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ABSTRACT An automatic classification method based on deep learning for bearing fault diagnosis is
proposed. The method is designed with the ability of faulty signal automatic clustering without human
knowledge. A dataset in which each sample is given a random label is configured after extracting the features
of vibration signals from the frequency domain. The dataset is used to train a deep neural network (DNN)
to obtain the initial classification. The classification results are assessed by testing the subsignals extracted
from the raw data, and the sample labels are modified according to the evaluation result. Themodified dataset
is used to train the DNN a second time. Samples with characteristic faults are clustered in various classes
after iterating the DNN training and testing. The proposed method is tested with the bearing data provided
by the Case Western Reserve University (CWRU) Bearing Data Center, which is a standard reference to
test fault detection algorithms. The 12k drive end, 48k drive end, and 12k fan end CWRU bearing data are
classified into 7, 6, and 4 groups, respectively. The testing results show that the proposed method can achieve
automatic clustering for vibration signals with a variety of faults.

INDEX TERMS Rotating machinery, fault diagnosis, deep learning, artificial neural network, bearing, fast
Fourier transforms, feature extraction, classification algorithms.

I. INTRODUCTION
Rotating machinery is one of the most widely used types
of machinery in industry [1], and its reliability, maintain-
ability, and security have received substantial attention, with
growing safety awareness. Rolling element bearings are the
most prevalent components in rotating machinery [2], [3].
Such bearings are the primary components in many heavy-
duty machines, and their integrity often has a significant
influence on the performance and reliability of the machinery
in which they are installed [4], [5]. Damage to the bearing can
cause faults in the machine, potentially leading to severe acci-
dents [6], [7]. The failure of rolling element bearings is one of
the most frequent reasons for machine breakdown [3]. Thus,
bearing fault diagnosis has become an important research
direction in the field of equipment failure detection.

In bearing fault diagnosis, diagnostic results are typically
based on a large amount of data measured in industrial pro-
duction cases. With the rapid development of the industrial
Internet of Things, fault diagnosis has entered the era of big
data. Deep learning, introduced by Hinton and Salakhutdi-
nov [8], attempts to model high-level representations behind

data and to classify patterns via stacking multiple layers of
information processing modules in hierarchical architectures.
Deep learning can be used to extract useful knowledge,
make appropriate decisions from big data, and help achieve
intelligent machine health monitoring [9]. This approach has
already had great success in speech recognition, visual object
recognition, object detection and many other domains [10].
For example, AlphaGo, an artificially intelligence algorithm
based on deep learning that was designed to play the game
Go, has already defeated a world-class master player. Rela-
tive to traditional diagnosis algorithms, the main advantage
of deep learning is that the fault features are learned via
a general-purpose learning procedure instead of engineered
manually or with prior knowledge of the signal processing
techniques [4].

For fault diagnosis based on a deep neural network (DNN),
deep Boltzmann machines (DBMs), deep belief networks
(DBNs) and stacked autoencoders (SAEs) are the most
popular models of deep learning. By combining two-layer
sparse autoencoder neural networks with a DBN, a mul-
tisensor feature fusion method was proposed in [11] for

71540
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-1919-8857


Y. Yang et al.: Bearing Fault Automatic Classification Based on Deep Learning

bearing fault diagnosis. By using a stack of autoencoders, a
DNN-based intelligent method was proposed in [12] for
diagnosing rolling element bearing faults from the frequency
domain. This method can mine fault characteristics from the
frequency spectra adaptively for various diagnosis issues and
effectively classify the health conditions of machinery. The
stacked denoising autoencoder (SDAE) was adopted in [4] to
diagnosis bearing faults; this approach can adaptively mine
salient fault characteristics and effectively identify the health
states with high diagnosis accuracy and strong robustness.
A deep autoencoder feature learning method with a new loss
function was developed in [13] to diagnose rotating machin-
ery faults. An integrated deep fault recognizermodel based on
SDAE was applied to denoise the raw signals and represent
fault features during the fault pattern diagnosis of bearing
rolling faults [14]. A fault diagnosis method based on the
stacked SAE was proposed in [15], and a multimode method
based on deep learning was proposed in [16] for fault classi-
fication. In [6], three DNN models, namely, the DBM, DBN
and SAE, were found to enable a high-accuracy and reliable
fault diagnosis of rolling bearings through a comparative
analysis of their performance. In addition, convolution neural
networks (CNNs), which have had great success in image
recognition, have been used for fault classification [17], [18],
and for bearing fault diagnosis and fault severity
evaluation [2].

Although bearing fault diagnosis based on deep learning
has had some success, certain issues remain to be resolved.
The amount of time consumed is one problem. A DNN with
too many input units and hidden layers can have higher
computational costs (although such a network probably also
offers better diagnosis performance). Furthermore, a DNN
with too few input units may not have enough power to learn
the global structure information [13]. Finding the optimal
parameters of a DNN is a challenging task. Thus, feature
extraction and dimensionality reduction of raw data are nec-
essary steps for DNN-based fault diagnosis of machinery [6].
In fact, an integrated dimensionality reduction method com-
bined with feature extraction techniques that yield a more
sensitive and lower dimensional feature set is a way to reduce
the computation burden for fault diagnosis and improve the
separability of samples [19]. Note also that many methods do
not perform well in practical applications. Some approaches
work properly in the laboratory, but the performance
may decrease dramatically when used outside laboratory
settings [20].

The consensus is that the expert knowledge of humans
is helpful for fault diagnosis, even for neural net-
works [4], [5], [12], [14], [16], [21]. For example,
a two-stage detector [22] and a semi-supervised diagnostic
framework [23] were proposed for fault diagnosis. Deep
learning applied to fault diagnosis performs well for pre-
sorted sample cases [4], [11]–[14]. An unsupervised method
based on the SDAE that can be trained in an unsupervised
way was proposed in [21] to extract the fault characteristic;
however it still requires labeled data for fine-tuning the fault

diagnosis model. Furthermore, expert datasets, when avail-
able, are often expensive or unreliable [24]. Thus, the devel-
opment of a fault diagnosis system with an autonomous
learning function merits specific study.

Recently, differing from AlphaGo, which depends on
human expert moves, AlphaGo Zero was developed to play
Go without incorporating human knowledge [24]. Inspired
by the success of AlphaGo Zero, we propose an automatic
classification method based on deep learning for bearing
fault diagnosis. Considering the computational constraints,
we reduce the high data dimension to a small dimension
before inputting the data to the DNN to train. After feature
extraction from the frequency domain, instead of setting a
specific label for each sample, we specify a random label
to build a sample dataset. It is clear that the dataset is not
based on an expert or previous knowledge. A training result
assessment method is designed to evaluate the classification
result and adjust the labels in the training dataset. The method
is tested by using bearing data provided by the Case West-
ern Reserve University (CWRU) Bearing Data Center [25],
which has become a standard reference to test fault detection
algorithms.

Deep learning is combined with different neural networks
to create various network structures, such as DNNs, DBNs
and recurrent neural networks (RNNs). Here, we use a DNN
as the deep learning model for analysis of the bearing data by
using theDeepLearn Toolbox [26]. The proposed algorithm is
introduced with the following steps. In Section II, the charac-
teristics of the CWRU bearing data are analyzed. Section III
gives a detailed description of the proposed fault automatic
classification method based on a DNN. In Section IV, testing
of the proposed method with the CWRU bearing data is
presented. Finally, the conclusions are drawn in Section V.

II. ANALYSIS OF CWRU BEARING DATA
The data provided by CWRU were collected from the bear-
ing testing platform shown in Fig. 1. The platform com-
prises a 2 HP motor, a torque transducer and encoder,
and a dynamometer. The test bearings, SKF bearing
(SKF deep groove ball bearings: 6205-2RS JEM and
6203-2RS JEM) and NTN equivalent bearing support the
motor shaft. By using electro-discharge machining, fault
diameters of 0.007, 0.014, 0.021 inches on the SKF bearings
and 0.028, 0.04 inches on the NTN bearings were seeded. The
motor speed ranged from 1730 to 1797 rpm. The accelera-
tion was measured in the vertical direction on the drive end
bearing housing (DE), and in some tests, the acceleration was
measured in the vertical direction on the fan end bearing hous-
ing (FE) and on themotor-supporting base plate (BA) [3]. The
data were saved as different files in MATLAB format. Each
file contains one or more of the recorded DE, FE, and BA.
Detailed information is shown on the CWRU bearing data
center website [25]. A benchmark to test the fault diagnosis
method was provided in [3] through studying the CWRU
dataset by using envelope analysis, cepstrum prewhitening
and benchmark methods.
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FIGURE 1. Bearing testing platform [25].

TABLE 1. Bearing defect frequency [3], [25].

The data were recorded at 12 kHz and 48 kHz for the drive
end and 12 kHz for the fan end in bearing experiments and
contain normal and faulty bearing measurements. The faulty
data include three fault types, namely, the inner race (IR),
outer race (OR), and rolling element (ball). The defect fre-
quency of the IR, OR, cage train and rolling element are listed
in Table. 1. The bearing fault frequency includes the ball pass
frequency of the outer race (BPFO), ball pass frequency of
the inner race (BPFI), fundamental train frequency (FTF),
and ball spin frequency (BSF). The defect characteristic fre-
quency in the sampled signals is the product of these fre-
quencies and the main frequency, which is proportional to the
running speed.

A characteristic of the CWRU bearing data is that the
length is long and varied, as listed in Appendix Table 2. The
data length is not an integer multiple of 2. The length changes
from 120,801 to 122,917 for the 12k drive end bearing data.
The maximum length of the 12k fan end bearing is 122,269,
and the minimum length is 120,617, except for the
datasets 277 and 278 with a length of 10,000. The maxi-
mum length of the 48k drive end bearing is 491,446 and
the minimum length is 124,602, except for file 174 with
a length of 63,788. The normal data length changes from
243,938 to 485,643. We use the largest integer data of 2 times
the training data to calculate the fast Fourier transform (FFT)
conveniently because the CWRU bearing data length is not an
integer multiple of 2. The remainder is chosen as the test data.
For example, a signal length of 65,536 from dataset 105 is
used for the training data, and the remaining signal length of
55,729 is used as the test data.

Another characteristic is that many of the datasets are
dominated by non-classical features of fault identification [3].

Not all the faults can be well recognized. Smith and
Randall [3], for example, classified the data into three
types. One type is clearly detected faults. The fault fre-
quency is reflected clearly in certain data either in the time
domain or the frequency domain, such as in file 105. The sec-
ond type is probable or potential diagnosis of faults. The fault
frequency is not dominant in the spectrum, such as in file 172,
the spectrum of which is shown in Fig. 2. The third type
is that the data cannot be detected with the specified bear-
ing fault or with other problems or when severe noise
exists, such as in file 118, the spectrum of which is shown
in Fig. 3.

The third characteristic is that the spectra of measurements
in the same file are different, and the difference can be large.
Using files 105 to 108 as an example, the spectra are shown
in Fig. 4. Here, the three columns correspond to BA, DE,
and FE, and the four rows correspond to files 105, 106, 107,
and 108. The spectra have a similar shape in the same column,
but the shapes vary greatly across different columns. In other
words, spectra have a similar shape for the same record but
different shapes for different records. Thus, the features in the
frequency domain belong to a variety mode although they are
sorted into the same fault type. It was noted in [27] that the
datasets with slight faults, medium faults, and severe faults in
the IR, ball and OR have different spectra.

In addition, certain frequency components are intermit-
tent or sometimes large or small. By using file 105 as an
example, the short-time Fourier transform (STFT) is shown
in Fig. 5. Here, spikes exist, and the amplitude of certain com-
ponents is up and down. This phenomenon is more prominent
when the data length is short.

The above analysis shows that the composition of the
CWRU data is complex and varied. A well-designed clas-
sification method is necessary to classify these records into
proper classes. In addition, the CWRU bearing data can be
used to test the ability of the DNN in the field of fault
diagnosis for real applications.

III. FAULT AUTOMATIC CLASSIFICATION BASED ON DNN
It was reported previously [4], [11]–[14], [28], [29] that a
DNN can provide successful classification for datasets with
given labels. However, labels based on expert knowledge
are scarce. In real engineering applications, much unlabeled
data exist. Therefore, it is necessary to develop a method to
automatically classify fault samples.

To classify data with a variety of fault modes automatically,
an algorithm based on a DNN is proposed that has four
primary steps. The time-domain signal is transformed into the
frequency domain, and features are extracted from the spec-
trum to reduce the data dimension. Then, a sample dataset
is built after each sample is given a random label. By using
this dataset, the constructed DNN is trained to achieve a
rough classification, so called because some samples are not
assigned the correct class labels. The DNN classification
result is assessed, and the sample labels are adjusted to obtain
a better classification result. A flow diagram of the proposed
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FIGURE 2. Spectra of file 172. The three columns are records of BA, DE, and FE.

FIGURE 3. Spectra of file 118. The three columns are records of BA, DE, and FE.

FIGURE 4. IR spectra for a fault diameter of 0.007 inch. The three columns are records of BA, DE, and FE, and the four rows are
files 105, 106, 107, and 108.

FIGURE 5. STFT of part of the data of file 105DE. The three subfigures from left to right show the STFT results of extracting
lengths of 512, 1024 and 2048 points from file 105DE.

algorithm is shown in Fig. 6. A detailed description of the
proposed algorithm is presented as follows.

A. SAMPLE DATASET
The dataset is known to be important for neural networks.
Inspired by previous work [12] in which frequency domain
data were used as the network input to detect faults in the
rolling element bearings and planetary gearboxes, the spec-
trum data instead of the time-domain data are selected to

configure a dataset. For a long measurement time record,
many data points are obtained after the Fourier transform.
If all the spectrum data are used as the input for the DNN,
then training the DNN is relatively time-consuming. Take the
labeled 105 data as an example: the data length is 65,536,
and the length of the spectrum is 32,768. The input layer
is 32,768 if the spectrum is directly used as an input. If the
DNN is set as 32768-10000-3000-1000-300-100, then the
time for each epoch is approximately 790 s. Thus, the data
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FIGURE 6. Flowchart of the proposed algorithm.

of dimensionality must be reduced to reduce the computing
time.

Many spectral lines appear on the spectrum, as shown
in Fig. 4. Although the spectrum is a useful tool for fault
diagnosis, certain characteristic frequencies, not all of them
spectral lines, contribute to diagnosing faults in real applica-
tions. Thus, we divide the spectrum into several sections and
determine the characteristic value of each section. In other
words, we add windows on the spectrum and determine the
characteristic value in each window. Too few windows will
cause feature loss, but too many will result in increased com-
puting time. Determining the appropriate number of windows
is thus challenging. It is clear that the main frequency and
its harmonics are helpful for identifying faults. For bearings,
BPFO, BPFI, FTF, andBSF are themain fault frequencies [3].
To prevent the characteristic frequency of the bearing and
its multiple frequency from falling within the same window,
we design a method to determine the window length

lw < min(
fm
1f

,
fIR
1f

), (1)

where fm denotes the main frequency, fIR represents the char-
acteristic frequency shown in Table 1, and1f is the frequency
resolution. In (1), 1f = fs/n where fs denotes the sample
frequency. The main frequency is calculated by using the
rotating speed n. Then, the number of windows is

nw >

[
n/2
lw

]
. (2)

where [·] denotes the rounding operation. Introducing (1)
into (2), we obtain

nw >

[
fs/2

min(fm, fIR)

]
. (3)

The characteristic value of each window can be the maximum
point or the energy value.

After feature extraction from the spectrum, a dataset is con-
figured. To achieve automatic classification of the samples, a
dynamic dataset is necessary, meaning that the sample labels

FIGURE 7. Flowchart of the DNN training strategy.

FIGURE 8. DNN output example when the training epoch is insufficiently
large.

in the dataset must be modified in the DNN training process.
For the initial sample dataset, each sample is given a random
label. In fact, the use of random sample labels avoids pre-
affixing a specific category label to a sample.

B. SAMPLE AUTOMATIC CLASSIFICATION
For a dataset with pre-set labels, the DNN can be trained with
expected classification results. However, it is challenging
to classify all the samples successfully through a training
process for the case of randomly assigned sample labels in
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FIGURE 9. Fine classification results for the 12k drive end bearing data.

FIGURE 10. Spectra of samples in various classes.

the dataset. Thus, certain special methods are necessary for
automatic fault classification. We design an iterative proce-
dure to achieve automatic sample classification, as shown
in Fig. 7. The iterative procedure consists of two parts, train-
ing the DNN on the dataset and assessing the training result
to adjust the training dataset. As shown in Fig. 7, the DNN is
trained to learn the dataset knowledge, and a testing process is
used to assess the training result and adjust the dataset. In fact,
the process involves gradually gathering similar samples into
the same class. The process is also a class reduction process.

First, a constructed DNN is trained with the dataset. Note
that the neural network can be overfitted if the epoch is too
large and that an epoch that is too small cannot train the
DNN completely. In other words, the samples are classified
completely for epochs that are too large, and some samples
with few similarities are considered the same class for epochs
that are too small. For a dataset with random signed labels,
each sample can be trained as a class if the training epoch is
sufficiently large. Otherwise, some samples with similarities
are considered the same class. If not all the output of the DNN
is consistent with the sample labels, we increase the number

FIGURE 11. First three PCs of the features.

of training epochs unless the number is too large. If the train-
ing time is increased to a large number, then the DNN is still
not trained successfully. Then, we end the training process
and adjust the dataset according to the training results.

For example, consider the 12k drive end bearing data:
there are 60 records for the faults associated with the
0.007-inch bearing. We assign each record a label
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FIGURE 12. Testing results for subsignals of length 2048.

FIGURE 13. First three PCs of the features for subsignals of length 2048. The left and right subfigures show the results of subsignals of length
2048 and 4096, respectively.

FIGURE 14. Classification results for the 12k fan end bearing data.

from 1 to 60. The DNN structure is shown in the next section.
If the training epoch is set as 300, then the DNN output is
as shown in Fig. 8. Here, the 60 records are divided into
28 categories, and not all DNN outputs are consistent with
the labels. Actually, it is an advantage of the DNN that the
input data can be classified independent of the label. The
main deficiency is that the training epoch is too small. Thus,

we increase the training epoch to 500, and the 60 records are
divided into 60 categories.

Although theDNN training is successful, we anticipate that
the results may not be as expected because some samples
should be classified into the same class. An evaluation of
the classification result is necessary, and the sample dataset
should be adjusted. Thus, the assessment method and the
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FIGURE 15. Spectra of samples for each class.

FIGURE 16. First three PCs of the features for the 12k fan end bearing
data.

dataset adjustment strategy are the focus of the following
work.

We divide the raw data into smaller sections and build a
testing dataset. The test sample labels are set according to the
training results. For each sub-signal, we calculate the FFT and
extract the features. The process of setting a testing dataset
is the same as building a training dataset. For a stationary
bearing signal, the changes in the signal over time are not
particularly intense. Although the FFT of subsignals is similar
to that of the raw data, the testing dataset and training dataset
are different. Thus, the generalization ability of the DNN is
tested with the testing dataset.

Then, we test the trained DNN. The testing output with the
sample labels are compared, and misclassified samples are
determined if not all testing results meet the requirement. The
raw data may have many misclassified samples in the testing
result. The misclassified samples Sm in the testing result are
counted. Then, a threshold is calculated as follows:

VT =
Sm
ST

(4)

where ST is the number of subsamples for the raw data. For
raw data, if the misclassified rate is greater than a certain

threshold VT , such as 0.5, the corresponding sample is
re-labeled. In other words, we adjust the training dataset
according to the testing result.

For the adjusted dataset, the DNN is trained again by using
the supervised training method. The above steps are repeated
until all the testing results meet the requirements. After an
iterative process of training and testing on the DNN, samples
with similarities can be classified into the same class. Note
that the use of smaller lengths of subsignals is not always
better. As shown in Fig. 5, some components are not well
reflected if the data length is too small.

It is clear from the above procedure that the dataset is not
based on human knowledge but is based only on the data
itself. Thus, the entire procedure is an unsupervised learning
process. We test the procedure by using the CWRU bearing
data in the next section to determine if these data achieve
automatic data classification.

IV. TESTING AND ANALYSIS
We test the proposed method by using the 12k drive end,
48k drive end, and 12k fan end bearing data. In each group,
we consider only faults in the 0.007-inch bearings. The shaft
speed ranges between 1730 and 1797 rpm. The minimum
main frequency fm is 28.833Hz. From Table 1, we can see
that the minimum characteristic frequency fIR is 11.484Hz.
By using (3), we attain a spectrum that is divided into
522 windows for the 12 kHz sampling and 2090 windows
for the 48 kHz sampling. Thus, input layers of 1024 and
4096 are selected for the 12 kHz and 48 kHz sampling data,
respectively.

The hidden layer of the DNN is set as 260-130-80-50.
The number of output layers is determined by the types of
sample labels. Thus, the designed DNN has six layers. The
weights of the DNN are initialized randomly. The learning
rate is 1, and the batchsize is 1. The encoder activation
function is a sigmoid function. The threshold VT is not
always a constant. For each testing dataset, the threshold
VT is first set as 0.5. Then, VT is changed to 0.3 or 0.1 to
evaluate whether the classification results are accurate. The
samples are selected randomly as the input to train the DNN.
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FIGURE 17. Testing results for subsignals of length 2048 extracted from the 12k fan end bearing data.

FIGURE 18. First three PCs of the features for subsignals extracted from the 12k fan end bearing data. The left and right subfigures show
the results for subsignals of length 2048 and 4096, respectively.

FIGURE 19. Fine classification results for the 48k drive end bearing data.

The training time for each epoch is approximately 0.32 s.
The original number of epochs is set to 500. The maxi-
mum number of epochs is 20 times the initial number of
epochs.

A. ANALYSIS OF THE 12k DRIVE END BEARING DATA
After the initial classification, the 60 records of fault data
for the 12k 0.007-inch drive end bearings are divided into
60 categories. Each category has only one sample. Thus,
the classification results must be refined. The raw data are
divided into small sections with lengths of 32,768, 16,384,
8192, 4096 and 2048 to test the trained DNN. For the

subsignal of length 2048, the first 1024 coefficients are
used to test the trained DNN because of the symmetry of
the FFT result, which means that every spectrum line is
used to test the trained DNN. After the fine classification,
the results are shown in Fig. 9. The raw data are divided
into seven classes. The records in each group are listed in
Appendix Table 3. The classification results are not consistent
with the given fault types presented previously by [25]. This
result is not unexpected. Smith et al. noted previously [3]
that some of the datasets have severe noise and cannot be
detected in terms of the specified bearing fault by using only
the spectrum.
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FIGURE 20. Spectra of samples in various classes for the 48k drive end bearing data.

To testify the validity of the classification, the spectra of
samples for each class are shown in Fig. 10. The spectra of
the records in each class are shown separately in Appendix
Figs. 24 to 30. The spectra of samples exhibit prominent
differences for various classes.

To further test whether the classification is reasonable,
principal component analysis (PCA) is used to visualize the
features extracted by the DNN. As in [12] and [30], the output
of the last hidden layer is analyzed by PCA because the
last layer is actually a classifier. The first three principal
components (PCs) of the features are shown in Fig. 11. The
features of the raw data are gathered together in seven groups.

In addition, we test the classification result by using subsig-
nals of lengths 32,768, 16,384, 8192, 4096 and 2048. There
are 180, 420, 843, 1743, and 3543 subsignals for these five
length samples. All the testing results are accurate except for
the subsignals of length 2048. There is only 1 sample whose
testing result is not consistent with the label for the subsignals
of length 2048, as shown in Fig. 12. The first three PCs of the
features for the subsignals of length 2048 and 4096 are shown
in Fig. 13. We find that the features of these data are clearly
gathered into seven groups. Thus, the overall classification
result is satisfactory. In fact, these subsignals are not in the
training dataset; thus, the proposed method is shown to have
strong generalization ability.

B. ANALYSIS OF THE 12k FAN END BEARING DATA
There are 59 records in the fault data of the 12k fan end 0.007-
inch bearings. These records are classified into 4 groups by
using the proposed method, as shown in Fig. 14. The spectra
of samples in each class are shown in Fig. 15, and the first
three PCs of the features are shown in Fig. 16. Fig. 15 displays
a clear difference between the spectra of samples in different
classes. Fig. 16 shows that the raw data features in different
groups are distributed in four corners of a rectangle. These
features are clearly separated with a certain distance.

We test the classification result by using subsignals of
length 32,768, 16,384, 8192, 4096 and 2048 extracted from
the 12k fan end bearing data. There are 177, 413, 826, 1711,
and 3478 subsignals for these five types of samples. There are
only 2, 4, and 15 misclassified samples for the subsignals of
length 8192, 4096, and 2048, respectively. The testing result

FIGURE 21. First three PCs of the features from the 48k drive end bearing
data.

is shown in Fig. 17 for subsignals of length 2048. The first
three PCs of the features are shown in Fig. 18. It is clear that
the features are grouped into four classes. Although some
classes are misclassified, the testing accuracy rate is 100%,
100%, 99.76%, 99.77%, and 99.57% for these five types of
samples. Thus, the proposed method has a strong ability of
automatic classification.

C. ANALYSIS OF THE 48k DRIVE END BEARING DATA
There are 40 records for the fault data of the 48k drive end
0.007-inch bearings. Each record is given a unique label that
is a random number between 1 and 40. After approximate
classification, these records are divided into 40 categories.
The raw data are split into small pieces with lengths of
32,768, 16,384 and 8192 to test the trained DNN. After an
iteration of training and testing the DNN, the samples are
divided into six classes, as shown in Fig. 19. The spectrum
of each class is shown in Fig. 20. The first three PCs of the
features are shown in Fig. 21. Fig. 20 shows that the spectra of
samples in different classes display distinct differences. There
is no overlap for the raw data features in different groups.

We test the classification result by using subsignals of
lengths 32,768, 16,384 and 8192, which were extracted from

VOLUME 6, 2018 71549



Y. Yang et al.: Bearing Fault Automatic Classification Based on Deep Learning

FIGURE 22. Testing result of subsignals of length 8192 extracted from the 48k drive end bearing data.

FIGURE 23. First three PCs of the features for subsignals extracted from the 48k drive end bearing data. The left and right subfigures show the
results for subsignals of length 16,384 and 8192, respectively.

TABLE 2. Length of the 12k drive end bearing data.

the 48k drive end bearing data. There are 474, 982 and
2000 subsignals for these three types of samples. All testing
output is consistent with the associated label. The accuracy

rate is 100%. The testing result is shown in Fig. 22,
and the first three PCs of the features are shown
in Fig. 23 for subsignals of length 8192. For comparison,
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TABLE 3. Classification results for the 12k drive end bearing data.

FIGURE 24. Spectra of samples in class 1 for the 12k drive end bearing data.

FIGURE 25. Spectra of samples in class 2 for the 12k drive end bearing data.

the first three PCs of the features for subsignals of
length 16,384 are also presented in Fig. 23. Comparing
the two subfigures, we observe that there are obvious
boundaries between classes. Thus, the proposed method
offers satisfactory performance and strong generalization
ability.

V. CONCLUSIONS
An automatic classification method based on deep learning
for bearing fault diagnosis is proposed. Two measures are
used to ensure that the proposed method can classify samples
automatically. One measure is that the sample label is signed
randomly and modified in the following course. The other
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FIGURE 26. Spectra of samples in class 3 for the 12k drive end bearing data.

FIGURE 27. Spectra of samples in class 4 for the 12k drive end bearing data.

FIGURE 28. Spectra of samples in class 5 for the 12k drive end bearing data.

FIGURE 29. Spectra of samples in class 6 for the 12k drive end bearing data.

measure is to adjust the sample labels through testing on
the trained DNN by using subsignals. In other words, the
core of the proposed algorithm is that the DNN is trained on
small-dimension data and that the sample labels are adjusted
according to the testing result on the trained DNN. By using
small-dimension data, only a small structure of the neural
network is required, which can reduce the computation time.
The proposed method is particularly suitable for fault signal

classification processing of large data. The entire process has
no human intervention; thus, the process does not depend on
prior expert knowledge.

The proposed method is tested with CWRU bearing data,
which feature a long data length, the existence of data
with non-classical features of fault identification, and some
components exhibiting changing amplitude. The results show
that the 12k drive end bearing data, 48k drive end bearing
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FIGURE 30. Spectra of samples in class 7 for the 12k drive end bearing data.

data, and 12k fan end bearing can be classified into 7, 6 and
4 categories, respectively. We show that the proposed method
has satisfactory performance and strong generalization ability
and can be used to classify the running state of the bearing.
In fact, the proposed method is suitable not only for bearing
fault diagnosis but also for the fault classification of rotating
machinery.

In engineering practice, equipment is usually operated
under complicated and variable conditions, and the measured
signals are non-stationary. The proposedmethod also requires
a large amount of data, especially real-world signals, for
further testing. There is no doubt that this method needs to be
improved for practical applications. Applying the proposed
method in engineering practice and improving it to achieve
intelligent fault diagnosis are the direction of our future
research.

APPENDIX
See Tables 2 and 3 and Figs. 24–30.
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