
Received October 24, 2018, accepted November 12, 2018, date of publication November 16, 2018,
date of current version December 18, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2881684

A Structure-Aware DOA Estimation Method for
Sources With Short Known Waveforms
YANG-YANG DONG 1, CHUNXI DONG 1, WEI LIU 2, (Senior Member, IEEE),
MING-MING LIU1, AND ZHENGZHAO TANG 1
1School of Electronic Engineering, Xidian University, Xi’an 710071, China
2Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 4ET, U.K.

Corresponding author: Yang-Yang Dong (dongyangyang2104@126.com)

This work was supported in part by the Natural Science Basic Research Project of Shaanxi Province under Grant 2018JQ6046, in part by
the China Postdoctoral Science Foundation under Grant 2017M623123, and in part by the Fundamental Research Funds for the Central
Universities of China under Grant XJS18033.

ABSTRACT For direction of arrival (DOA) estimation with known waveform information, with a larger
number of snapshots and a longer duration of the known waveforms, the required storage space for hardware
implementation will increase. To save storage resources and also reduce the response time of the array
system, the DOA estimation problem with short known waveforms in snapshot size is studied in this paper.
We first establish the connection between DOA estimation for known waveform sources and the structured
least squares (SLS) technique utilizing a potential rotation invariant property. Next, a constraint is formulated
and then transformed into its real and imaginary parts to satisfy the requirements of SLS, and the resultant
SLS optimization problem is solved iteratively. Simulation results show that the proposedmethod has a better
performance than the existing DEML method for small numbers of snapshots.

INDEX TERMS Direction of arrival estimation, known waveform, short snapshot size, structured least
squares.

I. INTRODUCTION
Estimating the direction of arrival (DOA) of multiple emit-
ting sources is a fundamental problem in array signal pro-
cessing, and has been applied to a variety of areas, such
as wireless communications, radar, sonar, and electronic
reconnaissance, etc [1], [2]. Many methods have been devel-
oped for DOA estimation, such as multiple signal classi-
fication (MUSIC) [3], estimation of signal parameters via
rotational invariance technique (ESPRIT) [4], and the propa-
gator method (PM) [5]. However, these methods only exploit
statistical properties of the received array data, even if the sig-
nal waveform information can be acquired in some practical
scenarios [2], [6], [7]. By incorporating the prior information
of signal waveforms, a better performance could be achieved,
and there has been an increasing interest in studying the DOA
estimation problem for known waveform sources [8]–[19].
According to the accuracy in knowledge about the waveform,
they can be classified into two major classes: the first one,
which is also the main focus of research, can handle sources
with exact waveform information, and this type can be further
divided into two subclasses, one for uncorrelated sources,
such as DEML [9], SB [10], and LR [13], and the other

for coherent sources in the presence of multipath, such as
CDEML [15], WCDEML [16], PADEC [17], and LP [18];
the second class, which is a recent development, is for sources
with inaccurate waveform information. One example for the
latter is the work in [19], which deals with the known wave-
forms in the presence of unknown Doppler shifts, suitable for
applications with fast moving platforms.

Since the known waveforms need to be stored in the sys-
tem, the more and longer the knownwaveforms, the larger the
required storage space for hardware implementation. To save
storage resources and also reduce the response time of the
array system, in this work, we focus on the DOA estimation
problem with short known waveforms in snapshot size. For
the conventional DEML method [9], it is derived from the
maximum likelihood (ML) method and designed for a large
number of samples. When the available number of snap-
shots is limited and small, the magnitude of cross-correlation
between the source signal vector and noise vector cannot be
ignored any more in comparison with that of noise covari-
ance, which results in errors in the estimates of arraymanifold
matrix and noise covariance matrix, and in turn a large bias
in its angle and complex amplitude estimation performance.
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To solve the problem, inspired by the work of structured
least squares (SLS) based ESPRIT in [20], we first treat
the cross-correlation between the source and noise vectors
as a variable to be determined and establish a link between
DOA estimation incorporating known waveform information
and SLS utilizing its potential rotation invariant property.
Then, to make use of the structure information, an amplitude
constraint on the vector elements, consisting of the rota-
tion invariance factor, is developed. However, the constraint
involves a conjugate operator, which is nonlinear and the SLS
technique cannot handle it directly. As a solution, we divide
the complex matrix equation into its real and imaginary parts
and form more constrains to create an over-determined opti-
mization problem, which is then solved via the iterative least
squares method. Finally, the DOAs and complex amplitudes
are obtained by examining the inherent relationship of the
matrix estimated from the SLS optimization step. Simulation
results show that the proposed method has a better estimation
performance than the DEML method for a small number of
snapshots.

The rest of the paper is organised as follows. In Section 2,
the studied signal model is introduced. The proposed esti-
mation method is derived and analyzed in Sections 3 and 4,
respectively. In Section 5, simulation results are provided
for performance comparison. Finally, conclusions are drawn
in Section 6.
Notations: matrices and vectors are denoted by boldfaced

capital letters and lower-case letters, respectively. The nota-
tions used in this paper are listed below:

(·)∗ conjugate
(·)T transpose
(·)H conjugate transpose
(·)−1 inverse
(·)† Moore-Penrose inverse
‖·‖F Frobenius norm
‖·‖2 `2 norm
◦ Hadamard product
⊗ Kronecker product
� Khatri-Rao product
diag{·} diagonalization
vec{·} vectorization
Re{·} real part of a complex number
Im{·} imaginary part of a complex number
IM identity matrix of size M
0MN zero matrix of size M × N .

II. SIGNAL MODEL
Consider a uniform linear array (ULA) consisting of M
sensors with an inter-sensor spacing d . Q narrowband far-
field uncorrelated sources with known waveforms {sq(n)}

Q
q=1

(n = 1, · · · ,N , with N being the number of snapshots ) of
wavelength λ from unknown directions {θq}

Q
q=1 impinge on

the array. The received signal vector at the nth snapshot can
be expressed as

x(n) = A(θ )0(γ )s(n)+ w(n)
= B(θ , γ )s(n)+ w(n) (1)

where

x(n) = [x1(n), x2(n), · · · , xM (n)]T ,

A(θ ) = [a(θ1), a(θ2), · · · , a(θQ)],

0(γ ) = diag{γ1, γ2, · · · , γQ},

a(θq) = [1, e−j2πd sin θq/λ, · · · , e−j2π (M−1)d sin θq/λ]T ,

θ = [θ1, θ2, · · · , θQ]T ,

γ = [γ1, γ2, · · · , γQ]T ,

s(n) = [s1(n), s2(n), · · · , sQ(n)]T ,

w(n) = [w1(n),w2(n), · · · ,wM (n)]T .

Similar to [9], it is assumed that the additive noise vec-
tor w(n) is temporally and spatially white and uncorre-
lated with the signal vector s(n), and w(n) follows the
circularly-symmetric complex jointly-Gaussian distribution,
i.e., w(n) ∼ CN (0, σ 2

wIM ). Besides, without causing con-
fusion and for simplicity, B, A, and 0 are used to denote
B(θ , γ ), A(θ ), and 0(γ ), respectively.

III. PROPOSED METHOD
With the aid of known waveform s(n), similar to [9], we first
obtain the estimate of B as follows,

B0 = RxsR−1ss = B+ RwsR−1ss (2)

where

Rxs =
∑N

n=1
x(n)sH (n)/N ,

Rss =
∑N

n=1
s(n)sH (n)/N ,

Rws =
∑N

n=1
w(n)sH (n)/N .

Note that if N is very large, the second term RwsR−1ss tends to
zero, andB0 can be a good estimate ofB. However, for a small
N , RwsR−1ss may be too large and cannot be ignored [21].
A good choice is to make use of the potential structural infor-
mation of B. Fortunately, the structured least squares (SLS)
technique has been proved to be very effective in handling
similar problems [20], [22]–[28]. Following the core idea
of SLS-ESPRIT [20], we formulate a similar optimization
problem with the relationship

J1B · diag{φ} = J2B (3)

where J1 = [IM−1, 0(M−1)×1], J2 = [0(M−1)×1, IM−1],
φ = [φ1, φ2, · · · , φQ]T , and φq = e−j2πd sin θq/λ.
However, there are two distinct features in the structural

information of B: (i) B is different from the signal subspace
matrixUs in [20], which makes the rotation invariance matrix
in (3) diagonal, i.e, diag{φ}; (ii) the norm of each element in
vector φ should be one, i.e.,

φ ◦ φ∗ = 1Q×1. (4)

Since the conjugate operation is a non-linear operator, i.e., (4)
cannot be applied to the SLS technique directly. A simple
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solution is to split the complex matrix into its real and imag-
inary parts as

J1(B< · diag{φ<} − B= · diag{φ=}) = J2B< (5)

J1(B< · diag{φ=} + B= · diag{φ<}) = J2B= (6)

φ< ◦ φ< + φ= ◦ φ= = 1Q×1 (7)

where φ< = Re{φ}, φ= = Im{φ}, B< = Re{B}, and
B= = Im{B}.
From (5)-(7), it can be seen that the number of unknown

variables is larger than that of equations, which is underde-
termined. Thanks to (3)-(4) and the non-linear property of
conjugate operator, we also have the following expression

J2B · diag{φ∗} = J1B (8)

Similar to (5)-(6), (8) can be split into two equations as
follows,

J2(B< · diag{φ<} + B= · diag{φ=}) = J1B< (9)

J2(B= · diag{φ<} − B< · diag{φ=}) = J1B= (10)

Since B0 in (2) can only provide a rough estimate of B,
its accuracy needs to be improved. Besides, there are some
other approaches which can give a similar rough estimate,
and for simplicity, we denote the rough estimate of B as B̂
and assume that there exists a small perturbation1B̂ between
them; therefore, an improved estimate can be expressed as
B̃ = B̂ + 1B̂. Similarly, define the improved estimate of φ
as φ̃ = φ̂ +1φ̂. Recalling (5)-(7) and (9)-(10), we have the
following five residual matrices:

F1(B̃<, B̃=, φ̃
<
, φ̃
=
) = J1B̃< · diag{φ̃

<
} − J2B̃<

− J1B̃= · diag{φ̃
=
} (11)

F2(B̃<, B̃=, φ̃
<
, φ̃
=
) = J1B̃< · diag{φ̃

=
} − J2B̃=

+ J1B̃= · diag{φ̃
<
} (12)

F3(B̃<, B̃=, φ̃
<
, φ̃
=
) = J2B̃< · diag{φ̃

<
} − J1B̃<

+ J2B̃= · diag{φ̃
=
} (13)

F4(B̃<, B̃=, φ̃
<
, φ̃
=
) = J2B̃= · diag{φ̃

<
} − J1B̃=

− J2B̃< · diag{φ̃
=
} (14)

F5(φ̃
<
, φ̃
=
) = φ̃

<
◦ φ̃
<
+ φ̃
=
◦ φ̃
=
− 1Q×1 (15)

With the principle of SLS, we should minimize the Frobe-
nius norm of the five residual matrices and keep the Frobenius
norm of 1B̂ as small as possible. Therefore, we arrive at the
following optimization problem

min
1B̂<,1B̂=

φ̃
<
,φ̃
=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



F1(B̃<, B̃=, φ̃
<
, φ̃
=
)

F2(B̃<, B̃=, φ̃
<
, φ̃
=
)

F3(B̃<, B̃=, φ̃
<
, φ̃
=
)

F4(B̃<, B̃=, φ̃
<
, φ̃
=
)

F5(φ̃
<
, φ̃
=
)

κ ·1B̂<

κ ·1B̂=



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
F

(16)

where 1B̂< = Re{1B̂}, 1B̂= = Im{1B̂}. κ =
√
(5M − 3)/(αM ) is a normalization factor to make the min-

imization of 1B̂< and 1B̂= independent of the block matrix
size, and α > 11.

According to [20], the optimization in (16) can be solved
efficiently in an iterative fashion using the first order linear
approximation technique. Assume that the improved esti-
mates of B̃ and φ̃ between the (k + 1)th and the kth iter-
ations can be expressed as B̃<k+1 = B̃<k + 1B̂<k , B̃

=

k+1 =

B̃=k + 1B̂=k , φ̃
<

k+1 = φ̃
<

k + 1φ̂
<

k , and φ̃
=

k+1 = φ̃
=

k + 1φ̂
=

k ,
and hence, we can derive the relationship of each residual
matrix in (11)-(15), between its (k + 1)th and kth iterations
as follows,

F1(B̃<k+1, B̃
=

k+1,φ
<

k+1,φ
=

k+1)

= F1(B̃<k +1B̂<k , B̃
=

k +1B̂=k , φ̃
<

k +1φ̂
<

k , φ̃
=

k +1φ̂
=

k )

= J1(B̃<k +1B̂<k ) · diag{φ̃
<

k +1φ̂
<

k } − J1(B̃=k
+1B̂=k ) · diag{φ̃

=

k +1φ̂
=

k } − J2(B̃<k +1B̂<k )

≈ F1(B̃<k , B̃
=

k , φ̃
<

k , φ̃
=

k )+ J1B̃<k · diag{1φ̂
<

k }

− J1B̃=k · diag{1φ̂
=

k } + J11B̂<k · diag{φ̃
<

k }

− J11B̂=k · diag{φ̃
=

k } − J21B̂<k (17)

F2(B̃<k+1, B̃
=

k+1, φ̃
<

k+1, φ̃
=

k+1)

= F2(B̃<k +1B̂<k , B̃
=

k +1B̂=k , φ̃
<

k +1φ̂
<

k , φ̃
=

k +1φ̂
=

k )

= J1(B̃<k +1B̂<k ) · diag{φ̃
=

k +1φ̂
=

k } + J1(B̃=k
+1B̂=k ) · diag{φ̃

<

k +1φ̂
<

k } − J2(B̃=k +1B̂=k )

≈ F2(B̃<k , B̃
=

k , φ̃
<

k , φ̃
=

k )+ J1B̃=k · diag{1φ̂
<

k }

+ J1B̃<k · diag{1φ̂
=

k } + J11B̂<k · diag{φ̃
=

k }

+ J11B̂=k · diag{φ̃
<

k } (18)

F3(B̃<k+1, B̃
=

k+1, φ̃
<

k+1, φ̃
=

k+1)

= F3(B̃<k +1B̂<k , B̃
=

k +1B̂=k , φ̃
<

k +1φ̂
<

k , φ̃
=

k +1φ̂
=

k )

= J2(B̃<k +1B̂<k ) · diag{φ̃
<

k +1φ̂
<

k } + J2(B̃=k
+1B̂=k ) · diag{φ̃

=

k +1φ̂
=

k })− J1(B̃<k +1B̂<k )

≈ F3(B̃<k , B̃
=

k , φ̃
<

k , φ̃
=

k )+ J2B̃<k · diag{1φ̂
<

k }

+ J2B̃=k · diag{1φ̂
=

k } + J21B̂<k · diag{φ̃
<

k }

+ J21B̂=k · diag{φ̃
=

k } − J11B̂<k (19)

F4(B̃<k+1, B̃
=

k+1, φ̃
<

k+1, φ̃
=

k+1)

= F4(B̃<k +1B̂<k , B̃
=

k +1B̂=k , φ̃
<

k +1φ̂
<

k , φ̃
=

k +1φ̂
=

k )

= −J2(B̃<k +1B̂<k ) · diag{φ̃
=

k +1φ̂
=

k } + J2(B̃=k
+1B̂=k ) · diag{φ̃

<

k +1φ̂
<

k } − J1(B̃=k +1B̃=k )

≈ F4(B̃<k , B̃
=

k , φ̃
<

k , φ̃
=

k )+ J2B̃=k · diag{1φ̂
<

k }

− J2B̃<k · diag{1φ̂
=

k } − J21B̂<k · diag{φ̃
=

k }

+ J21B̂=k · diag{φ̃
<

k } − J11B̂=k (20)

1Similar to [20], α > 1 accounts for the fact that the entries of
1B̂< or 1B̂= should be larger than the other entries of the block matrix.
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F5(φ̃
<

k+1, φ̃
=

k+1)

= F5(φ̃
<

k +1φ̂
<

k , φ̃
=

k +1φ̂
=

k )

= (φ̃
<

k +1φ̂
<

k ) ◦ (φ̃
<

k +1φ̂
<

k )+ (φ̃
=

k +1φ̂
=

k )

◦ (φ̃
=

k +1φ̂
=

k )− 1Q×1

≈ F5(φ̃
<

k , φ̃
=

k )+ 2 · diag{φ̃
<

k } ·1φ̂
<

k

+ 2 · diag{φ̃
=

k } ·1φ̂
=

k (21)

where the second-order terms of1B̂<k ,1B̂=k ,1φ̂
<

k , and1φ̂
=

k
have been omitted for the last approximations of (17)-(21).
Moreover, the approximation of (21) has utilized the property
of Hadamard product, i.e,

z1 ◦ z2 = diag{z1} · z2, (22)

where z1 and z2 are two vectors with the same size.
Similar to the way done in SLS-ESPRIT [20], we vectorize

(17)-(20) to generate the linear programming structure of
1B̂<k , 1B̂=k , 1φ̂

<

k , and 1φ̂
=

k , i.e.,

vec{F1(B̃<k+1, B̃
=

k+1, φ̃
<

k+1, φ̃
=

k+1)}

≈ vec{F1(B̃<k , B̃
=

k , φ̃
<

k , φ̃
=

k )} + (IQ � (J1B̃<k ))1φ̂
<

k

− (IQ � (J1B̃=k ))1φ̂
=

k + (diag{φ̃
<

k } ⊗ J1 − IQ ⊗ J2)

· vec{1B̂<k } − (diag{φ̃
=

k } ⊗ J1)vec{1B̂=k } (23)

vec{F2(B̃<k+1, B̃
=

k+1, φ̃
<

k+1, φ̃
=

k+1)}

≈ vec{F2(B̃<k , B̃
=

k , φ̃
<

k , φ̃
=

k )} + (IQ � (J1B̃=k ))1φ̂
<

k

+ (IQ � (J1B̃<k ))1φ̂
=

k + ( diag{φ̃
=

k } ⊗ J1)vec{1B̂<k }

+ (diag{φ̃
<

k } ⊗ J1 − IQ ⊗ J2)vec{1B̂=k } (24)

vec{F3(B̃<k+1, B̃
=

k+1, φ̃
<

k+1, φ̃
=

k+1)}

≈ vec{F3(B̃<k , B̃
=

k , φ̃
<

k , φ̃
=

k )} + (IQ � (J2B̃<k ))1φ̂
<

k

+ (IQ � (J2B̃=k ))1φ̂
=

k + ( diag{φ̃
<

k } ⊗ J2 − IQ ⊗ J1)

· vec{1B̂<k } + (diag{φ̃
=

k } ⊗ J2)vec{1B̂=k } (25)

vec{F4(B̃<k+1, B̃
=

k+1, φ̃
<

k+1, φ̃
=

k+1)}

≈ vec{F4(B̃<k , B̃
=

k , φ̃
<

k , φ̃
=

k )} + (IQ � (J2B̃=k ))1φ̂
<

k

− (IQ � (J2B̃<k ))1φ̂
=

k − (diag{φ̃
=

k } ⊗ J2) vec{1B̂<k }

+ (diag{φ̃
<

k } ⊗ J2 − IQ ⊗ J1)vec{1B̂=k } (26)

where the derivations of the four expressions have used the
following two equations,

vec{Y1Y2Y3} = (YT
3 ⊗ Y1)vec{Y2} (27)

vec{Y1 · diag{z} · Y3} = (YT
3 � Y1)z (28)

with Y1, Y2, Y3, and z having appropriate dimensions.

Meanwhile, let 1B̂<0,k =
∑k−1

p=11B̂<p and 1B̂=0,k =∑k−1
p=11B̂=p be the kth estimation change of B< and

B=compared with the initial estimates B̃<0 and B̃=0 . Then,
the improved estimates B̃<k and B̃=k can be expressed as,

B̃<k = B̃<0 +1B̂<0,k = B̃<0 +
∑k−1

p=0
1B̂<p (29)

B̃=k = B̃=0 +1B̂=0,k = B̃=0 +
∑k−1

p=0
1B̂=p (30)

Therefore, with (21) and (23)-(26), the SLS problem in
(16) can be solved iteratively via the following optimization,

min
1B̂<k ,1B̂=k ,1φ̂

<

k ,1φ̂
=

k

∥∥∥∥∥∥∥∥∥Hk ·


1φ̂
<

k

1φ̂
=

k
vec{1B̂<k }
vec{1B̂=k }



+



vec{F1(B̃<k , B̃
=

k , φ̃
<

k , φ̃
=

k )}

vec{F2(B̃<k , B̃
=

k , φ̃
<

k , φ̃
=

k )}

vec{F3(B̃<k , B̃
=

k , φ̃
<

k , φ̃
=

k )}

vec{F4(B̃<k , B̃
=

k , φ̃
<

k , φ̃
=

k )}

vec{F5(φ̃
<

k , φ̃
=

k )}
κ ·1B̂<0,k
κ ·1B̂=0,k



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

(31)

where the expression of Hk is given in (32), as shown at
the bottom of this page. As discussed in [20], (31) is a
least squares problem and can be solved efficiently using the
real-valued QR decomposition (see Appendix VI for more
details). B0 in (2) is chosen as the initial estimate of B,
i.e., B̃<0 = B<0 and B̃=0 = B=0 , while the initial value for φ
is obtained via a simple least squares solution using (2)-(3)
as follows,

φ̃0 = diag−1{(J1B0)†(J2B0)} (33)

where diag−1{·} is to construct a vector using the diagonal
elements of a matrix.

Hk =



IQ � (J1B̃<k ) −IQ � (J1B̃=k ) diag{φ̃
<

k } ⊗ J1 − IQ ⊗ J2 −diag{φ̃
=

k } ⊗ J1
IQ � (J1B̃=k ) IQ � (J1B̃<k ) diag{φ̃

=

k } ⊗ J1 diag{φ̃
<

k } ⊗ J1 − IQ ⊗ J2
IQ � (J2B̃<k ) IQ � (J2B̃=k ) diag{φ̃

<

k } ⊗ J2 − IQ ⊗ J1 diag{φ̃
=

k } ⊗ J2
IQ � (J2B̃=k ) −IQ � (J2B̃<k ) −diag{φ̃

=

k } ⊗ J2 diag{φ̃
<

k } ⊗ J2 − IQ ⊗ J1

2 · diag{φ̃
<

k } 2 · diag{φ̃
=

k } 0Q×MQ 0Q×MQ
0MQ×Q 0MQ×Q κ · IMQ 0MQ×MQ
0MQ×Q 0MQ×Q 0MQ×MQ κ · IMQ


(32)
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TABLE 1. Summary of the proposed method.

Let B̂<, B̂=, φ̂
<
, and φ̂

=
represent the final estimates

obtained by (31). Then, the estimates of DOA and complex
amplitudes can be expressed as

θ̂q = arcsin{−angle{φ̂<q + jφ̂
=
q }λ/(2πd)} (34)

γ̂q =
1
M

M∑
m=1

[b̂<mq + jb̂
=
mq]/(φ̂

<
q + jφ̂

=
q )
m−1

(35)

where b̂<mq, b̂
=
mq, φ̂

<
q , and φ̂

=
q denote the qth column of φ̂

<

and φ̂
=
, and the mth row and qth column of B̂< and B̂=,

respectively.
The procedure of the proposed solution is summarized

in Table 1. As shown, termination of the iterative process
is set when a fixed number of iterations is reached or one
of the norms of 1B̂<k , 1B̂=k , 1φ̂

<

k , and 1φ̂
=

k is close to
the fixed threshold value ε. In practice, the iterative process
is often terminated after less than 10 and sometimes even
1 iterations.

IV. ALGORITHM ANALYSIS
A. LIMITING FACTORS
For the proposed method, the number of snapshots should
be no less than the number of signals, i.e., N ≥ Q,
to guarantee the existence of R−1ss . While for the DEML
method [9], both Rss and Rww should be invertible, i.e., N ≥
max{M ,Q}. Apparently, if M > Q, which is a com-
mon case for DOA estimation applications, the proposed
method requires less number of snapshots than the DEML
method.

B. COMPUTATIONAL COMPLEXITY
Now we analyse the computational complexity of the pro-
posed method compared with the DEML method [9], [29]
in terms of the number of complex-valued multiplications.
Since the proposed method involves the real-valued QR
decomposition, we transform the number of real-valued mul-
tiplications into complex-valued ones by a factor 1/4. Since
the proposedmethod is designed for ULA, the DEMLmethod
with polynomial rooting is used for comparison.

For the proposed method,
(i) Initial estimations of B and φ with (2) and (33):

O{MQN + Q2N + Q3
+ 2(M − 1)Q2

};
(ii) Estimation of B̂<, B̂=, φ̂

<
, and φ̂

=
by solving (31) with

real-valued QR decomposition: O{6K (M + 1)2(2M − 1)Q3
},

where K is the total number of iterations;
(iv) DOA and complex amplitude estimation using

(34)-(35): O{2Q+ 2QM}.
Then, with N > M > Q and K being less than 10 in prac-

tice, the overall computational complexity of the proposed
method is approximately O{MQN + 24KM3Q3

}.
Similarly, for the DEML method,
(i) Estimation of B̂ and Q̂ using [9, eqs. (17) and (18)]:

O{M2N +MQN + Q2(N + 3M )+ 2Q3
};

(ii) DOA and complex amplitude estimation using
[29, (34) and (51)–(56)]:O{2(M−1)2+4M+2(M−1)M2

+

(M − 1)3 + 4M2
}.

For the case discussed above, its overall computational
complexity is about O{M2N +MQN + 3M3

}.
It can be seen that the proposed method has a larger com-

putational complexity than the DEML method owing to the
large matrix Hk involved in the SLS optimization step.

V. SIMULATION RESULTS
In this section, performance of the proposed method is inves-
tigated in comparison with that of DEML [9], [29], and the
Cramer-Rao bound (CRB) for known waveforms [9], [19]
and unknown waveforms [30], respectively. It is assumed
that d = λ/2, and the waveforms of all sources are known
with unit power. For the proposed method, we set α = 10,
ε = 10−12, and maxIter = 100.2

Example 1: In the first example, we investigate the per-
formance of the proposed method against SNR. The DOAs,
and complex amplitudes of two sources are set to −15◦, 0◦,

2For different simulation conditions, various simulations have been con-
ducted and shown that a smaller α can reduce the number of iterations, but
may not give the highest DOA estimation accuracy, and the DOA estimation
accuracy is not sensitive to the value of α. Therefore, to achieve a balance
between angle estimation performance and running time, α = 10 is chosen
here.
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FIGURE 1. RMSE versus SNR, K = 2, M = 4, N = 10. (a) DOA. (b) Complex
amplitude.

ej0.3π , and e−j0.4π , respectively. With M = 4, and N = 10,
the input SNR varies from -15 dB to 30 dB with an interval
of 5 dB. 10000 independent Monte Carlo trials are conducted
for each SNR and the root mean square error (RMSE) results
are shown in Fig. 1.
Example 2: In this example, the performance of the pro-

posed method with respect to the number of snapshots is
examined. The settings are the same as Example 1 except that
SNR = 10 dB and N ranges from 2 to 1000. The estimation
results are provided in Fig. 2.

As shown in Figs. 1a-2b, the proposed method has pro-
vided a much better performance than the DEML method
for small numbers of snapshots (N ≤ 10) even when SNR
is very high, since the proposed method has exploited more
structure information and treated the bias between the true B
and its estimate as a parameter to estimate. Besides, when N
becomes large i.e.,N ≥ 100, performance of the twomethods
becomes almost the same and agrees with the CRB. However,
from Fig. 1a, the DOA estimation performance of the pro-
posed method is worse than that of DEML for low SNR val-
ues, and a possible reason is that the DEML method exploits
more statistical information about noise while the proposed

FIGURE 2. RMSE versus number of snapshots, K = 2, M = 4,
SNR = 10 dB. (a) DOA. (b) Complex amplitude.

method does not. Moreover, according to Section IV-B and
Figs. 1a-2b, the proposed method has a higher computational
complexity than the DEML method, but does not provide
a significantly better performance. However, the proposed
method is applicable to any array geometry with a rotation
invariance structure, while, for low computational complex-
ity, the DEML method can only be applied to ULA using the
polynomial rooting technique, and requires time consuming
spectrum search for other array geometries.

VI. CONCLUSIONS
A DOA estimation method for sources with short known
waveforms in snapshot size has been introduced. The connec-
tion between the known waveform source DOA estimation
and the structured least squares (SLS) method was first estab-
lished; then, with the special structural information of rotation
invariance factor, a constraint on the amplitudes of the rota-
tion invariance factor vector was proposed. Since it involves
the conjugate operator, which is nonlinear and cannot be
applied directly to the SLS optimization problem, we have
to split it into a real part and an imaginary part. Finally,
the problemwas solved via the iterative least squares method.

71276 VOLUME 6, 2018



Y.-Y. Dong et al.: Structure-Aware DOA Estimation Method for Sources With Short Known Waveforms

As demonstrated by simulation results, when the number of
snapshots of knownwaveforms is small, the proposedmethod
has provided a better DOA estimation performance than the
existing DEML method.

APPENDIX
SOLUTION TO (31)
For simplicity, define

ĝk = [(1φ̂
<

k )
T , (1φ̂

=

k )
T , vecT {1B̂<k }, vec

T
{1B̂=k }]

T (36)

b̂k = −[vecT {F1k}, vecT {F2k}, vecT {F3k}, vecT {F4k},

vecT {F5k}, (κ ·1B̂<0,k )
T , (κ ·1B̂=0,k )

T ]T (37)

where Ftk denotes Ft (B̃<k , B̃
=

k , φ̃
<

k , φ̃
=

k ), t = 1, 2, 3, 4, and

F5k represents F5(φ̃
<

k , φ̃
=

k ).
With (36)-(37), the optimization problem in (31) can be

transformed into the following linear programming problem,

Hk ĝk = b̂k (38)

Applying QR decomposition to Hk , we have

Hk = QkRk (39)

whereQk is orthogonal with size of 3Q(2M−1)×3Q(2M−1)
and Rk has the size of 3Q(2M − 1)× 2Q(M + 1). And, it is
easy to prove that

QT
k HkRk =

[
Uk

0Q(4M−5)×2Q(M+1)

]
. (40)

where Uk is a square and triangular matrix with size of
2Q(M + 1)× 2Q(M + 1).

Then, from (40), (38) can be simplified further as
follows,

Uk ĝk = QT
k b̂k (41)

It is noticed that Uk is triangular, and we can use the back
substitution technique to obtain ĝk [31].
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