML→2 · · · ML→20

 (3)

where L is the length of the sequence of themembrane protein
andMi→j denotes the score of the amino acid which mutates
from i-th to j-th position during evolution process. The PSSM
in this paper is obtained through PSI-Blast [56] software. The
number of iterations used for Blast is 3, and E-value threshold
used for Blast is 0.001.
To extract more information from position-specific scor-

ing matrix, we summarize the research of the predecessors,
considering RPSSM, EDP and PsePSSM as feature extrac-
tion methods to extract evolutionary information. Detail of
description of methods above are presented in [9], [23],
and [24].

C. MIC-GA FEATURE SELECTION
After deploying feature extraction, all original membrane
protein sequences are converted into high dimensional vec-
tors. To reduce the feature dimensionality and obtain better
results, we propose an effective feature selection method
called MIC-GA. This method incorporates maximum infor-
mation coefficient into the general form of genetic algorithm
which can get the best feature subset and optimal classifier
parameters for each feature representation simultaneously.

1) MAXIMUM INFORMATION COEFFICIENT
Maximum information coefficient was proposed in [57]
which can measure the linear and nonlinear relationships
inside the data. Because the MIC is mainly calculated by
mutual information and meshing method, we define the
mutual information as follows:
To give a random variable X = {x1, x2, · · · , xn} and a

random variable Y = {y1, y2, · · · , yn}, where n is the sample
size, the mutual information is defined as:

MI (X ,Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)
p(x)p(y)

(4)

where p(x, y) represents the joint probability density function,
p(x) and p(y) are the marginal probability density functions
of X and Y , respectively. Then, the calculation process of the
MIC as follows:

Step. 1 To Give a finite ordered set D = { (xi, yi), i =
1, 2, · · · , n}, we divide the range of X into a segments, and
divide the range of Y into b segments to form a grid which is
defined asG. There are many ways to segment different grids
for the same i, j. We define the max value ofMI (X ,Y ) as the

mutual information for the set D under the grid G.

M̂I (D, i, j) = maxMI (D|G) (5)

where D|G indicates that set D is divided by grid G.
Step. 2 In order to fairly compare the mutual informa-

tion values of the grid G under different division methods,
the mutual information should be normalized. After normal-
ization, we combine the M̂I (D, i, j) obtained by different
division methods into a feature matrix which is defined as
M (D)i,j. The calculation formula is as follows:

M (D)i,j =
M̂I (D, i, j)
log2min(i, j)

(6)

Step. 3 Get the MIC value for set D.

MIC(D) = max
i×j<B(n)

{
M (D)x,y

}
(7)

where B(n) is the upper limit of the number of grids after
meshing. The study [57] points out that it is best when B(n) =
n0.6 in general. Then we can evaluate the quality of features
by calculating the maximum information coefficient between
features and categories.

2) GENETIC ALGORITHM
Genetic algorithm is built based on natural selection and
population genetics. It starts from the original population and
experiences the selection, crossover and mutation to form a
better population. We apply GA to feature selection in detail
as follow:

a: Code of Samples
To obtain the best feature subset and optimal classifier param-
eters, in our algorithm, individuals in the population are
mainly composed of feature code and classifier parameter
code. Wherein, the feature code indicates that whether the
feature is selected; and the parameter code indicates a specific
value of the parameter in the classifier.

b: Selection Strategy
In the genetic algorithm, the quality of an individual is eval-
uated by the fitness function value. The higher the fitness
function value is, the higher the individual quality will be.
The feature subset with higher fitness is selected as potential
results. The fitness function in our algorithm is 5-fold cross
validation on the training dataset, where the classifier in our
algorithm is random forests which is widely used in many
fields of bioinformatics [58], [59].

c: Crossover Operation
Randomly selecting two individuals from the population as
parents during crossover operation. For the feature code
of individuals, the common feature shared by parents are
selected as advantageous gene and preserved in next gen-
eration. The feature selected by only one of the parents
is defined as a non-advantageous gene and it is inher-
ited to next generation through stochastic selection. For the
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TABLE 3. The specific process of MIC-GA feature selection.

parameter code of individuals, it respectively inherits the
first half of paternal gene and the last half of maternal
gene.

d: Mutation Operation
Mutation operation unables the genetic algorithm to make
local random search ability andmaintain population diversity.
In this paper, a position in feature code and parameter code
is randomly selected and its value is going to change. The
mutated individual obtained from this step is added into
population.

e: Condition of Termination
The algorithm terminates when genetic manipulation
reaches the maximum number of iterations. If contin-
uous generations of optimal individual do not change
any more in iteration, the algorithm may terminate in
advance.

3) MIC-GA FEATURE SELECTION
Theoretically, genetic algorithm is a stochastic search meta-
heuristic and is considered to be a unbiased global optimiza-
tion method [60]. Nevertheless, problems emerge in practical
application. For instance, the convergence is too slow to result
in high time complexity.

A good initial population is an effective solution to speed
up the convergence of the genetic algorithm. MIC-GA incor-
porates maximum information coefficient into the general
form of genetic algorithm. The MIC value of feature is used
as the probability that the feature is selected. Then, by this
way, we can get a better initial population at the beginning
of the algorithm. Two important reasons why MIC can be
interpreted as probability as follows: Firstly, the value range
of the MIC is between [0,1] for each feature after normal-
ization. Coinciding with the probability in reality. Secondly,
as the correlation between features and categories increases,
the MIC calculation results also increase. The larger the MIC
value is, the higher possibility that the feature is selected.
Even the feature with the smallest value still has the prob-
ability to be selected. This is consistent with our intention at
the beginning.

The specific processes of MIC-GA feature selection are
listed in Table 3.

D. ENSEMBLE CLASSIFIER BASED ON STACKED
GENERALIZATION
After feature selection, we obtain the best feature subset
and optimal classifier parameters for each feature extraction.
Since the features come from different feature extraction
methods, the problem of feature heterogeneity becomes a big
challenge in prediction of membrane protein types. Ensemble
method based on stacked generalization can combine the
results of the base classifiers and learns two or more times
to obtain the final result. If we use one single feature repre-
sentation as the input to train base classifier, the problem of
feature heterogeneity would be transformed into the classi-
fier heterogeneity problem. The ensemble method based on
stacked generalization [61] is an effective method to solve
the problem of classifier heterogeneity, so we can solve the
heterogeneous feature problem from a new perspective. In our
study, random forests (RF) and neural networks (NN) are
respectively used as base classifier and meta classifier.

1) BASE CLASSIFIER—RANDOM FORESTS
Random forest is the classifier which consists of a series of
decision tree. They can be expressed as {h(θn, x); n = 1, · · · },
where θn is independent identically distributed random vec-
tors. Each decision tree can give its final result to vote. The
class probability of random forest is as follows:

Pj(x) =
1
N

N∑
n=1

I (h(θn, x) = j) (8)

where N is the total number of decision trees. When the
output of decision tree h(θn, x) is j, h(θn, x) = 1, otherwise,
h(θn, x) = 0. The research shows that the class probability as
the output of the base classifier performer better [62]. Then
we use p(x) as the expression of output for the base classifiers,
it can be represented as follows:

P(x) = (PT1 ,P
T
2 , · · · ,P

T
L)

T

= (P11, · · · ,P
1
c︸ ︷︷ ︸

Classifier_C1

,P21, · · · ,P
2
c︸ ︷︷ ︸

Classifier_C2

, · · · ,PL1 , · · · ,P
L
c︸ ︷︷ ︸

Classifier_CL

)

where L is number of base classifiers, there is eight kind of
feature extraction methods so that we set L to 8 in our works.
C is the class number of samples.
Furthermore, due to the unbalanced training dataset, we set

the sample weight by giving different misclassification costs
to different types of membrane protein samples when training
in the random forest. The weights of each class samples WL
are calculated by the formula (9):

WL = M/NL (9)

whereM is the number of largest class samples and NL is the
number samples of class L.

2) META CLASSIFIER-NEURAL NETWORKS
Neural network is a computing model which consists of
many neurons and the connection of the neurons. It can per-
form complex nonlinear transformation for the input features
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FIGURE 1. A two-layer stacking architecture of ensembles of classifiers.

through training so that its output is infinitely close to the
target value. The neural network we use including three basic
layers: (1) The input layer, which contains some percep-
tion units which would connect network with the external
environment. (2) The hidden layer, which transfers the input
space into the hidden space with nonlinear. The dimension of
hidden layer is often high in most cases. (3) The output layer,
which provides final results of neural network.

Then, we can combine the results of the base classifiers
together and balance the advantages and disadvantages of
each heterogeneous classifier by using neural networks.

3) STACKED GENERALIZATION
At last, we construct an ensemble method based on stacked
generalization to predict membrane protein types. The flow
chart of ensemble method in this paper is shown in Figure 1.
The specific process is presented as follows:
Step 1: Adopting the leave-one-out cross validation

method to train the base classifiers in layer-1. For example,
a training dataset {(x1, y1), · · · , (xm, ym)} and base classi-
fier are given. In each iteration, choosing one sample from
training dataset and using it as test sample in order, and the
remaining m − 1 samples are used as training samples by
base classifier.We can get eight classification results by using
eight feature extraction methods to classify the test samples.
The results of repetition of the process m times are regarded
as the outputs of the layer-1.
Step 2: The outputs of the layer-1 are combined together as

new training dataset to train the meta-classifier. When testing
unknown sample, we take the result of the meta-classifier as
final output.

The system flow chart we proposed is shown in Figure 2.

E. PERFORMANCE EVALUATION
To evaluate the performance of the model, we adopt sensitiv-
ity (Sn), specificity (Sp), overall prediction accuracy (ACC)
and Matthew’s Correlation Coefficient (MCC) [63] in our
work. Their definetions are presented as follows:

Sni = TPi/(TPi + FNi) (10)

Spi = TNi/(TNi + FPi) (11)

MCCi =
TPi × TNi − FPi × FNi

√
(TPi+FNi)(TPi + FPi)(TNi + FPi)(TNi + FNi)

(12)

TABLE 4. Comparison of the overall prediction accuracy between
different feature extraction methods using the jackknife test and
independent test.

ACC =

∑
i TPi
N

(13)

where true positive (TP) is the number of positive samples
predict correctly; false positive (FP) is the number of nega-
tive events that are incorrectly predicted to be positive; true
negative (TN ) is the number of negative samples predict
correctly; false negative (FN ) is the number of subjects that
are predicted to be negative despite they are positive.

In addition, three validation methods are also used to
examine our model for its effectiveness: independent test,
sub-sampling test and jackknife test.

III. RESULTS AND DISCUSSION
A. COMPARISON OF FEATURE EXTRACTION METHODS
To assess which information-based method is more effective,
we compared the overall prediction accuracy for each method
on the training dataset and independent dataset. The best
feature subset and the optimal parameters for each feature
extraction method are obtained by MIC-GA feature selection
on training dataset. Note that all parameters of the system
including best feature subsets and the optimal parameters are
not re-parameterized to apply on the independent dataset.

Considering single information-based methods, findings
show that the most effective method is based on evolution-
ary information, whose overall prediction accuracy is higher
than those of other information-based methods. Amino acid
classification-based methods LAAC, LDC and TC are com-
bined together as one method, named method I; physico-
chemical property-based methods SPPI and AFS are com-
bined as method II, evolutionary information-based methods
EDP, RPSSM and PsePSSM are combined as method III.
As shown in Table 4, the overall prediction accuracy of
method III achieves better results than those of other methods
both on the training dataset and independent dataset, which
indicates that evolutionary information has higher efficiency.

Furthermore, to show the effectiveness of the proposed
SPPI extraction method, we integrated the feature extraction
methods LAAC, LDC, TC, ACF, EDP, RPSSM, PsePSSM
as combination 1, all of feature extraction methods are inte-
grated as combination 2. Comparison of their prediction per-
formance are made. In Table 4, with SPPI feature extraction
method, the overall prediction accuracy increases by 1.66%
and 0.92% using the jackknife test and independent test
respectively. The experimental results illustrate the assump-
tion that the performance of membrane protein types predic-
tion could be improved by adding SPPI feature extraction.
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FIGURE 2. The complete flow chart of the proposed method.

B. EFFICIENCY ANALYSIS OF MIC-GA FEATURE SELECTION
Since the performances of GA strongly rely on their settings,
such as population size, crossover rate and mutation rate.
Taking LAAC extractionmethod as an example, the influence
of different parameters on MIC-GA convergence is analyzed.
The effects of different parameters settings on the optimal
results of each generation are shown in Figure 3. Among
them, the population size occupies an honorable position
in the whole process of GA optimization for it limits the
number of individual when searching samples. Smaller pop-
ulation can accelerate the operation of GA but could reduce

the diversity of population. In this paper, we adaptively set
population size as the individualąŕs gene number for main-
taining diversity of population and effectiveness of operation.
The first figure in Figure 3 presents the respective accuracy
when mutation rate is 0.1 and crossover rates are respec-
tively 0.3, 0.5 and 0.7. Findings show that the convergence
of population performs better when crossover rate is 0.5.
Too high crossover rate may destroy excellent individuals in
population and make negatively affect on evolutionary com-
putation. Too low crossover rate, however, may cause slow
production of new individuals, decelerate optimization and
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FIGURE 3. Optimal results of each generation with different parameter
settings.

reduce the convergence performance. The second figure in
Figure 3 demonstrates the accuracy of different mutation
rates when crossover rate is 0.5. From the figure, it is clear
that GA performs the best when mutation rate is 0.1. Setting a
larger mutation probability increases the chance of destroying
the better individuals and makes the optimal value of each
generation fluctuate greatly in the process of optimization,
but it also produces numerous new individuals and increases
diversity of population. Taking those into account, we set
mutation rate as 0.1 and crossover rate as 0.5.

Now, we intend to perform the MIC-GA feature selec-
tion to deal with the curse of high-dimensional features.
The effects of the iteration times on the optimal results of
each generation for all feature extraction methods are shown
in Figure 4, where the ordinate is the optimal result for each
generation and the abscissa means the number of iterations.
From the figure, we find that there is a certain fluctuation
in the optimal result for each generation with the number
of iterations increases. The reason is that the MIC-GA is a
kind of probability search feature selection method which
has certain randomness. With the incremental number of

iterations, its prediction accuracy gradually increases and the
results are increasingly stable.

To assure whether the MIC-GA feature selection method
is effective, we take the feature dimension and the prediction
accuracy into account to compare the performance between
original features and MIC-GA selected features. Figure 5
is the distribution of the MIC-GA selected features and
non-selected features. From the figure, we find that although
the features from TC methods have the highest dimension,
nearly 94.13% are redundant features, while features based
on EDP method retain the largest proportion of original
features after MIC-GA feature selection. The experimental
results show that MIC-GA can remove the redundant fea-
ture, thus greatly reduce the feature dimension and further
decrease the computing complexity.

Then, we intend to validate if MIC-GA would improve
the prediction accuracy of membrane protein types. The
detailed results are shown in Table 5 and Table 6. From
the tables, we can find that after MIC-GA feature selection,
the overall prediction accuracy of each feature extraction
method has been well improved in jackknife test. However,
for the independent test, the accuracy of the TC and RPSSM
becomes slightly worse after MIC-GA feature selection, but
it only decreases by 1% at the most. MIC-GA is still effec-
tive since it removes numerous redundant features for these
methods.

C. ANALYSIS OF OPTIMAL FEATURE
After MIC-GA feature selection, we obtain the optimal
feature subset for each feature representation. To intu-
itively observe the distribution of optimal features MIC-GA
selected, we plot the MIC values for each feature representa-
tion which are shown in Figure 6, where the selected optimal
feature subset has a key mark. From the figure, we find that

FIGURE 4. Optimal results of each generation with different iteration times for LAAC, LDC, TC, SPPI, ACF, EDP, RPSSM, PsePSSM
respectively.
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TABLE 5. Comparison of the overall prediction accuracy between original
features and MIC-GA selected features using the jackknife test.

TABLE 6. Comparison of the overall prediction accuracy between original
features and MIC-GA selected features using the independent test.

the best feature subset MIC-GA selected is not the features
which has strong correlation with categories. Even the worst
feature can be the part of the subset.

To verify whether the feature subset MIC-GA selected is
reliable for classification, we select the top n features in MIC
for comparative experiment, where n is set to the same values
as the number of features MIC-GA selected. Figure 7 is
the results of comparison of the overall prediction accuracy
between top n features and MIC-GA selected features using
the jackknife test and independent test. The results suggest

FIGURE 5. Distribution of the selected features and Non-selected
features for each extraction method.

that the top n features combined would not be the best sub-
set for classification. The reason is that although the top n
features have strong correlations with categories, there may
be a lot of redundant features. The correlation between fea-
tures and categories should be considered in the construction,
as well as noticing the redundant features. MIC-GA feature
selection we proposed works well in this respect.

Furthermore, we also find that the features extracted by
SPPI method have a higher correlation with categories. The
MIC of features extracted by other methods are generally
lower than 0.35, especially the TC method whose MIC is no
more than 0.1; while a large number of features whose MIC
values exceed 0.35 when the features are extracted by SPPI
method. We listed the top ten features are extracted by SPPI:
PUNT030101, CIDH920104, PUNT030102, CORJ870107,
CORJ870108, QIAN880119, KYTJ820101, CORJ870103,
BIOV880102 and WOLS870101. The overall prediction
accuracy of the individual feature that extracted by each
physicochemical property is listed in Table 7. From the table
we find that even if there is only one feature, the overall

FIGURE 6. Distribution of the optimal features MIC-GA selected for each feature extraction method.
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TABLE 7. The overall accuracy of top 10 features extracted by SPPI using
the jackknife test and independent test.

FIGURE 7. Comparison of the overall prediction between top n features
and MIC-GA selected features using the jackknife test and independent
test respectively.

accuracy is still more than 42% and 59% using the jack-
knife test and independent test. Therefore, we can make a
conclusion that the types of membrane protein have a strong
correlation with these physicochemical properties. The total
content of these amino acid physicochemical property index
varies from different membrane protein types.

D. THE EFFICIENCY OF ENSEMBLE METHOD
To illustrate the effectiveness of ensemble method based on
stacked generalization, we compare it with base classifiers

trained by each feature extraction method using the jack-
knife test and independent test. The detailed performance of
each classifier on training dataset and independent dataset
are listed in Table 8 and Table 9. As presented in the two
tables, the ensemble classifier in most cases is better than the
base classifiers in Sn, Sp and MCC. Although the ensemble
method is not as good as base classifiers in a few types,
overall, better results would be obtained by using ensemble
method. The reason is that meta classifier can integrate the
outputs of the base classifiers and balance the advantages and
disadvantages of each heterogeneous classifier.

Furthermore, as shown in two tables, we find that our
method achieves the highest results on type I, mutipass
and peripheral membrane proteins, which are respectively
93.61% (90.32%), 96.50% (95.65%) and 88.20% (88.06%);
while those on type III only achieves 37.50% (33.33%).
The reason may be that the used training dataset is highly
unbalancewhich has toomuch number of type I, mutipass and
peripheral membrane protein samples. In order to improve
the overall accuracy during training, the random forest is
biased towards large size types. Although we tried to set the
sample weight to solve the problem of unbalance datasets,
the accuracies of small-size types are still not as good as
that of large-size types. Other effective strategies for solving
imbalance problem may contribute to improving our method.

E. COMPARISON WITH THE EXISTING METHODS
Many researches have discussed on membrane protein types
prediction, which are listed in Table 10. As seen from the
table, we achieve slightly worse result compare with Chen’s
research [15] using jackknife test, but for independent test,
however, we achieve better results. The reason may be the
intrinsic property inside the dataset. Moreover, we find that

TABLE 8. Comparison of the Sn, Sp and MCC between the base classifiers and ensemble method using jackknife test.
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TABLE 9. Comparison of the Sn, Sp and MCC between the base classifiers and ensemble method using independent test.

TABLE 10. Comparison of the overall prediction accuracy with existing approaches.

MIC-GA feature selection performs better than PCA does
when both adopt PsePSSM extraction method. However,
comparing with the method which adopts LLDA to reduce
the dimensions of feature, our results seem to be bad using
jacknife test [32]. Exploring the reason, we find that LLDA
is supervised dimensionality reduction method which might
have learned the test sample during the process of dimension-
ality reduction so that it works well using jackknife test and
performs poorly using independent test. Overall, the predic-
tion results show that our method has better performance in
predicting membrane protein types.

Additionally, our method can be incremental learning, thus
it has better extensibility than existing method. It is easy
to quickly embed a new feature extraction method into our
system once new feature extraction method makes improve-
ment for prediction accuracy of membrane protein types. The
detailed approach is as follows:
Step 1: Extracting features by using the new feature extrac-

tion methods.
Step 2: Obtaining the best feature subset and optimal clas-

sifier parameters by MIC-GA feature selection.

Step 3: Training the base classifier with the best feature
subset and optimal classifier parameters.
Step 4:Themeta classifier combines the outputs of the base

classifiers and learns again to obtain final result.
By this way, the new feature extraction method can be

quickly embedded into our system. From above steps, we find
that only meta classifier need to be retrained, and the best
feature subsets and optimal classifier parameters for previous
extraction methods are unnecessary to be adjusted. The old
valid knowledge would not be washed away when learning
new knowledge. Our method could be updated accordingly
and thus pretty extensible.

IV. CONCLUSION
In the study, fusion representation is used to extract the
information from original sequence for predicting membrane
protein types. Among these feature extraction methods, SPPI
is firstly used in our study. Experimental results indicate
that SPPI works well in predicting the types of membrane
proteins. For dealing with the curse of high-dimensional
features and the problem of feature heterogeneity after
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fusion representation, we propose the MIC-GA feature selec-
tion and ensemble method based on stacked generaliza-
tion respectively. Numerous positive results prove that our
method could contribute to solve these problems. The final
experimental results also indicate higher effectiveness of
our method for prediction of membrane protein than any
existing method do. Furthermore, our system can be incre-
mental learning, any new feature extraction methods would
be quickly embedded into our framework to make poten-
tial improvement. At last, as demonstrated in a series of
researches [9], [15], [24], [27], [30] which provide friendly
and convenient webservices for users, we shall make efforts
in our future works to offer a webservice based on our method
for prediction of membrane protein types.
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