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ABSTRACT In this paper, the stability and stabilization problems are investigated for a class of
event-triggered multiple time delays network control systems. Under the conditions of the event-triggered
scheme and the system state estimation, the delays in the controlled object and the network transmission
delay are both taken into account in the hybrid stochastic network control system by the free weightingmatrix
method and the integral inequality method. This paper will construct a new Lyapunov-Krasovskii functional
and linear matrix inequality to analyze the problems. Finally, two numerical examples are provided to prove
the effective performance of the multi-delay stochastic network control system.

INDEX TERMS Event-triggered, H∞ control, linear matrix inequalities (LMIs), multiple time delays,
network control, state estimation, stochastic system.

I. INTRODUCTION
In recent years, the time delay system has attracted more
and more investigations [1]–[3]. All kinds of the time delay
dependent problems [4]–[6] influence the performance of the
control system. Especially the state time delay often causes
the instability of the system. References [7]–[9] investigated
stability problem of the systems with the single time delay.
Considering that there exist multiple time delays in the actual
systems [10], [11] analyzed multiple time delays systems
and got the less conservative upper bound of time delay.
Correspondingly, the stability performance of single time
delay systems such as the linear discrete time system [12],
stochastic system [13] and singular system [14] could be
improved by considering the multi-delay. Therefore, there is
still a lot of research space for the multiple time delays.

With the advent of the era of big data, the analysis of
network control system becomes critical. The non-fragile
synchronisation control for complex networks was stud-
ied in [15]. In order to deal with the external disturbance,
the fuzzy PID controller [16] was designed for the network
control system. The [17] has researched the delay-dependent
stability problem of network control system. Furthermore,
in the network control system, the transmission signals can

occupy a certain channel resources. Under the time-triggered
scheme, there exist the computation resource waste and
large transmission load in the limited bandwidth. Therefore,
an event-triggered scheme was proposed to reduce the bur-
den of communication [18]–[22]. Information will be sent
when the event-trigger condition is satisfied. Now, the event-
triggered scheme is applied extensively in various network
control systems. For example, the paper [23] has studied
the filter problem of positive continuous system with the
event-triggered scheme. Under the event-triggered scheme,
the first order stochastic system [24] has a better performance
than the system with time-triggered scheme. The paper [25]
has studied the network transmission problem of fuzzy con-
trol system. In this paper, we will apply the event-triggered
scheme to replace the traditional time-triggered mechanism
in stochastic network control systems.

In the event-triggered network control system, the time
delay is a current hot spot of research. Many experts such
as the Dong Yue, Yong He and James Lam have stud-
ied the delay problem in the control systems [26], [27].
The paper [28] has studied the stability and stabilisation of
neural network delay system. The paper [29] has analyzed
the distributed delay and disturbance phenomenon in the
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network control transmission process. However, few of them
considered the time delay in the controlled object when they
analyzed the network control system. In this paper, we focus
on both the multiple time delays in the controlled object
and network transmission delay, which can improve the sta-
bility of network control system. Furthermore, the external
disturbance makes the output of the actual system different
fromwhat we expect [30]–[32]. During the network transmis-
sion processing, the external disturbance often causes noise
and messy code [33], [34]. These phenomena will bring the
instability of the system. Thus, the disturbance should be
considered into the network control system.

Based on the Lyapunov-Krasovskii functional [35] and
linear matrix inequality approaches, the stability criteria of
stochastic network control system is constructed. The free
weighting matrix method (FWM) [36] and integral inequality
method [37] are applied to derive the linear matrix inequal-
ities in the criteria. On the one hand, the free weighting
matrix method is used to discuss the relationship between
the any terms in the Newton-Leibniz formula [38]. On the
other hand, the integral inequality is applied to eliminate the
quadratic integral terms in Lyapunov-Krasovskii functional
derivative. These techniques make the stability criteria be
delay-dependent and lowly conservative. With the help of the
LMI toolbox, we could solve out the upper bound of time
delay and the controller gain K.

Generally, we assume the system states are fully available.
But in practice, unfortunately, the obtained state information
is usually partial due to the limited measurement [39], [40].
Therefore, in order to ensure the system stability and reliabil-
ity, estimating the system states is very significant. Some esti-
mator design approaches have been proposed in [41] and [42].
The estimator-based control for fuzzy linear systems has been
analyzed in [43]. In addition, [44] has reported the result
on the the state estimation of nonlinear system. However,
the state estimate problem for event-triggered stochastic net-
work control system has not been sufficiently investigated.
Then, we will design an estimator to estimate the unmeasur-
able states. To the best knowledge of the authors, the state
estimation-based event-triggered H∞ control for the stochas-
tic network control systemwithmulti-delay has not been fully
studied.

This paper is summarized as follows: This paper simultane-
ously employs the free weighting matrix (FWM) method and
the integral inequality method to solve the estimation-based
event-triggered H∞ control of stochastic network control
system with multi-delay, which is different from other papers
and reduces the conservatism of stability criteria. In order to
improve the transmission performance, we reduce the burden
of the network communication in the limited bandwidth
by employing the event-trigged mechanism. At the same
time, we design an estimator to estimate system states. This
paper considers both the delay in controlled object and the
network transmission delay to improve the stability of system.
An effective controller is designed and the controller gain
K is solved by LMI toolbox. The numerical examples are

provided to prove the effective performance of the
multiple-delay stochastic network control system.

Notations: In this paper, unless otherwise specified, E be
the expectation operator, L be the weak infinitesimal gener-
ator. Let ‖·‖ be the Euclidean norm of a vector and its induced
norm of a matrix. L2[0,∞] be the space of square integrable
vector functions over [0,∞] and its norm is denoted by ‖ · ‖2.
If X is symmetric, then X ≥ 0 means that the matrix X is

positive semi-definite); if X is a square matrix, then He(X ) is
defined asHe(X ) = X+XT . Let I and 0 be the identity matrix
and zero matrix with appropriate dimensions, respectively.
In symmetric block matrices or long matrix expressions,
we use an asterisk * to represent a term that is induced by
symmetry. Moreover, matrices, if their dimensions are not
explicitly stated, are assumed to have compatible dimensions
for algebraic operations.

II. PROBLEM FORMULATION
Firstly, we consider a stochastic network control system
described as:

dx(t) = [Ax(t)+ Aτ1x(t − τ1)+ Aτ2x(t − τ2)

+B1u(t)+ D1v(t)]dt + [Ex(t)

+Eτ1x(t − τ1)+ Eτ2x(t − τ2)]dω(t),

y(t) = C1x(t)+ C1τ1x(t − τ1)+ C1τ2x(t − τ2)

+B2u(t)+ D2v(t),

z(t) = C2x(t)+ C2τ1x(t − τ1)+ C2τ2x(t − τ2)

+D3v(t), t ≥ 0, (1)

where the compatible dimensional coefficient matrices are A,
Aτ1 , Aτ2 , B1, B2, C1, C1τ1 , C1τ2 , C2, C2τ1 , C2τ2 , D1, D2, D3,
E , Eτ1 , and Eτ2 ; the τ1, τ2 are constant delays; the system
state vector is x(t); the measured output is y(t); the controlled
output is z(t); the control input is u(t); the external disturbance
input is v(t); and the stochastic Brownian motion is ω(t).
As is well known, the bandwidth of the channel is limited

in network control systems. In order to save the channel
resources, we will research event-triggered network control
system [38] and give the control schematic diagram in Fig 1.

FIGURE 1. The schematic diagram of event-triggered network control
system.
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Then we consider the following event-triggered
condition:

[x((k + j)h)− x(kh)]T�[x((k + j)h)− x(kh)]

≤ σxT (x(k + j)h)�(x(k + j)h),

where � is symmetric positive definite matrix, j = 1, 2, . . .,
and scalar σ ∈ [0, 1), x((k + j)h) is the sampled state. The
x((k+ j)h) will be transmitted from sensor to controller when
it exceeds the judgement condition threshold.

First of all, assume the release time is tkh, k = {0, 1, 2, ···},
the scalar h is the sampling period. Thus, we can rewrite the
stochastic network control system:

dx(t) = [Ax(t)+ Aτ1x(t − τ1)+ Aτ2x(t − τ2)

+B1u(tkh)+ D1v(t)]dt + [Ex(t)

+Eτ1x(t − τ1)+ Eτ2x(t − τ2)]dω(t),

y(t) = C1x(t)+ C1τ1x(t − τ1)+ C1τ2x(t − τ2)

+B2u(tkh)+ D2v(t),

z(t) = C2x(t)+ C2τ1x(t − τ1)+ C2τ2x(t − τ2)

+D3v(t), (2)

Assume the sampling sequence as Ss = {0, h, 2h, . . . , nh}.
If after nh time, the next released time is tk+1h, then the
nh is the release interval of the transmit data under the
event-triggered condition, thus, tk+1h = tkh+ nh.

On the other hand, consider the network transmission delay
τ̂k ∈ [0, τ̄ ), where k = {0, 1, 2, · · ·}, τ̄ = max{τ̂k}, then the
data will arrive at zero-order-holder (ZOH) at the time instant
tkh+ τ̂k .

Next, based on [22] and [45], we will construct a network
time delay model for the stochastic network control system.
Assume that

ρk = min{j|tkh+ τ̂k + jh ≥ tk+1h+ τ̂k+1, j = 0, 1, 2, . . .}.

The interval [tkh+ τ̂k , tk+1h+ τ̂k+1) can be rewritten as

[tkh+ τ̂k , tk+1h+ τ̂k+1) =
ρk⋃
j=1

Ij,

where

Ij = [tkh+ τ̂k + (j− 1)h, tk+1 + τ̂k + jh),

j = 1, 2, . . . , ρk − 1,

Iρk = [tkh+ (ρk − 1)h+ τ̂k , tk+1h+ τ̂k+1). (3)

τ (t) =


t − tkh, t ∈ I1
t − tkh− h, t ∈ I2
· · · ·

t − tkh− (ρk − 1)h, t ∈ Iρk

(4)

ek (t) =


0, t ∈ I1
x(tkh)− x(tkh+ h), t ∈ I2
· · · ·

x(tkh)− x(tkh+ (ρk − 1)h), t ∈ Iρk

(5)

where 0 ≤ τ (t) ≤ τ̄ + h, we set the τM = τ̄ + h, then
0 ≤ τ (t) ≤ τM . For the t ∈ [tkh + τ̂k , tk+1h + τ̂k+1), scalar
σ ∈ [0, 1], the event-triggered scheme is:

eTk (t)�ek (t) ≤ σx
T (t − τ (t))�x(t − τ (t)), (6)

therefore, according to the formula (2), (4), (5), (6), we can
obtain:

u(tkh) = Kx(tkh)

= Kek (t)+ Kx(t − τ (t)), (7)

where t ∈ [tkh+τ̂k , tk+1h+τ̂k+1),K ∈ Rm×n is the stochastic
network controller gain, and we can rewrite the system as:

dx(t) = [Ax(t)+ Aτ1x(t − τ1)+ B1Kx(t − τ (t))

+B1Kek (t)+ Aτ2x(t − τ2)+ D1v(t)]dt

+ [Ex(t)+ Eτ1x(t − τ1)

+Eτ2x(t − τ2)]dω(t),

y(t) = C1x(t)+ C1τ1x(t − τ1)+ C1τ2x(t − τ2)

+D2v(t),

z(t) = C2x(t)+ C2τ1x(t − τ1)+ C2τ2x(t − τ2)

+D3v(t),

x(t) = 8̃(t) ∀t ∈ [−η, 0]. (8)

where t∈[tkh + τ̂k , tk+1h + τ̂k+1), the scalar η =

max{τM , τ1, τ2}, 8̃(t) is initial condition function.
Next, we will design a state estimator as the following forms:

˙̄x(t) = Ax̄(t)+ Aτ1 x̄(t − τ1)+ Aτ2 x̄(t − τ2)

+ (L +1L)(y(t)− ȳ(t)),

ȳ(t) = C1x̄(t)+ C1τ1 x̄(t − τ1)

+C1τ2 x̄(t − τ2), (9)

where x̄(t) ∈ Rn is the estimate state, the ȳ(t) ∈ Rn is the
estimate output, L ∈ Rn×p is the state estimator gain, 1L is
unknown real matrix as

1L = MLFLNL , (10)

where theFL ,ML ,NL are uncertain constant matrices, and the
nominal matrix L is affected by these parameters. FL satisfies
the following forms:

FTL FL ≤ I . (11)

By defining the state estimator error as e(t) = x(t) − x̄(t),
we get the following augmented system:

dξ (t) = [A ξ (t)+Aτ1ξ (t − τ1)+Aτ2ξ (t − τ2)

+Aτ3ξ (t − τ (t))+WEk (t)+Bv(t)]dt

+ [εξ (t)+ ετ1ξ (t − τ1)+ ετ2ξ (t − τ2)]dω(t),

z(t) = C ξ (t)+ Cτ1ξ (t − τ1)+ Cτ2ξ (t − τ2)

+Dv(t), (12)

where

ξ (t) = [x̄T (t), eT (t)]T , Ek (t) = [0, eTk (t)]
T ,
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and

A =

[
A L̄C1
0 A− L̄C1

]
, Aτ1 =

[
Aτ1 L̄C1τ1
0 Aτ1 − L̄C1τ1

]
,

Aτ2 =

[
Aτ2 L̄C1τ2
0 Aτ2 − L̄C1τ2

]
, Aτ3 =

[
0 0

B1K B1K

]
,

W =
[

0 0
B1K B1K

]
, ε =

[
0 0
E E

]
,

ετ1 =

[
0 0
Eτ1 Eτ1

]
, ετ2 =

[
0 0
Eτ2 Eτ2

]
,

B =
[
DT2 L̄

T DT1 − D
T
2 L̄

T
]T
,

C =
[
C2 C2

]
, Cτ1 =

[
C2τ1 C2τ1

]
,

Cτ2 =
[
C2τ2 C2τ2

]
,

D = D3,

K = K , L̄ = L +1L. (13)

In order to facilitate the stability analysis of the system,
next, we introduce the following definitions and lemmas.
Definition 1: For a scalar γ > 0, if the system satisfies the

following formula:

‖z(t)‖E2 ≤ γ ‖v(t)‖2, (14)

for any non-zero v(t) ∈ L2[0,∞), where

‖z(t)‖E2 = E{

∫
∞

0
|z(t)|2dt}1/2,

then the system has a H∞ performance γ under the zero
initial condition.
Definition 2: Consider the system (2) without of input u(t)

and disturbance v(t), for any ε > 0, there is a δ(ε) > 0, if the
following formula

E|x(t)|2 < ε, t > 0,

when,

supE|8̃(s)|2 < δ(ε),−η≤s≤0 ,

then the system is mean square stable.
Lemma 1: For any appropriate dimensional matrix R ∈

Rn×n ≥ 0, and the function ω : [0, l], the following integral
inequality holds:

(
∫ l

0
ω(s)ds)TR

∫ l

0
ω(s)ds ≤ l

∫ l

0
ω(s)TRω(s)ds.

Lemma 2: Consider compatible dimensional matrices
�1 < 0, �2 < 0, �3 < 0, then[

�1 �2
∗ �3

]
< 0

is equivalent to �1 −�2�
−1
3 �T

2 < 0.
Lemma 3: Consider any matrices R, S, P > 0, then:

2RTS ≤ RTP−1R+STPS.

Lemma 4: For the scalar ρ > 0, consider the parameters
3, Ui and Vi and Wi(i=1,. . . ,N), if we have:[
3 U1 + ρV1 . . .UN + ρVN
∗ diag{−ρW1 − ρW T

1 . . .− ρWN − ρW T
N }

]
<0, (15)

then

3+

N∑
i=1

He(UiW
−1
i V T

i ) < 0.

Then, we will introduce the following proof.
Proof: Pre-and post-multiplying equation (15) by

[I , ρ−1U1W
−1
1 . . . ρ−1UNW

−1
N ],

and its transpose respectively yields. �

III. STABILITY ANALYSIS
This part analyzes the mean square stability of stochastic
network control system. Define that

f (t) = A ξ (t)+Aτ1ξ (t − τ1)+Aτ2ξ (t − τ2)

+Aτ3ξ (t − τ (t))+WEk (t)+Bv(t), (16)

g(t) = εξ (t)+ ετ1ξ (t − τ1)+ ετ2ξ (t − τ2), (17)

then

dξ (t) = f (t)dt + g(t)dω(t). (18)

Assume τ1 > τ2, the stability criteria is shown in Theorem 1.
Theorem 1: For given the scalars τ1 > 0, τ2 > 0, τ12 =

(τ1− τ2) > 0. If there exist matrices P > 0, Q1 > 0, Q2 > 0,
Q3 > 0, Z1 > 0, Z2 > 0, Z3 > 0, R > 0, M > 0 and any
appropriate matrices J1, J2, J3, make:

4 =



411 412 413 414 −N 416
∗ 422 423 424 0 426
∗ ∗ 433 434 0 436
∗ ∗ ∗ 444 0 446
∗ ∗ ∗ ∗ −Q3 456
∗ ∗ ∗ ∗ ∗ 466
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

Z1 Z2 0
−Z1 − J1 0 −Z3 + J3

0 −Z2 − J2 Z3 − J3
0 0 0
0 0 0
0 0 0

−Z1 − R 0 0
∗ −Z2 − R 0
∗ ∗ −Z3 − R


< 0, (19)

then, the system (12) is mean square stable, where

411 = He(PA )+ Q1 + Q2 + Q3

+ τMNR−1NT
− Z1 − Z2

+ εT (P+ τ1Z1 + τ2Z2 + τ12Z3)ε
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+A T [(τ12 + τ22 + τ122 + τM )R]A ,

412 = PAτ1 + Z1 + J
T
1

+ εT (P+ τ1Z1 + τ2Z2 + τ12Z3)ετ1
+A T [(τ12 + τ22 + τ122 + τM )R]Aτ1 ,

422 = −Q1 − Z1 − Z3 − J1 − JT1 + J3 + J
T
3

+ εTτ1 (P+ τ1Z1 + τ2Z2 + τ12Z3)ετ1
+A T

τ1
[(τ12 + τ22 + τ122 + τM )R]Aτ1 ,

413 = PAτ2 + Z2 + J
T
2

+A T [(τ12 + τ22 + τ122 + τM )R]Aτ2

+ εT (P+ τ1Z1 + τ2Z2 + τ12Z3)ετ2 ,

423 = Z3 − J3 − JT3
+A T

τ1
[(τ12 + τ22 + τ122 + τM )R]Aτ2

+ ετ1 (P+ τ1Z1 + τ2Z2 + τ12Z3)ετ2 ,

433 = −Q2 − Z3 − Z2 + JT3 + J3 − J2 − J
T
2

+A T
τ2
[(τ12 + τ22 + τ122 + τM )R]Aτ2

+ εTτ2 (P+ τ1Z1 + τ2Z2 + τ12Z3)ετ2 ,

414 = N + PAτ3

+A T [(τ12 + τ22 + τ122 + τM )R]Aτ3 ,

424 = Aτ1
T [(τ12 + τ22 + τ122 + τM )R]Aτ3 ,

434 = Aτ2
T [(τ12 + τ22 + τ122 + τM )R]Aτ3 ,

444 = σ�−M −MT
+ τMMR−1MT

+Aτ3
T [(τ12 + τ22 + τ122 + τM )R]Aτ3 ,

416 = PW +A T [(τ12 + τ22 + τ122 + τM )R]W ,

426 = Aτ1
T [(τ12 + τ22 + τ122 + τM )R]W ,

436 = Aτ2
T [(τ12 + τ22 + τ122 + τM )R]W ,

446 = Aτ3
T [(τ12 + τ22 + τ122 + τM )R]W ,

456 = 0,

466 = −�+W T [(τ12 + τ22 + τ122 + τM )R]W . (20)

Proof: At first, in order to express the relationship of the
time delays to reduce the conservatism of stability criteria,
we give the equations (21)-(23). According to (18), for any
s ≥ 0 and time delay scalar τ , we have:

ξ (s)− ξ (s− τ ) =
∫ s

s−τ
f (α)dα +

∫ s

s−τ
g(α)dω(α). (21)

Noting that E{ξT (s − τ )J
∫ s
s−τ g(α)dω(α)} = 0 [31], setting

any compatible dimensional matrix J , we have:

0 = 2ξT (s− τ )J [ξ (s)− ξ (s− τ )−
∫ s

s−τ
f (α)dα

−

∫ s

s−τ
g(α)dω(α)],

therefore,

0 = E[2ξT (s− τ1)]J1[ξ (t)− ξ (t − τ1)−
∫ s

s−τ1
f (α)dα],

0 = E[2ξT (s− τ2)]J2[ξ (t)− ξ (t − τ2)−
∫ s

s−τ2
f (α)dα],

0 = E{2[ξT (s− τ2)− ξT (s− τ1)]}J3[ξ (t − τ2)

− ξ (t − τ1)−
∫ s−τ2

s−τ1
f (α)dα]. (22)

In addition, we consider the compatible dimensional matri-
ces M , N , then we have:

0 = E[2ξT (t − τ (t))]M [ξ (t)− ξ (t − τ (t))

−

∫ t

t−τ (t)
f (α)dα],

0 = E[2ξT (t)]N [ξ (t − τ (t))− ξ (t − τM )

−

∫ t−τ (t)

t−τM
f (α)dα]. (23)

Next, we will deal with the terms in (23) to prepare for the
derivation of the inequality in Theorem 1. According to the
Lemma 3, we have:

−2ξT (t)(τM − τ (t))N
∫ t−τ (t)

t−τM
f (α)dα

≤ (τM − τ (t))2ξT (t)NR−1NT ξ (t)

+ (
∫ t−τ (t)

t−τM
f (α)dα)R(

∫ t−τ (t)

t−τM
f (α)dα), (24)

−2ξT (t − τ (t))τ (t)M
∫ t

t−τ (t)
f (α)dα

≤ (τ (t))2ξT (t − τ (t))MR−1MT ξ (t − τ (t))

+(
∫ t

t−τ (t)
f (α)dα)R(

∫ t

t−τ (t)
f (α)dα). (25)

Applying the Lemma 1, we have:

−2ξT (t)N
∫ t−τ (t)

t−τM
f (α)dα

≤ (τM − τ (t))ξT (t)NR−1NT ξ (t)

+

∫ t−τ (t)

t−τM
f (α)Rf (α)dα, (26)

−2ξT (t − τ (t))M
∫ t

t−τ (t)
f (α)dα

≤ (τ (t))ξT (t − τ (t))MR−1MT ξ (t − τ (t))

+

∫ t

t−τ (t)
f (α)Rf (α)dα. (27)

Due to the τ (t) ∈ [τm, τM ], thus, we get:

−2ξT (t)N
∫ t−τ (t)

t−τM
f (α)dα

≤ τM ξ
T (t)NR−1NT ξ (t)

+

∫ t−τ (t)

t−τM
f (α)Rf (α)dα, (28)

−2ξT (t − τ (t))M
∫ t

t−τ (t)
f (α)dα

≤ (τM )ξT (t − τ (t))MR−1MT ξ (t − τ (t))

+

∫ t

t−τ (t)
f (α)Rf (α)dα, (29)
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Then, choose the following Lyapunov-Krasovkii func-
tional candidate to analyze the mean-square stability of
system (12):

V (t) = V1(t)+ V2(t)+ V3(t)+ V4(t)+ V5(t), (30)

where

V1(t) = ξT (t)Pξ (t),

V2(t) =
∫ t

t−τ1
ξT (α)Q1ξ (α)dα

+

∫ t

t−τ2
ξT (α)Q2ξ (α)dα

+

∫ t

t−τM
ξT (α)Q3ξ (α)dα,

V3(t) = τ1

∫ 0

−τ1

∫ t

t+β
f T (α)Rf (α)dαdβ

+τ2

∫ 0

−τ2

∫ t

t+β
f T (α)Rf (α)dαdβ

+τ12

∫
−τ2

−τ1

∫ t

t+β
f T (α)Rf (α)dαdβ,

V4(t) =
∫ 0

−τ1

∫ t

t+β
gT (α)Z1g(α)dαdβ

+

∫ 0

−τ2

∫ t

t+β
gT (α)Z2g(α)dαdβ

+

∫
−τ2

−τ1

∫ t

t+β
gT (α)Z3g(α)dαdβ,

V5(t) =
∫ 0

−τM

∫ s

s+β
f T (α)(s)Rf (α)dαdβ.

And by using the itô’s formula, we obtain that:

L V (s)=L V1(t)+L V2(t)+L V3(t)+L V4(t)+L V5(t),

(31)

where

L V1(t) = 2ξT (s)Pf (s)+ gT (s)Pg(s),

L V2(t) = ξT (s)Q1ξ (s)+ ξT (s)Q2ξ (s)

+ ξT (s)Q3ξ (s)

− ξT (s− τ1)Q1ξ (s− τ1)

− ξT (s− τ2)Q2ξ (s− τ2)

− ξT (s− τM )Q3ξ (s− τM ),

L V3(t) = τ12f T (s)Rf (s)

− τ1

∫ s

s−τ1
f T (α)Rf (α)dα

+ τ2
2f T (s)Rf (s)− τ2

∫ s

s−τ2
f T (α)Rf (α)dα

+ τ12
2(f T (α)Rf (α))

− τ12

∫ s−τ2

s−τ1
f T (α)Rf (α)dα,

L V4(t) = τ1g(s)Z1g(s)

−

∫ s

s−τ1
gT (α)Z1g(α)dα

+ τ2g(α)Z2g(α)

−

∫ s

s−τ2
g(α)Z2g(α)

+ τ12(gT (α)Z3g(α))

−

∫ s−τ2

s−τ1
gT (α)Z3g(α)dα,

L V5(t) = τM f T (α)Rf (α)

−

∫ t−τ (t)

t−τM
f T (α)Rf (α)dα

−

∫ t

t−τ (t)
f T (α)Rf (α)dα.

According to lemma 1, the following inequations hold:

−τ1

∫ s

s−τ1
f T (α)Rf (α)dα

≤ −(
∫ s

s−τ1
f (α)dα)TR(

∫ s

s−τ1
f (α)dα), (32)

−τ2

∫ s

s−τ2
f T (α)Rf (α)dα

≤ −(
∫ s

s−τ2
f (α)dα)TR(

∫ s

s−τ2
f (α)dα), (33)

−τ12

∫ s−τ2

s−τ1
f T (α)Rf (α)dα

≤ −(
∫ s−τ2

s−τ1
f (α)dα)TR(

∫ s−τ2

s−τ1
f (α)dα), (34)

In the view of the isometry property of the stochastic
integral and (31), we have

E[
∫ s

s−τ1
gT (α)Z1g(α)dα]

= E[(
∫ s

s−τ1
g(α)dω(α))TZ1(

∫ s

s−τ1
g(α)dω(α))],

= E[(ξ (s)− ξ (s− τ1)−
∫ s

s−τ1
f (α)dα)TZ1(ξ (s)

− ξ (s− τ1)−
∫ s

s−τ1
f (α)dα)], (35)

E[
∫ s

s−τ2
gT (α)Z2g(α)dα]

= E[(
∫ s

s−τ2
g(α)dω(α))TZ2(

∫ s

s−τ2
g(α)dω(α))],

= E[(ξ (s)− ξ (s− τ2)−
∫ s

s−τ2
f (α)dα)TZ2(ξ (s)

− ξ (s− τ2)−
∫ s

s−τ2
f (α)dα)], (36)

E[
∫ s−τ2

s−τ1
gT (α)Z3g(α)dα]

= E[(
∫ s−τ2

s−τ1
g(α)dω(α))TZ3(

∫ s−τ2

s−τ1
g(α)dω(α))],
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= E[(ξ (s− τ2)− ξ (s− τ1)

−

∫ s−τ2

s−τ1
f (α)dα)TZ3(ξ (s− τ2)− ξ (s− τ1)

−

∫ s−τ2

s−τ1
f (α)dα)]. (37)

Next, add the event-triggered condition

[x((k + j)h)− x(kh)]T�[x((k + j)h)− x(kh)]

≤ σxT (x(k + j)h)�(x(k + j)h)

into the stochastic network control system. At the same time,
we employ the (23) and (24) to the L V (s), then, when
v(s) = 0, it is easy to show that

E{L V (s)} ≤ E{η(s)T4η(s)},

where the

η(t) = [ξT (s), ξT (s− τ1), ξT (s− τ2),

ξT (s− τ (s)), ξT (s− τM ),ETk (t),∫ s

s−τ1
f T (α)dα,

∫ s

s−τ2
f T (α)dα,∫ s−τ2

s−τ1
f T (α)dα].

According to the Definition 2 and Theorem 1, we can
obtain the stochastic network control system is mean square
stable. The proof is completed.

On the other hand, if in the case: τ1 ≤ τ2, there will be
the similar proof procedure as above. The following theorems
just discuss the case: τ1 > τ2. �

IV. H∞ STABILITY ANALYSIS
According to the Theorem 1, under the event-triggered con-
dition and the state estimation, we have proved the stability
of stochastic network control system.

In this section, we further study H∞ performance of the
stochastic network control system and obtain the following
theorem.
Theorem 2: Consider the scalars γ > 0, τ1 > 0, τ2 > 0,

τ12 = τ1 − τ2 > 0, if there exist matrices P > 0, Z1 > 0,
Z2 > 0, Z3 > 0, Q1 > 0, Q2 > 0, Q3 > 0, R > 0,
M > 0, and any appropriate matrices J1, J2, J3, such that
the following LMI holds:

5 =



511 512 513 514 −N 516
∗ 522 523 524 0 526
∗ ∗ 533 534 0 536
∗ ∗ ∗ 544 0 546
∗ ∗ ∗ ∗ −Q3 556
∗ ∗ ∗ ∗ ∗ 566
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

517 Z1 Z2 0
527 −Z1 − J1 0 −Z3 + J3
537 0 −Z2 − J2 Z3 − J3
547 0 0 0
0 0 0 0
0 0 0 0
577 0 0 0
∗ −Z1 − R 0 0
∗ ∗ −Z2 − R 0
∗ ∗ ∗ −Z3 − R


< 0,

(38)

then, system (12) is mean square stable with H∞ perfor-
mance γ , where

511 = He(PA )+ Q1 + Q2 + Q3

−Z1 − Z2 + τMNR−1NT

+ εT (P+ τ1Z1 + τ2Z2 + τ12Z3)ε

+A T [(τ 21 + τ
2
2 + τ

2
12 + τM )R]A

+C TC ,

512 = PAτ1 + Z1 + J
T
1 + C TCτ1

+ εT (P+ τ1Z1 + τ2Z2 + τ12Z3)ετ1
+A T [(τ 21 + τ

2
2 + τ

2
12 + τM )R]Aτ1 ,

513 = PAτ2 + Z2 + J
T
2 + C TCτ2

+A T [(τ 21 + τ
2
2 + τ

2
12 + τM )R]Aτ2

+ εT (P+ τ1Z1 + τ2Z2 + τ12Z3)ετ2 ,

523 = Z3 − JT3 − J3 + C T
τ1

Cτ2

+A T
τ1
[(τ 21 + τ

2
2 + τ

2
12 + τM )R]Aτ2

+ εTτ1 (P+ τ1Z1 + τ2Z2 + τ12Z3)ετ2 ,

522 = −Q1 − Z1 − Z3 − J1 − JT1 + J3 + J
T
3

+ εTτ1 (P+ τ1Z1 + τ2Z2 + τ12Z3)ετ1
+A T

τ1
[(τ 21 + τ

2
2 + τ

2
12 + τM )R2]Aτ1 + C T

τ1
Cτ1 ,

533 = −Q2 − Z2 − Z3 + J3 + JT3 − J
T
2 − J2

+ εTτ2 (P+ τ1Z1 + τ2Z2 + τ12Z3)ετ2
+A T

τ2
[(τ 21 + τ

2
2 + τ

2
12 + τM )R]Aτ2 + C T

τ2
Cτ2 ,

514 = PAτ3 + N +A T [(τ 21 + τ
2
2 + τ

2
12 + τM )R]Aτ3 ,

524 = Aτ1
T [(τ 21 + τ

2
2 + τ

2
12 + τM )R]Aτ3 ,

534 = Aτ2
T [(τ 21 + τ

2
2 + τ

2
12 + τM )R]Aτ3 ,

544 = σ�−M −MT
+ τMMR−1MT

+Aτ3
T [(τ12 + τ22 + τ122 + τM )R]Aτ3 ,

516 = PW +A T [(τ12 + τ22 + τ122 + τM )R]W ,

526 = Aτ1
T [(τ12 + τ22 + τ122 + τM )R]W ,

536 = Aτ2
T [(τ12 + τ22 + τ122 + τM )R]W ,

546 = Aτ3
T [(τ12 + τ22 + τ122 + τM )R]W ,

556 = 0,

566 = −�+W T [(τ12 + τ22 + τ122 + τM )R]W ,

517 = PB +A T [(τ 21 + τ
2
2 + τ

2
12 + τM )R]B

+C TD,
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527 = A T
τ1
[(τ 21 + τ

2
2 + τ

2
12 + τM )R]B

+C T
τ1

D,

537 = A T
τ2
[(τ 21 + τ

2
2 + τ

2
12 + τM )R]B

+C T
τ2

D,

547 = A T
τ3
[(τ 21 + τ

2
2 + τ

2
12 + τM )R]B,

577 = BT [(τ 21 + τ
2
2 + τ

2
12 + τM )R]B

+DTD − γ 2I . (39)

Proof: It is easy to see if (38) holds then (19) holds;
therefore, the system (12) is mean square stable. Next,
we shall show that system (12) has a H∞ performance γ .
To this end, we introduce the following index:

J (t) = E{

∫ t

0
(|z(s)|2 − γ 2

|v(s)|2)ds}.

Under zero initial condition, by it ô′s formula we have

J (t) = E{

∫ t

0
(|z(s)|2 − γ 2

|v(s)|2 +L V (s))ds} − E{V (t)}

≤ E{

∫ t

0
(|z(s)|2 − γ 2

|v(s)|2 +L V (s))ds},

where V (t) is defined in (30). Combined with (12), (16), (17),
and (30)-(37), then:

J (t) ≤
∫ t

0
E{[ξT (s), ξT (s− τ1),

ξT (s− τ2), ξT (s− τ (t)),

ξT (s− τM ),ETk (t), v
T (s),∫ s

s−τ1
f T (α)dα,

∫ s

s−τ2
f T (α)dα,∫ s−τ2

s−τ1
f T (α)dα]

5[ξT (s), ξT (s− τ1), ξT (s− τ2),

ξT (s− τ (t)), ξT (s− τM ),

ETk (t), v
T (s),

∫ s

s−τ1
f T (α)dα,∫ s

s−τ2
f T (α)dα,

∫ s−τ2

s−τ1
f T (α)dα]T }ds, (40)

where the5 is defined in (38). According to the (38) and (40),
we have J (t) ≤ 0, for t > 0. The proof is completed. �

V. H∞ CONTROLLER DESIGN
Now we start to discuss the state estimation-based event-
triggeredH∞ controller of the system (12). Firstly, we detach
the gain L from matrix A and set

A =
[
A 0
0 A

]
, Aτ1 =

[
Aτ1 0
0 Aτ1

]
,

Aτ2 =

[
Aτ2 0
0 Aτ2

]
,

B1 =

[
0 0
B1 B1

]
, B1 =

[
0 0
B1 B1

]
,

C1 =
[
0 C1

]
,

C1τ1 =
[
0 C1τ1

]
,

C2 =
[
C2 C2

]
,

C2τ1 =
[
C2τ1 ,C2τ1

]
,

C2τ2 =
[
C2τ2 ,C2τ2

]
,

D1 =
[
0 D1,

]
,

D2 = D2, D3 = D3,

ε =

[
0 0
E E

]
,

ετ1 =

[
0 0
Eτ1 Eτ1

]
,

ετ2 =

[
0 0
Eτ2 Eτ2

]
,

I1 =
[
I 0

]
, I2 =

[
I
−I

]
,

and rewrite the coefficient matrices of system (12) as:

A = A+ I2(L +1L)C1,
Aτ1 = Aτ1 + I2(L +1L)C1τ1 ,
Aτ2 = Aτ2 + I2(L +1L)C1τ2 ,
Aτ3 = B1K ,W = B1K ,

B = D1 + I2(L +1L)D2,C = C2,
Cτ1 = C2τ1 ,Cτ2 = C2τ2 ,
D = D3, ε = ε, ετ1 = ετ1 , ετ2 = ετ2 . (41)

Then, we propose a new approach for designing an H∞
controller for the stochastic network control system with
multiple time delays by the following theorem.
Theorem 3: For given scalars γ > 0, τ1 > 0, τ2 > 0,

τ12 > 0, and ρ > 0, set k1 = τ 21 + τ
2
2 + τ

2
12 + τM . If exist

scalar ε1 > 0, and matrices P > 0, Q1 > 0, Q2 > 0, Q3 > 0,
Z1 > 0, Z2 > 0, Z3 > 0, R > 0, M > 0, any appropriate
matrices J1, J2, J3, XL , YL and such that the following LMI
holds:

8 =

[
81 82
∗ 83

]
< 0,

then the event-triggered stochastic network control system
is solvable, where the matrices 81, 82, 83, 84 are in the
following formulas, 81 =

811 812 813 814 −N 816 Z1
∗ 822 823 0 0 0 −Z1 − J1
∗ ∗ 833 0 0 0 0
∗ ∗ ∗ 844 0 0 0
∗ ∗ ∗ ∗ −Q3 0 0
∗ ∗ ∗ ∗ ∗ 866 0
∗ ∗ ∗ ∗ ∗ ∗ −Z1 − µ1P
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
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Z2 0 81t CT2 k1ATµ1P
0 −Z3 + J3 82t CT2τ1 k1AT

τ1
µ1P

−Z2 − J2 Z3 − J3 83t CT2τ2 k1AT
τ2
µ1P

0 0 0 0 k1µ1Y T

0 0 0 0 0
0 0 0 0 k1µ1Y T

0 0 0 0 0
−Z2 − µ1P 0 0 0 0
∗ −Z3 − µ1P 0 0 0
∗ ∗ 8tt DT

3 0
∗ ∗ ∗ −I k1DT

1 µ1P
∗ ∗ ∗ ∗ −k1µ1P



,

(42)

82 =



−I2XL + PI2 + ρCT1 Y
T
L PI2ML

ρCT1τ1Y
T
L 0

ρCT1τ2Y
T
L 0

0 0
0 0
0 0
0 0
0 0
0 0

ρDT
2 Y

T
L 0

0 0
k1µ1PI2 k1I2ML



,

83 = diag{−ρXL − ρXLT ,−ε1I }, (43)

with

811 = He(PA+ I2YLC1)+ Q1 + Q2 + Q3

−Z1 − Z2 + µ1τMNP−1NT

+ ε1CT1 NL
TNLC1

+ εT (P+ τ1Z1 + τ2Z2 + τ12Z3)ε,

812 = PAτ1 + Z1 + J
T
1 + I2YLC1τ1

+ ε1CT1 NL
TNLC1τ1

+ εT (P+ τ1Z1 + τ2Z2 + τ12Z3)ετ1 ,

813 = PAτ2 + Z2 + J
T
2 + I2YLC1τ2

+ ε1CT1 NL
TNLC1τ2

+ εT (P+ τ1Z1 + τ2Z2 + τ12Z3)ετ2 ,

822 = −Q1 − Z1 − Z3 − J1 − JT1 + J3 + J
T
3

+ ε1CT1τ1NL
TNLC1τ1

+ εTτ1 (P+ τ1Z1 + τ2Z2 + τ12Z3)ετ1 ,

823 = Z3 − J3 − JT3 + I2YLC1τ2
+ ε1CT1τ1NL

TNLC1τ2
+ εTτ1 (P+ τ1Z1 + τ2Z2 + τ12Z3)ετ2 ,

833 = −Q2 − Z2 − Z3 − J1 − JT1 + J3 + J
T
3

+ ε1CT1τ2NL
TNLC1τ2

+ εTτ2 (P+ τ1Z1 + τ2Z2 + τ12Z3)ετ2 ,

814 = Y + N ,

844 = σ�+ µ1τMMP−1MT
−M −MT ,

816 = Y ,

866 = −�,

81t = PD1 + I2YLD2 + ε1CT1 N
T
L NLD2,

82t = ε1CT1τ1N
T
L NLD2,

83t = ε1CT1τ2N
T
L NLD2,

8tt = −γ
2I + ε1DT

2 N
T
L NLD2. (44)

In this case, the desired gains were given as

K = B−11 P−1Y , L = X−1L YL .

Proof: According to Theorem 1 and its derivation pro-
cess, it is easy to see that if there exist matrices P > 0, R > 0,
M > 0, Q1 > 0, Q2 > 0, Q3 > 0, Z1 > 0, Z2 > 0, Z3 > 0,
and J1, J2, J3 satisfying (38), at the same time, applying the
Schur’s complement, we have:

4 =



411 412 413 414 −N 416 Z1
∗ 422 423 0 0 0 −Z1 − J1
∗ ∗ 433 0 0 0 0
∗ ∗ ∗ 444 0 0 0
∗ ∗ ∗ ∗ −Q3 0 0
∗ ∗ ∗ ∗ ∗ 466 0
∗ ∗ ∗ ∗ ∗ ∗ −Z1 − R
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

Z2 0 PB C T k1A TR
0 Z3 − J3 0 C T

τ1
k1A T

τ1
R

−Z2 − J2 −Z3 + J3 0 C T
τ2

k1A T
τ2
R

0 0 0 0 k1A T
τ3
R

0 0 0 0 0
0 0 0 0 k1W TR
0 0 0 0 0

−Z2 − R 0 0 0 0
∗ −Z3 − R 0 0 0
∗ ∗ −γ 2I DT 0
∗ ∗ ∗ −I k1DT

1 R
∗ ∗ ∗ ∗ −k1R



< 0,

(45)

where

411 = He(PA )+ Q1 + Q2 + Q3 − Z1 − Z2
+ τMNR−1NT

+ εT (P+ τ1Z1 + τ2Z2 + τ3Z3)ε,

412 = PAτ1 + Z1 + J
T
1

+ εT (P+ τ1Z1 + τ2Z2 + τ2Z3)ετ1 ,

413 = PAτ2 + Z2 + J2
+ εT (P+ τ1Z1 + τ2Z2 + τ2Z3)ετ2 ,

414 = PAτ3 + N ,

422 = −Q1 − Z1 − Z3 − J1 − JT1 − J3 − J
T
3
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+ εTτ1 (P+ τ1Z1 + τ2Z2 + τ2Z3)ετ1 ,

423 = Z3 + J3 + JT3
+ εTτ1 (P+ τ1Z1 + τ2Z2 + τ2Z3)ετ2 ,

433 = −Q2 − Z2 − Z3 − J2 − JT2 − J3 − J3
T

+ εTτ2 (P+ τ1Z1 + τ2Z2 + τ2Z3)ετ2 ,

444 = σ�−M −MT
+ τMMR−1MT ,

416 = PW ,

466 = −�, (46)

and

PI2LW1 = I2YLW1 + (−I2XL + PI2)XL−1YLW1, (47)

where

W1 = [C1, C1τ1 , C1τ2 , 0, 0, 0, 0, 0, 0,D2, 0, 0].

Then, consider the equation (10), (47), we can rewrite (45) as

4+ He(U1X
−1
L V T

1 + U2FLV T
2 ) < 0, (48)

and

4 =



411 412 413 414 −N 416 Z1
∗ 422 423 0 0 0 −Z1 − J1
∗ ∗ 433 0 0 0 0
∗ ∗ ∗ 444 0 0 0
∗ ∗ ∗ ∗ −Q3 0 0
∗ ∗ ∗ ∗ ∗ 466 0
∗ ∗ ∗ ∗ ∗ ∗ −Z1 − R
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

Z2 0 41t CT k1ATR
0 Z3 − J3 0 CTτ1 k1AT

τ1
R

−Z2 − J2 −Z3 + J3 0 CTτ2 k1AT
τ2
R

0 0 0 0 k1KTBT1 R
0 0 0 0 0
0 0 0 0 k1KTBT1 R
0 0 0 0 0

−Z2 − R 0 0 0 0
∗ −Z3 − R 0 0 0
∗ ∗ −γ 2I DT

3 0
∗ ∗ ∗ −I k1DT

1 R
∗ ∗ ∗ ∗ −k1R



,

(49)

where

411 = He(PA+ I2YLC1)+ Q1 + Q2 + Q3

−Z1 − Z2 + τMNR−1NT

+ εT (P+ τ1Z1 + τ2Z2 + τ12Z3)ε,

412 = PAτ1 + I2YLC1τ1 + Z1 + J
T
1

+ εT (P+ τ1Z1 + τ2Z2 + τ12Z3)ετ1 ,

413 = PAτ2 + I2YLC1τ2 + Z2 + J2

+ εT (P+ τ1Z1 + τ2Z2 + τ12Z3)ετ2 ,

422 = −Q1 − Z1 − Z3 − J1 − JT1 + J3 + J
T
3

+ εTτ1 (P+ τ1Z1 + τ1Z2 + τ12Z3)ετ1 ,

423 = Z3 − J3 − JT3
+ εTτ1 (P+ τ1Z1 + τ2Z2 + τ12Z3)ετ2 ,

433 = −Q2 − Z2 − Z3 − J2 − JT2 − J3 − J
T
3

+ εTτ2 (P+ τ1Z1 + τ2Z2 + τ12Z3)ετ2 ,

414 = PB1K + N ,

444 = σ�−M −MT
+ τMMR−1MT ,

416 = PB1K ,

466 = −�,

41t = PD1 + I2YLD2,

U1 = [−XTL I
T
2 + IT2 P, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, k1I

T
2 R

T ],

U2 = [MT
L I

T
2 P, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, k1M

T
L I

T
2 R],

V1 = W T
1 Y

T
L ,

V2 = W T
1 N

T
L . (50)

According to the Lemma 2, for any real scalar ε > 0
and any real matrices U and V with appropriate dimensions,
we haveUV T

+VUT
≤ ε−1UUT

+εVV T .At the same time,
for scalar ρ > 0, applying Lemma 4, 8 can be rewritten as
the following forms:[

4+ ε−11 V1V T
1 + ε1V2V

T
2 U1 + ρV1

∗ −ρXL − ρXTL

]
< 0.

By Lemma 3,

4+ He(U1X
−1
L V T

1 )+ ε
−1
1 V1V T

1 + ε1V2V
T
2 < 0, (51)

He(U1F
−1
L V T

1 ) ≤ ε
−1
1 U1UT

1 + ε1V1V
T
1 . (52)

By (51) and (52), we obtain the (48). In addition, due to
the Aτ3 = B1K , we set K = B−11 P−1Y , R = µ1P.
Then we have PAτ3 = PB1B−11 P−1Y . Next, we replace
the relevant parameters of 4 with them, and then we can
obtain (42), (43), (44). At last, we can get the Theorem 3.
Then the proof is completed. �

VI. NUMERICAL EXAMPLES
Example 1: According to the Theorem 1, under the

event-triggered scheme, we obtained a new delay-dependent
stability criteria for the stochastic network control system
with multiple time delays. To demonstrate this point, we con-
sider a system of the form (9) with parameters:

A =

[
−5 0
0 −5

]
, Aτ1 = Aτ2 = Aτ3 =

[
−1 0
−0.5 −1

]
,

ε =

[
−0.5 0.2
0 0.3

]
, ετ1 = ετ2 =

[
−0.5 0.3
0 −0.5

]
.

Now, we assume the system state time delay τ1>τ2, set
σ = 0.3, at the same time, fixed the time delay τ1 = 1.1018,
τ2 = 0.2155, the upper bound of network transmission delay
τM is given in Table 1: Paper [22] and [38] only considered
the network transmission delay without considering the delay

74100 VOLUME 6, 2018



H. Lu et al.: State Estimation-Based Event-Triggered H∞ Control for Multi-Delay Stochastic Network Control System

TABLE 1. The upper bound of τM .

in controlled object. From the Table 1, under the σ = 0.3,
we can see that the τM = 0.08 in paper [22] and the τM =
0.22 in paper [38]. By comparison, the τM obtained in this
paper is bigger than them and τM = 0.7045.
Example 2: This example concerns the state estimation-

based event-triggered H∞ control for multi-delay stoch-
astic network control system with the following
parameters:

A1 =
[
0 0
0 −0.5

]
, Aτ1 = Aτ2 =

[
−1 −0.2
0 −1

]
,

B1 =
[
0 −0.5

]T
, B2 = 0.5,

C1 =
[
0.5 0.5

]
,

C1τ1 = C1τ2 =
[
−0.1 −0.3

]
,

C2 =
[
0 −0.7

]
,

C2τ1 =
[
−0.2 −0.2

]
, C2τ2 =

[
−0.7 −0.7

]
,

D1 =
[
−0.2 1.2

]
,

D2 = 0.9, D3 = 1, E = Eτ1 = Eτ2 =
[
−0.2 0
0 −0.2

]
,

MK = 0.2,NK =
[
0.1 0.6

]
,

ML =

[
0.1
0.1

]
, NL = 0.3,

when we assume the scalar τM = 0.7, τ1 = 0.3, τ2 = 0.2,
ρ = 0.2, γ = 1.8640, and v(t) = 1

1+t e
−t , by the way, set

state estimator perturbation 1L = 0.5MLNL . According to
the Theorem 3, the state feedback controller gain is obtained:

K =
[
0.5194 −0.2006
4.3198 7.4127

]
.

The state response of the closed-loop stochastic network
control is given in Fig 2. It is easy to see that the system will
achieve a steady state in 8 seconds.
From Example 1, we get τM = 0.7, τM = h + τ̄ . Assume

τ̄ = 0, the maximum sampling period is h = 0.7. Choose
the h = 0.26. The event-based release instants and release
interval of the system are shown in Fig 3. From the Fig 3,
we find that only 46 samples need to be sent to the controller.
This only accounts for 59.7% of all sampling points. This
percentage is larger than the one in [22]. In addition, we fix
the σ = 0.3, just change sampling period h, we find the num-
ber of triggers increases as h increases. Due to τM = h+ τ̄
and we assume τ̄ = 0 is unchanged, thus, the upper bound
of h is depended on the τM . Combined with Example 1, our
τM is bigger than other papers, which means that this paper
is more effective in reducing the burden of communication
bandwidth.

FIGURE 2. State response of the closed-loop stochastic network control
system.

FIGURE 3. release instants and release interval for h=0.26.

VII. CONCLUSION
In this note, we handled with the H∞ stability and the
stabilization of the stochastic network control system with
multiple time delays. The delays in this paper not only include
the network transmission delay. We also took the delay in the
controlled object which is multiple time delays into account.
We employed the event-triggered mechanism to reduce the
burden of network channel and decrease the occupation of
sensor, controller and actuator. In addition, we designed an
estimator to better control the system. The less conserva-
tive H∞ stability criteria has been received by using both
FWM method and integral inequality method. We designed
a controller and solved the controller gain K with the help
of LMI toolbox. Finally, the numerical examples were shown
to demonstrate the advantages of this paper. Further research
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topics can be focused on communication protocol issues for
the stochastic network control system.
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