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ABSTRACT Deep learning has become one of the most promising approaches in recent years. One
of the main applications of deep learning is the automatic feature extraction with auto-encoders (AEs).
Feature extraction, one of the most important stages in machine learning, that can reduce drastically the
dimensionality of the problem, making easier any subsequent process such as classification. The main
contribution of this research is to evaluate the use of AEs for automatic feature extraction in massive
thermonuclear fusion databases. In order to show the performance of AEs in a practical way, the problem
of image classification of the TJ-II Thomson Scattering diagnostic has been selected. The classification has
been performed by the algorithm of support vector machines and conformal predictors. The results show
that the use of AEs produces the predictions faster, with more reliable models, and with higher success rates
in comparison to the performance without using the deep learning approach.

INDEX TERMS Images classification, auto-encoder, future extraction, nuclear fusion.

I. INTRODUCTION
Deep learning is an emerging approach of machine learning
that helps to create models composed of multiple process-
ing layers with different levels of abstraction [1]. In recent
years, deep learning has been used for many processing,
recognition and classification applications, such as:
images [2], video [3], audio (voice) [4], intelligent driving
assistance [5], multi-sensors integration [6], medical disease
analysis [7], etc. Some of the most powerful artificial intel-
ligence methods in recent years involve the use of stacking
sparse auto-encoders (AE) [8].

An auto-encoder is an artificial neural network (ANN)
used for unsupervised learning of efficient codings [9]. The
AE were introduced in the late 80’s by Rumelhart et al. [11]
and Baldi and Hornik [12] as a technique for dimensionality
reduction, where the output of the encoder is the reduced
representation and the decoder is tuned to reconstruct the
initial input from the encoder’s representation through the
minimization of a cost function like in Rifai et al. [13].
On the other hand, feature extraction has become an

increasingly critical stage in machine learning, due to the data

growing in high dimensions. This increases the difficulty of
proving the results due to the sparsity of meaningful data.
Feature extraction can drastically reduce the dimensionality
of the problem, making the process of classification easier.

For example, Yuan et al. [14] andWen et al. [15] proposed
feature extraction from electronic sensors to improve the
behavior of the systems. However this process is usually per-
formed manually and often requires multiple tests with a high
level of computational resources, which consumes time and
effort from the designer. This also implies that the designer
needs to have a high level of expertise in the analyzed system.
For that reason, we are proposing the use of auto-encoders
to automate (i.e. without human manipulation) the feature
extraction process.

In this context, Vincent et al. [16] and Muhammad
et al. [17] presented the use of deep convolutional networks
for remote sensing data analysis. In Masci et al. [18] and
Romero et al. [19] the authors said that the convolutional
neural network (CNN) require large quantities of labeled
data (which is not a problem in nuclear fusion context).
They proposed the stacked convolutional AE, which can map
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images without any label information. In Liang et al. [20] the
authors presented a review of the use of deep learning for
feature extraction applied to text mining.

In the context of thermonuclear fusion of plasmas for
energy generation, the process is nonlinear and complex and
it requires a high degree of reliability. This process generates
increasing amounts of data (signals, images, etc) that are
stored in big databases. This data needs to be analyzed with
different purposes, for example: patterns recognition and fail-
ures detection (disruption prediction) like inMakili et al. [21]
and Cannas et al. [22]. In this scenario, the feature extraction
has a crucial role to reduce the amount of data to analyze, like
in the aforementioned examples. That is why it is important
to automate this stage.

In the literature it can be found some works related to
these issues. For example, some years ago Jionghua and
Jianjun [23] presented a methodology for diagnostic sys-
tem of fault detection using waveform signals and wavelet
transform as feature extraction method (where the parameters
are tuned manually). In Vega et al. [24] andMakili et al. [21]
the authors presented two versions of an automatic classi-
fication system based on Support Vector Machines (SVM)
and Thomson Scattering (TS) diagnostic. In Rattá et al. [25]
the authors developed an algorithm for real time disruption
prediction, where the feature extraction was based on Genetic
Algorithms. Other approach for images classification using
deep learning is presented in Matos et al. [26], where the
authors introduced a pre-trained CNN in plasma diagnosis.
More recently, in Farias et al. [27] we presented the advances
in deep learning approach applied to two problems of nuclear
fusion classification. In addition, in Farias et al. [28] the
authors proposed the use of Adaboost algorithm to classify
TS images of the TJ-II fusion device.

This article addresses the assessment of including AE for
an specific case of automatic feature extraction in the mas-
sive thermonuclear fusion databases. In order to show the
performance of AE in a practical way, the problem of the
classification of a set of 981 images of the TJ-II TS diagnostic
has been selected. TS is a technique used for themeasurement
of the electron temperature Te and density ne in very hot
fusion plasmas like in Giudicotti et al. [29].
Following the cross-validation technique to evaluate pre-

dictive models, the set of images is partitioned into two
subsets (training and test sets). Similar to other pattern
recognition problems like in Dormido-Canto et al. [30] and
Makili et al. [31], in this case there are two main stages:
i) the pre-processing of the plasma signals using Wavelet
Transform (WT) to reduce the dimensionality without loss
of relevant information; and ii) the application of a clas-
sification algorithm to get a model. Thus, the AE is just
added between both stages to extract features from the pre-
processed images, which means that the AE stage can be
applied to an existing classifier to extract features of the
input images of the classifier in an automatic way. This is the
main difference of this approach in respect to the aforemen-
tioned works that use deep learning (ANN, CNN, etc.). The

classification stage has been performed by the algo-
rithm of SVM like in Hearst et al. [32] in combination
with Conformal Predictors like in Vovk et al. [33] and
Saunders et al. [34] and Vovk et al. [35]. But, it should be
clear that the selection of a different method for this stage
should produce similar results.

The main contribution of this research is to evaluate the
performance of the application of auto-encoders for auto-
matic feature extraction in massive thermonuclear fusion
databases. In this sense, the research rises three relevant
questions of the use of AE for the image classification in the
context of nuclear fusion: i) are the models with AE more
accurate? ii) are the models with AE better fitted for new
images (not used for training)?, and iii) are the predictions
computed faster when AE is used?.

Thus, the motivation of this work raises the following
hypotheses, that are evaluated and discussed in detail in next
sections:

H1: the use of AE provides more reliable models and with
better success rates.

H2: the use of AE reduces potential over-fitting.
H3: the use of AE decreases the prediction times.
The paper is structured as follows. Section II describes

the Methodology followed in the image classification
approach. The Methodology includes: 1) the database from
the Thomson Scattering diagnostic of the TJ-II fusion device;
2) image classification with the particular attributes of the
AE; and 3) SVM with Conformal Predictors. Section III dis-
cusses themain experimental results based on the Hypotheses
raised at the beginning of this research. In the last section,
the main conclusions and future works are discussed.

II. METHODOLOGY OF IMAGE CLASSIFICATION:
METHODS AND MATERIAL
This section presents the methodology to carry out an
automatic feature extraction method for pattern recognition
problems. In order to evaluate the performance of the deep
learning approach in nuclear fusion, the classification of five
types of TJ-II Thomson Scattering images is carried out.

A. TJ-II THOMSON SCATTERING DIAGNOSTIC
The TJ-II is a highly flexible medium-size nuclear fusion
experimental and stellarator device constructed at Spanish
National Fusion Laboratory of the CIEMAT in Madrid,
Spain, between 1991 and 1997 (see Fig. 1).

In TJ-II, the magnetic trap is obtained by means of various
sets of coils that completely determine the magnetic surfaces
before plasma initiation. The toroidal field is created by
32 coils. The three-dimensional twist of the central axis of
the configuration is generated by means of two central coils:
one circular and one helical. The horizontal position of the
plasma is controlled by the vertical field coils. The com-
bined action of these magnetic fields generate bean-shaped
magnetic surfaces that guide the particles of the plasma
so that they do not collide with the vacuum vessel wall.
The plasmas in TJ-II are produced and heated with ECRH
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FIGURE 1. TJ-II experimental fusion device.

TABLE 1. Five type of TJ-II TS images and their corresponding
pre-processed versions.

(2 gyrotrons, 300 kW each, 53.2 GHz, 2nd harmonic, X-mode
polarization) and NBI (300 kW) [36], [37]. In TJ-II a typical
discharge last between 150-250 milliseconds, and depending
on the sampling rate, the number of samples could be in the
range of 4000-16000 per shot. These discharges produces big
databases with lot of information that has to be analyzed.

One of the analysis that is carried out to study the plasma
behavior is the well known Thomson Scattering diagnostic.
This diagnostic in plasma consists in the re-emission of inci-
dent radiation (from very powerful lasers) by free electrons.
Electron velocity distribution generates a spectral broadening
of the scattered light (by Doppler effect) related to the elec-
tronic temperature. The total number of scattered photons is
proportional to the electronic density. That is why this is the
most used technique to determine the temperature and density
of the plasma electrons.

TS diagnostic acquires five types of images (spectra of
laser light scattered by plasma): CCD camera background
(BKG), the cut-off density during electron cyclotron resonant
heating (COF), images during electron cyclotron resonant
heating (ECH), during neutral beam injection (NBI) andmea-
surement of stray light without plasma or in a collapsed dis-
charge (STR). Table 1 describes the five classes considered.
Next subsection explain the images classification with AE.

B. IMAGE CLASSIFICATION WITH AUTO-ENCODERS
Before to train an auto-encoder to extract features auto-
matically, we first apply pre-processing to the TS images.
To this end, we have selected Wavelet Transform in order
to reduce the dimensionality of the problem. WT offers an
efficient alternative to data processing and provides many
advantages: (1) data compression, (2) computing efficiency,
and (3) simultaneous time and frequency representation.

According to previous works and the experience of Makili
et al. [21] and Farias et al. [38] the wavelet Haar has been
used due to its simplicity (specially suitable for real-time
operation) and low computational time. The parameters of
the WT are defined as follows: Approximation coefficient;
Wavelet mother: Haar ; Level of decomposition: 4. As result
of the application ofWT, the image dimensions were reduced
from the original 576x385 (221760) pixels to only 36x25
(900) pixels without loss of critical information, which makes
easier and faster the subsequent steps.

Finally, in order to speed-up the experimental results,
we have discarded upper and lower rows of the WT approx-
imation coefficient to obtain square images of 25x25 (625)
pixels. The results of this pre-processing stage for the five
types of TS images can be observed in Fig. 2. Note that
the use of another wavelet family (e.g. db, sym, bior, etc)
could produce different results, specially from the dimen-
sional reduction point of view.

AE is an ANN with an unsupervised learning that applies
back-propagation algorithm (see Fig. 3). The AE is trained
to fit an identity function, i.e., the AE is required to get
targets or output values to be equal to the inputs. This
seems to be very trivial and not interesting at all, but set-
ting some constraints on the AE (e.g. number of neurons at
the hidden layer, and sparseness) we could find out auto-
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FIGURE 2. Five type of TJ-II TS images and their corresponding pre-processed versions.

FIGURE 3. Auto-encoder.

matically some useful features for a pattern classification
problem.

For example, a small number of units or neurons in the AE
layer could code input data in a simpler and reduced feature
space. The sparseness is another constraint that could be very
useful. A sparse AE is built to keep hidden neurons inactive
most of the time. An inactive unit outputs values close to
0, on the contrary, an active unit outputs values close to 1.
Thus, it should be expected that ideally only one unit of the
hidden layer is active at time, when considering sparseness in
the AE.

FIGURE 4. SVM classifier with two AE.

One advantage of AEs is the option to get stacked AE
(deep networks) in a greedy layer-wise way, which means
that each AE can be trained separately and then put them all
together. This way avoids some well-known issues of multi-
layer networks and back-propagation algorithm such as the
vanish gradient problem [8]. Basically, such issue appears
when trying to propagate back the error from the output layer
to the input layer. Fig. 4 shows a simple deep network with
two AEs.

An automatic image classification system based on SVM
has been in operation for years in the TJ-II Thomson Scatter-
ing diagnostic, thus, in order to evaluate the automatic extrac-
tion of features by using AE, we have built a simple sparse
AE. Based on our previous work [27], the ANN is configured
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with one input layer of 625 units (each unit represents a pixel
of the input TS image), one hidden layer (the AE layer), and
one output layer of 625 units. In this work, we have modified
the number of units of the hidden layer in order to test the per-
formance of the classifier with a different number of features.
We have also test the classifier with two auto-encoders (see
Fig. 4). Note that the output of the first auto-encoder (AE1),
which process the input image, feeds a second auto-encoder
(AE2), which in turn, provides the input features for the SVM
classifier. Thus, the original feature space could be reduced
enormously. In this case, the input space starts in 625 features
and it is reduced up to only 16 attributes. Finally note that a
new extra layer, given by a conformal predictor, has been also
added to the image classifier in order to evaluate better the
performance of the entire system when the AE is used.

Next sections describe in detail how the AE, the SVM clas-
sifier and the Conformal predictor are combined in order to
get a classification for each input image of the TS diagnostic.

C. SUPPORT VECTOR MACHINES
SVM is a very effective method for general purpose pattern
recognition [39]. It classifies a set of elements into two dif-
ferent classes. To do it, the method builds a model that can
learn from a marked training set of data. After that, the model
is capable to assigns a category for new unknown input data.
The model also maps the examples as points in space, divided
by a clear gap that separates the categories. New inputs are
placed in the same space and its category depends of the side
of the gap where they fall [40].

If you can find two parallel hyper-planes that separate both
classes, and these hyper-planes are far enough, it means that
the training data set is linearly separable. The region marked
by theses hyper-planes is called margin. This margin is max-
imum in the hyper-plane that represents the half distance
between them. These hyper-planes can be described by the
equation 1: {

Ew · Ex − b = 1
Ew · Ex − b = −1

(1)

All the points inside the hyper-plane including the border
line represented by equation 1, is of one class with label 1.
All the points below the hyper-plane including the border line
represented by second expression of equation 1, belong to
class −1.

The distance that separates the two hyper-planes is 2
‖Ew‖ .

This distance is maximumwhen ‖Ew‖ is minimum [41]. Fig. 5
shows a representation of the maximization of the distance
between the hyper-planes. In this example Class 1 are the
black points and Class 2 the white points. The red color
represents the points that are into the limit of the hyper-plane
of each Class.

If these hyper-planes can not be found, because straight
lines that separate the data do not exist. It means that the
training data in not linearly separable. In this case, SVM
can map the data into high-dimensional feature space and it
can build an optimal separating hyper-plane. The nonlinear

FIGURE 5. Maximum margin hyper-plane and margin for an SVM trained
with samples from two classes.

mapping is performed by a kernel function K (x, x ′) with the
original constrains (see Fig. 6) [30], [42]. In this example,
a not linearly separable data set is converted into a linearly
separable data set through the kernel function K (x, x ′).

CONFORMAL PREDICTORS
Conformal Predictors are among the most accurate machine
learning methods and, unlike other state-of-the art methods,
they do not provide only a prediction. In addition to the class
label, they provide a level of reliability for the prediction
like in Vovk et al. [33] and Saunders et al. [34]. Conformal
Predictors are underlying algorithms that can complement the
predictions with two extra values: confidence and credibility.
These values are in the range [0-1] and they are used to
estimate the goodness of the prediction of each new sample.
A high level of credibility means that the predicted label is
very likely. A high confidence means that all labels except
the predicted one are unlikely. Thus, If both values are (very)
close to 1, the prediction reliability is (very) high. Note
that any traditional classification method can be used as an
underlying algorithm. It is particularly important to be able to
apply conformal predictions to problems dealing with high-
dimensional data sets with large number of samples.

Conformal algorithm uses past experience of examples to
determine precise levels of confidence in new predictions. For
each new sample it needs to measure how different is the new
one from the old examples using the nonconformity measure
like in Vovk et al. [35].
Conformal predictions use an alternative framework that is

transductive (TCP) and online: each new prediction is based
on all the previous samples instead of use a same rule from a
fixed bag of samples. On the other hand, inductive conformal
prediction (ICP) allows to obtain a general rule that is called
decision rule.

Fig. 7 shows six samples that belong to three different
classes: squares, triangles and circles. The feature vectors
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FIGURE 6. Training data into a higher-dimensional feature space via kernel K.

FIGURE 7. Example of transductive on-line prediction.

are the respective Cartesian coordinates. In this case, a new
sample (cross) has to be classified into one of the previous
classes and the prediction has to be qualified with confidence
and credibility.

The first step consists of choosing an underlying classi-
fication system to build the conformal prediction. As it is
known, SVM has been designed to deal with classification
problems of two classes fundamentally. To use it for multiple
class it is necessary to extend its performance based in two
approaches: 1) ‘‘one vs. the rest’’, and 2) ‘‘one vs. one’’. In the
first procedure each classifier is trained to separate one class
from the rest using M classes and M auxiliary classifiers.
While the second approach uses one classifier for each pair
of classes, which impliesM (M − 1)/2 different classifiers.

Using the ‘‘one versus the rest’’ approach in the example of
Fig. 7, three SVM classifiers are needed: (squares) vs (circles,
triangles), (circles) vs (squares, triangles) and (triangles) vs
(squares, circles). In each one of the classifiers, the individual
class is taken as class -1 and the rest samples are taken as

FIGURE 8. Input images that activate each one of the 4 units of the
auto-encoder trained with the TS images.

class +1. The cross object is tested in each one of the three
classifiers and in all cases it is assumed to belong to the class
−1 (i.e. it is considered to be in the individual class). For
a transductive on-line prediction, a nonconformity measure
has to be defined to predict with confidence and credibility.
The nonconformity measure has to provide how strange the
cross object is in respect to the rest of examples. In SVM the
prediction is more reliable when the distance to the decision
function is greater, whichmeans that this distance can be used
as measure of strangeness of the sample.

An interesting result is to understand what the AE is try-
ing to learn in the training phase. This example has been
taken from our previous work Farias et al. [27]. In this case,
the input data (e.g. TS image) that activates one of the features
is used. So, the feature that is being sought for each unit of
the sparse AE can be observed. For instance, Fig. 8 shows
the TS images that an AE with four features has learned to
look for. Note that these images show particular features of
the TS image classes. In particular, features from NBI/ECH
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FIGURE 9. Block diagram of the system.

and COF images are clearly observed in the two lower input
images.

III. EXPERIMENTAL RESULTS
Figure 9 shows the block diagram of the system architecture.
The first block (from left to right) represents the input image
to process (221760 pixels). The second block represents the
pre-processing stage, where the WT is used to reduce the
dimension of the image up to 625 pixels. The third block
represents the feature extraction step, where the AE receives
the reduced image to extract the features in an automatic way.
Note that the number of features varies from 4 to 625 to
perform the experimental analysis. The last block shows the
classification stage, where the SVM and Conformal Predictor
methods are applied to obtain the class of the image and the
Confidence and Credibility of the prediction.

As it wasmentioned before, the problem of classification is
applied to a set of 981 images of the TJ-II Thomson Scattering
diagnostic. Following the cross-validation technique to eval-
uate predictive models, the set of images is divided randomly
into two subsets: 1) a training set of 588 images (60%) to train
the model; and 2) a test set of 393 images (40%) to assess the
developed system. Each experiment was repeated 100 times
by changing the training and validation subsets. The results
show the average of these 100 experiments. In this section the
obtained results are discussed based on the hypotheses raised
at the beginning of this work.

A. H1: THE USE OF AE PROVIDES MORE RELIABLE
MODELS AND WITH A BETTER SUCCESS RATE.
Table 2 shows the results of the experiment of feature extrac-
tion from TS images database with a simple AE. To assess the
whole classifier, the number of features has been modified.
The parameters of the SVM are the following: Kernel Radial
basis function, σ = 8, C = 60000. These parameters for
the SVM classifier are constant during all the experimental
evaluation. The performance was separated in two criteria:
i) the success rate: success cases over total cases; and ii) the
support vector rate (SVR): support vectors over total training
samples.

The first column represents the input features. The second
column represents the extracted features. The third column
represents the success rate (%) which represents the average
of the success classification of all classes. Regarding to the
support vectors rate (%), it represents the percentage of train-
ing data considered as support vector by the SVM model,
i.e., this value is associated with the complexity of the model.

TABLE 2. Results of one AE classifier for TS images.

FIGURE 10. Success rate for a simple AE.

Therefore, the lower is the support vectors rate the lower risk
of over fitting exists.

Note that the first row of the Table 2 represents the case
without feature extraction (i.e., no AE is used in that case).
Note also that the AE with 32 features reaches the lowest
support vector rate (7%) and with a high success rate (97%)
for the TS image classifier. In this latter case, note that feature
space is reduced to less than 0.02% (32/221760) from the
original one.

Fig. 10 shows the success rate with a simple AE as a feature
extraction method. The number of features has been modified
to assess the whole classifier. Thus, for instance, the case with
64 features corresponds to AE 64. The kernel of the SVM
classifier is Radial Basis Function. The regularization param-
eter (C) is set in 60000. Finally, the parameter σ of SVM
has been evaluated for a wide range (from 10−1 to 106). The
evaluation also includes the case without using AE (NO AE
− blue dashed line). Other tests was carried out for different
parameters (e.g. C = 80000). These experiments showed the
use of AE for 512 and 256 features, improves the number of
times that the success rate is surpassed in comparison with
NOAE (blue dashed line) 70.33% and 57.91% respectively.
For these cases the values of the success rate remain high
for more values of σ in comparison with NO AE. But, for
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FIGURE 11. Success Rate Average vs. Features.

FIGURE 12. Success Rate vs. Features.

the rest of cases of features (4, 8, 16, 32, 64 and 128) the
results are different. Which means that the use of AE not
always improves the success rate for the same values of the
parameters C and σ .
Fig. 11 shows the average of success rate vs. the number of

features. As it can be seen, the success rate is higher for AE
of 512, 256 and 128 features. Nevertheless for 64 features the
result is similar to the case without AE and for 16, 8 and 4 the
value is lower. The behavior of the best success rate for each
number of hidden layers is similar to the success rate average
(better results for AE of 512, 256 and 128 features).

Fig. 12 shows the success rate (higher than 90%) vs. the
features for different values of the C parameter. As it can
be seen, for 512, 256 and 128 features, there are more cases
where the success rate is higher than 90% for different values
of C (from 10000 to 80000). This indicates that the uses of
AE provides models with better success rates. Note that the
case of NOAE is for 625 features.

Fig. 13 shows the reliability average vs. features. As it can
be seen, the reliability of AE with 512, 256, 128, 32 and
16 features (30% - 31%) is higher than NOAE (blue dashed
line); and for the cases of 8 and 4, it is lower (17% and 24%)
than NOAE. This indicates that the use of AE provides more
reliable models if the cases of AE 8 and 4 are not taken into
account due to their low success rate.

Fig. 14 shows the reliability rate vs. the support vectors
rate. As it can be seen, the higher values of support vectors
rate have better reliability. But for different values of σ (from
10−1 to 106) you can obtain bad values of reliability for high
values of support vectors rate. Which means that a high value
of support vectors rate does not grant high reliability. This not
include that a model with low support vector rate provide a
more reliable classification.

FIGURE 13. Reliability Average vs. Extracted Features.

FIGURE 14. Reliability Average vs. Support Vectors Rate for C=500000.

Fig. 15 shows the results of Confidence and Credibility for
the same range of Sigma. Note that the use of AE provides
in general a higher success rate than the case without auto-
encoder (NOAE). Regarding to the credibility, the use of
AE keeps a high credibility (over 88%) for all evaluated σ .
In the case of the confidence the use of AE maintains a high
confidence (over 30%), which is higher than NOAE (blue
dashed line) for many values of sigma.

B. H2: THE USE OF AE REDUCES OVER-FITTING.
Fig. 16 shows the average of support vectors rate vs. the
success rate for the case of the parameter C = 80000.
As it can be seen, for all the cases of features, the average
of the success rate increases while the support vectors rate
decreases. This indicates that a model with lower support
vectors rate provides a model without over-fitting.

Fig. 17 shows the support vectors rate average vs. the
features. As it can be seen, for AE 512, 256, 128, 64, 32,
16 and 8 the average of support vectors (around 25%) is less
than the case of NOAE (blue dashed line) around 45%. This
behavior is the same for the total data and different values of
the parameter C . This indicates that the use of AE decreases
the support vectors rate.

Fig. 18 shows the support vectors rate vs. parameter σ
for C = 80000. As it can be seen the support vectors rate
decreases when σ increases for the AE of 512, 256, 128,
64 and 32 features. But not in all cases of AE the support
vectors rate is less than the case without AE. This indicates
that the use of AE not always decrease the support vectors
rate for the same values of C and σ .

C. H3: THE USE OF AE DECREASES THE
PREDICTION TIMES.
Fig. 19 shows the test time added to the application time per
image vs. the features for different values of C. As it can bee
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FIGURE 15. Confidence and Credibility for a simple AE.

FIGURE 16. Support Vector Rate vs. Success Rate C=80000.

FIGURE 17. Support Vector Rate vs. Features.

FIGURE 18. Support Vector Rate vs. Sigma.

seen, for one image in the cases from AE 4 to 256 features
the times of the test and application are less than without AE.
Only for AE 512 features these times are higher. This means
that the use of AE decreases the prediction time in most of
the cases.

Fig. 20 shows the test time vs. the support vectors rate
for the same value of C . The increase of the classification

FIGURE 19. Processing and Classification Time vs. Features.

FIGURE 20. Classification Time vs. Support Vectors Rate.

time is more affected by the increases of the features than the
number of support vectors (which has a little variation). This
means that the use of AE decreases the prediction time only
for the tests. Other tests were carried out for different values
of parameter C . The results showed that time of the tests for
different values of σ does not change in comparison with the
increase of the extracted features.

A summarize of the hypotheses and their corresponding
evidences are showed in table 3. First column represents the
hypothesis which is related with the current evidence. Second
column represents the evidence. Third columns represents
figures related to the evidence. Fourth column represents the
decision about the current evidence.

As it can be seen, the first two evidences are related to the
first hypothesis (H1). Based in the carried out experiments
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TABLE 3. Summary of hypotheses.

TABLE 4. TS image classifier results with two AE.

represented by figures 11, 12 and 13, we can say that the uses
of AE provides more reliable models with a better success
rates. For these reasons, we can say that this hypothesis is
accepted.

In the same way, the following four evidences are related
to the second hypothesis (H2). With the obtained results,
represented by figures 14, 16, 17 and 18, we can say that the
uses of AE decrease the support vectors rate and provides
models with higher success rates (more reliable classifica-
tion). Based on these results we can say that this hypothesis
can be accepted.

The last two evidences correspond to the third hypothesis
(H3). Based on the obtained results, represented by figures 19
and 20, we can say that the uses of AE decrease the prediction
time for tests and training. This imply that this hypothesis can
be accepted.

A second experiment was performed to evaluate a deep
network with two stacked AE for the TS image classifier.
Results are shown in Table 4. Notice that it can be possible to
have even better rates with a greater reduction in the feature
space. Which is showed in second and third rows, where the
support vectors rates are between (7% and 8%) while the
success rates are between (98% and 99%) respectively.

IV. CONCLUSIONS
This paper assesses the use of deep learning, by means of
special neural networks called auto-encoder, for automatic
feature extraction in nuclear fusion databases. The feature
extraction is an stage of image classification that is usually
mademanually. The use of AE allows to find suitable features
for pattern recognition systems without human manipulation,
which is a big advantage in the context of nuclear fusion
where there are massive databases. The main disadvantage
of this approach is that the parameters of the classifier (SVM
in our case) should be re-tuned when the feature extraction is
applied by using AE.

In this context and from the analysis, we can conclude
that using AE can reduce the number of original features
drastically, but with a high balance of accuracy and generality.
The presented results support the following statements: a)
The use of AE produces models with higher success rates,
reaching in some cases up to 96% in average (2% over the
performance without AE); b) The model predictions can be
computed in less time when AE are used; c) The models can
be twice faster than the cases without AE, although it could
require parallel programming of AE for operation in real-
+time; d) The classifiers with AE are more robust and better
fitted for new images; and e) Classifiers with AE are able to
make predictions for new images with up to 50% more of
confidence and credibility.

Based on these promising results, we can say that this pro-
cedure could be applied to other kind of pattern recognition
problems, such as the classification and information recovery
of temporal evolution signals.
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