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ABSTRACT Robot machine capture protein seafood like sea cucumber and seashell is expected to play
a great role in food economy improvement and divers protection. In order to realize robot capture, a sea
organism absorptive type remotely operated vehicle (ROV) has been designed with the pilot operation and
visionbased autonomous capture modes. A novel region-based fully convolutional network with deformable
convolutional networks has been developed to realize organism target recognition. The comparisons in off-
line experiments have verified its advantages. In order to realize organism target following and capture
control, a novel learning-based type-II fuzzy controller has been developed. Through online fuzzy rule
optimization and learning, the controller can realize organism target following and capture control under
image coordinate without vehicle horizontal velocity or position information in the complicated submarine
environment. Field trials have been made in the Zhangzidao Island of China with the designed absorptive
type ROV. The trials manifest that the designed absorptive type ROV can realize online organism target
recognition, following and capture in the real submarine environment.

INDEX TERMS Remotely operated vehicle vision servo control target recognition.

I. INTRODUCTION
The worldwide demand for high protein seafood, marine
drugs, health products such as seashell and sea cucumber,
is growing rapidly. Each year the marine products imports
of China are tens of billions of dollars with the increase
of 10% [1]. For the time being, offshore natural organisms
such as sea cucumbers, seashells, urchins, et al. are mostly
captured by human divers. However, divers fishing not only
suffers from life hazards and hypothermia diseases but also
limited by time duration in the water depth of more than
20 meters. Robotic capturing, on the contrary, will both
improve the operation safety level and reduce fishing cost.

In the last two decades, underwater robots have advancing
dramatically and widely applied for the application of marine
science, oceanic engineering, environmental exploration, and
so forth [2] [3]. For example, the REMUS-100 AUV [4],
Autosub AUV [5] and OceanServer Iver2 AUV [6] are
applied for underwater observation and survey; H300 ROV

of French ECA group, SAUVIM I-AUV (Intervention
AUV) [7], Girona 500 I-AUV [8], and so forth, are developed
for the field autonomous operations. For marine organism
harvesting and unhurt capture, Norway has developed a sub-
marine harvesting ROV which has realized sea urchin har-
vesting through remote aspiration manually Khatib et al. [9]
have invented a multisensory humanoid robotic diver Ocean
One for oceanic discovery. Ocean One is equipped with a
pair of 7-DOF electrical, compliant and a torque-controlled
arm and gentle hands, but it mainly depends on the operator
guidance with limited observation and operation range. It is
still difficult to realize agile and autonomous capture through
target sensing and capture control.

The Remotely Operated Vehicles (ROVs) are commer-
cialized and industrialized for years [10]. They are con-
trolled from the surface with a surface control unit. Although
it has been widely used for marine resources exploration
and underwater platform maintenance, its operation still
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depends on one or more comprehensively trained operators.
When the ROV confronts with complex targets and tens of
DOF vehicle-manipulator systems, the operation will be very
challenging [11]

On the autonomous environmental sensing and object
recognition, acoustic and visual sensors are usually applied.
Acoustic sonars are employed for far and middle range sens-
ing, while visual images are for close observation [12]. Since
high frequency sonars are relatively expensive for organism
capture, autonomous visual observation is still essential for
low cost underwater vehicles [13]

On the underwater visual recognition, some recogni-
tion approaches have been applied by using the image
features [14]. García et al. [15] proposed a generic seg-
mentation process for target identification and selection.
Sun et al. [16] proposed an automatic recognition algorithm
through color-based identification and shape-based identi-
fication. But the shape and color features of sea organism
are very genetic to their environment such as sea grass
and rock due to ecological interest [17] [18]. In order to
improve the recognition accuracy between identical features
under complex conditions, algorithms of deep learning based
object recognition and detection have emerged since 2010.
These deep learning algorithms can be divided into two cat-
egories, namely, the end-to-end algorithms and the region-
proposal-based algorithms. The end-to-end algorithms show
great advantage in processing speed. YOLO (You Only Look
Once) [19] or SSD (Single Shot Multibox Detector) [20]
can reach a processing speed of 45 fps (frames per
second) per second because the skips of time-consuming
region proposed step, which can reach the requirement of
real-time video processing. The region-proposal-based algo-
rithm combines the region proposal method with Convolu-
tional Neural Networks (CNNs), such as Faster Region-based
Convolutional Networks (Faster R-CNN) [21], and Region-
based Fully Convolutional Networks (R-FCN) [22]. Region
proposal method is used to propose Region of Interest (ROI)
while a CNN is used to obtain object bounding box and its
label [23]. The region-proposal-based algorithms manifest
a better recognition accuracy but with a slower processing
speed. R-FCN, for example, has an accuracy of 83.6% mAP
(mean average precision) and a processing ability of 12 fps
on PASCAL VOC data sets. However, like most of the object
detection algorithms, R-FCN is also hard to accommodate
geometric variations or model geometric transformations in
object scale, pose, viewpoint etc. But the living marine
organism shows the above-mentioned characteristics. This
study will propose a novel R-FCN network with deformable
convolutional networks for the high accuracy small marine
organism object recognition task.

In order to realize autonomous capture, visual servo based
control is essential [24]. The robot observes, measures, and
tracks the target based either on the position information or on
the image features directly. Myint et al. [25] estimated
the relative pose through model-based recognition by using
1-step genetic algorithm and performs visual servo by

keeping the desired pose to the target. Bonin-Font et al. [26]
realized visual odometry tracking and intervention through
color based feature detection and stereo-3D position compu-
tation. Bonin-Font et al. [27] used Gaussian mixture model
to detect moving targets, and launched a fast compressive
tracker with a Kalman prediction mechanism to locate the
target position. Guo et al. [28] described an integration of
a vision system and intervention AUV, and it realized pipe
manipulation through calibration, object detection and 3D
point cloud based pose estimation. On the other hand, posi-
tion based visual servo depends on accurate geometric model
and calibration parameters [29], which is liable to be affected
by the environmental disturbances and parameter uncertain-
ties. Image based visual servo, on the contrary, depends
directly on the image feature feedback. Fornas et al. [30]
proposed an adaptive neural network image-based visual
servo controller integrated with image-based visual servo
kinematic model. In fact, for the low cost vehicle without its
own exact position relative to the target, image based visual
servo is more robust with the points or line features Jacobian
integrated into controller’s feedback [31]. Moreover, in order
to realize accurate visual servo and capture control, not only
should the camera keep tracking the target continuously, but
also should the controller realize precise approaching. This
study will propose a reinforcement learning based hierarchi-
cal vision controller to present a certain degree of intelligence
for the autonomous capture.

This article will focus on the autonomous capture scheme
with online visual recognition and learning based visual servo
on the basis of an absorptive type ROV system. The main
contribution includes:

1) On the recognition of small organism object in its natural
genetic environment, a novel Region-based Fully Convo-
lutional Networks (R-FCN) with deformable convolutional
network has been proposed. This network not only augments
the anchor scales for spatial sampling but also helps offset
target and its genetic environment

2) A novel Type-II fuzzy hybrid and intelligent image
based visual servo controller with learning based particle
swarm optimization (PSO) fuzzy rules optimizer without
ROV velocity or position information in the horizontal plane
has been proposed to integrate reinforcement learning and
type-II fuzzy systems. The controller can keep the organism
target in the camera field, continuously approach the target
and realize stable absorption through fuzzy rules online quick
iteration and optimization.

3) A novel sea organism absorptive type ROV has been
developed with pilot operation and vision based autonomous
capture modes. Empirical evaluations have been made in the
Zhangzidao Island of Da Lian, Liao Ning province, China
with the designed absorptive type ROV.

The rest of this article is organized as follows.
Section 2 will describe the design and control architecture
of the absorptive type sea organism capture ROV. A novel
deformable convolutional network based R-FCN will be
proposed in section 3 A hybrid and intelligent visual servo
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FIGURE 1. Design of sea organism absorptive type ROV.

controller will be proposed to integrate reinforcement learn-
ing and type-II fuzzy systems in section 4. Oceanic pasture
experiments will be discussed and analyzed in section 5.
We will make conclusions in section 6

II. ROV SYSTEM DEVELOPMENT
A. MECHANISM DESIGN
The mechanism design of sea organism absorptive type
ROV is described in FIGURE 1. It is a compact-size open
frame underwater vehicle designed and developed in the
Harbin Engineering University for the capture of sea organ-
ism. It is 1.3m in length, 0.8m in width, and 0.9m in height,
with the depth rating 100m. The ROV is weight 130kg, with
the single entry capture weight 30kg. This low cost sea organ-
ism capture ROV is equipped with a magnetic compass, depth
gauge, but without position or velocity sensors in the horizon-
tal plane. Autonomous capture will be realized through the
depth and direction information from visual features in the
camera. In order to realize environmental perception, target
recognition and visual servo, the ROV is equipped with a
fisheye camera in the front of ROV for pilot operation; a
wide view camera is fixed on the absorptive pipe for online
recognition, and visual servo control; two spotlights with
one focusing angle at 30◦ and the other one at 60◦. These
spotlights can provide enough illumination in the darkness
seabed. The ROV is installed with four horizontal vector
thrusters and two vertical thrusters, with electronic control
system in the capsule to realize ROV motions. During the
absorptive process, the sea organismwill be absorbed through
the absorptive pipe, while the sea water and silt will be dis-
charged through drain pipe. The ROV will realize sea organ-
ism capture through pilot operation; online target recognition
and vision based autonomous absorption control.

B. CONTROL ARCHITECTURE
The control architecture includes underwater electronic con-
trol system surface manipulation system (see FIGURE 2).
Surface manipulation system includes graphic manipulation
interface, manipulation joystick and online recognition and
information processing system.

FIGURE 2. Control architecture of absorptive type ROV.

FIGURE 3. The ROV surface manipulation interface.

The ROV surface manipulation system can realize pilot
manipulation and vision based autonomous capture manip-
ulation. It includes surface manipulation interface, manipu-
lation joystick and graphic information disposal system. The
surface manipulation interface (see FIGURE 3) obtains the
views from a fisheye camera, a wide-angle camera, intuitive
model heading of vehicle top view model, and the vehicle
status of 3 DOFs postures angles (ROV postures revolving
around the x, y, and z axes respectively: roll, pitch, yaw),
control mode, underwater instruments switch, diving depth,
thruster commands are sent from the vehicle capsule. Since
pilot operation is very challenging and skills demanding,
the purpose of surface manipulation interface is to provide the
pilot with a convenient, low-cost and quick training platform.
Moreover pilot can operate the ROV advancing, diving, head-
ing, transversal traveling and absorption through manipula-
tion joystick (see FIGURE 4) Graphic information disposal
system is a portable computer with ubuntu 16.04 operating
system and NVIDIA GTX 1070 graphic card The system
realizes online visual recognition and provides target position
in the camera for autonomous capture.

The core of underwater electronic system is an embedded
PC-104 system with VxWorks operation system. The system
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FIGURE 4. Function assignment of the joystick.

plays a major role in the low level control of ROV. It is in
charge of sampling sensor information from magnetic com-
pass, depth sensor, etc.; and sending specific commands to
the thruster and pump from surface through Ethernet. Three
operation mode including pilot remotely operation, hybrid
operation mode and vision based autonomous capture mode
can be realized.

1) PILOT REMOTELY OPERATION
This mode is commonly applied for typical ROV con-
trol architectures, in which a pure man-machine loop has
been established mainly to serve as a remotely cruising
and absorption manipulation [29]. Underwater environments
and vehicle states are obtained through cameras, magnetic
compass and depth sensor on the ROV. The pilot can
then remotely operate the ROV advancing, diving, heading,
transversal traveling and absorption through manipulation
joystick PC-104 will explain logic commands to specific
commands to control thrusters and pump to complete issued
tasks.

2) HYBRID OPERATION MODE
In this mode, autonomous orientation and depth controls are
included in the combination with pilot remote operation,
which will create a more convenient interactive environ-
ment for pilot’s operations. For example, effective absorption
expects a constant depth during cruising, in the previous
mode, pilots are distracted tomaintain the depthwith joystick,
on the contrary, constant cruising with depth control in the
hybrid operation mode can make the capture operation more
convenient.

3) VISION BASED AUTONOMOUS CAPTURE MODE
The objective of vision based autonomous capture is to
realize the marine organism autonomous absorption through
online visual recognition and intelligent visual servo control.
Through visual recognition, marine organism will be found
and locked, autonomous capture will be realized through
visual servo controller.

FIGURE 5 illustrates the process diagram of vision
based autonomous capture. The following two sections will
describe the method and process of online visual recognition
and visual servo controller.

FIGURE 5. Diagram of vision based autonomous capture control.

III. ONLINE VISUAL RECOGNITION
A. THE R-FCN ALGORITHM
R-FCN algorithm is a region-proposal based algorithm,
which follow a two-stage object detection strategy: (1) RoIs
proposal, and (2) RoIs classification and regression. Region
Knob Network (RPN) [30] is a sub-network of R-FCN
and is used for generating RoIs. The input feature maps,
which extracted by the base convolution network, are shared
between RPN andR-FCN. FIGURE 6 illustrates the overview
architecture of the algorithm.

To classify RoIs, k2(C + 1) layers position sensitive score
maps are produced by the feature maps through convolutional
computation. The k2(C + 1) means to encode the output
feature with C categories (and ‘‘+1’’ for background) and
each category with k2 score maps. The bank of k2 score
maps corresponding to a k× k spatial grid illustrates relative
positions of the object. For example, when k = 3, it means
to encode 9 position information for an object category, such
as top-left, top-center, . . . , bottom-center, bottom-right. The
bounding box of RoIs regression is similar with the classifi-
cation of RoIs. 4k2 layers position-sensitive score maps are
produced in order to predict 4 coordinates of a RoI’s bounding
box.

After the position-sensitive score maps are generated,
position-sensitive RoI pooling is proposed to encode position
information into RoIs. Each RoI bounding box is divided into
k×k bins corresponding to the position-sensitive score maps.

Each bin of RoI comes from pooling the corresponding
position score maps. For example, the top-left bin of RoI is
pooling from the corresponding area of top-left score maps
(the red layers in FIGURE 6).

After the position-sensitive RoIs pooling has been finished,
k2 position-sensitive scores are generated, the k2 position-
sensitive scores then vote on the RoI. For RoIs classifica-
tion, a (C + 1)-dimensional vector is generated for each
RoI, and the (C + 1)-dimensional vector parameterizes the
probability of each category. For RoIs’ bounding box regres-
sion, a 4-dimensional vector is generated for each RoI, the
4-dimensional vector parameterizes the four coordinates of
bounding box.

To train the R-FCN, the loss function on each RoI is
defined as the summation of the cross-entropy loss and the
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FIGURE 6. The architecture of R-FCN.

FIGURE 7. Some underwater images.

box regression loss:

L
(
s,tx,y,w,h

)
= Lcls (sc∗)+ λ

[
C∗ > 0

]
Lreg(t, t∗). (1)

Where, c∗ is the ground truth label of RoI (c∗ = 0 means
background). Lcls (sc∗) = −log(sc∗ ) is the cross-entry loss for
classification, where, sc∗ = erc∗ /

∑C
c=0 e

rc , and rc is the score
of RoI belonging to the category c. Lreg (t, t∗) = R(t − t∗)
denotes the bounding box regression loss, t represents the
predicted box, t∗ represents the ground truth box, R is a
constant, both Lcls(S∗c ) and Lreg(t , t

∗) were defined in [24].
λ is a constant, λ = 1. [C∗ > 0] is an indicator, it is equal
to 0 when the ground truth label c∗ is background, otherwise,
the indicator equals to 1.

B. THE IMPROVED R-FCN ALGORITHM
FIGURE 7 contains some underwater images shot by
the ROV. There are two problems should be overcome for
the effective detection and recognition of marine organism.
At First, marine organism, sea cucumber, sea urchin and
scallop for example, are very small in their actual body size,
which could only take up a small fraction in underwater
image, in the process of cruise and search. Small object detec-
tion and recognition is a quite difficult problem for R-FCN.

FIGURE 8. The architecture of RPN.

Secondly, the living marine organism shows varied form, var-
ied scale and so on in different situations. However, it’s hard
for R-FCN to accommodate geometric variations or model
geometric transformations in object scale, pose, viewpoint
and so on. Therefore, the following improvements will be
made on the original R-FCN algorithm in order to overcome
these two problems.

1) IMPROVEMENT IN SMALL OBJECTS DETECTION
In R-FCN algorithm, RPN is used to generate RoIs, object
classification and regression is then performed on RoIs.
Thus, if RPN can generate more accurate RoIs, the result
of object detection and recognition will be improved.
FIGURE 8 describes the architecture of RPN. As illustrated
in FIGURE 8, each sliding-window generates k anchors
with different scales and aspect ratios. And for each sliding-
window, a 512dimension feature vector is generated through
convolutional computation. So, the ‘‘reg’’ layer outputs 4k
scores to encode the coordinates of k anchors, and the ‘‘cls’’
layer outputs 2k scores that estimate the foreground or back-
ground probability of each anchor (see FIGURE 8).

In the original RPN, each sliding-window location yields
nine anchors with the combination of scales [1282, 2562,
5122] and aspect ratios [1:1, 1:2, 2:1]. On the land, most
objects have an aspect ratio close to 1:1, 1:2 or 2:1. In marine
organism detection task, object likes sea urchin, sea cucumber
and scallop shows similar aspect ratio as defined above. Thus,
the aspect ratios of anchor reflect very strong flexibility.
Moreover, most of these objects only count hundreds of
pixels in image. It is improper to select 1282 as the smallest
anchor scale, and therefore the anchor scales are defined as
[642, 1282, 2562, 5122]. Thereafter, each sliding-windowwill
produce 12 anchors and the redefined anchor scales are more
inclined to generate small RoIs, therefore the accuracy of
small object detection and recognition will be improved.

2) IMPROVEMENT IN LIVING ORGANISM DETECTION
Living marine organism shows varied form, especially in
the changeable marine environment. For R-FCN, convolution
unit samples the input feature map at fixed locations, and
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FIGURE 9. Diagram of deformable convolution and deformable
position-sensitive RoI pooling. (a) Deformable convolution.
(b) Deformable position-sensitive RoI pooling.

pooling layer reduces the spatial resolution at a fixed ratio. So,
it’s hard for R-FCN to accommodate geometric variations.

The key idea of deformable convolution and deformable
position-sensitive RoI pooling is to augment the spatial sam-
pling locations in the modules with additional offsets and
learn the offsets from the target tasks, without additional
supervision. In the consideration with the deformable char-
acteristic of marine organism, the two new modules are
applied in R-FCN algorithm. Deformable convolution is used
to replace some original convolution unit of the base net-
work ResNet 101 [31] and deformable position-sensitive
RoI pooling is used to replace the original position-sensitive
RoI pooling in R-FCN.

FIGURE 9 shows the diagram of deformable convolution
and deformable position-sensitive RoI pooling. As illustrated
in FIGURE 9, the offset fields are obtained through apply-
ing convolutional computation over input feature maps. The
channel dimension of offset fields is twice of the input feature
maps, corresponding to a 2-dimension (x-axis and y-axis)
offsets of each location.

We define a grid receptive field R as:

R ={(−1,−1) , (−1, 0) , . . . , (0, 1) , (1, 1)} (2)

FIGURE 10. Target image vision expressed in terms coordinates.

From traditional CNN, one obtains:

Out (p0) =
∑

pn∈R
w(pn) · In (p0 + pn) (3)

where p0 is a point on the output feature map Out , In is the
input feature map, pn enumerates the locations in R.

In the deformable convolution, the regular grid R is aug-
mented with offsets 1pn|n = 1, . . . ,N , where N = |R|.
Then, equation (3) becomes:

Out (p0) =
∑

pn∈R
w(pn) · In(p0+1pn + pn) (4)

As illustrated in FIGURE 9, deformable position-sensitive
RoI pooling is similar with deformable convolution. At first,
2k2(C+1) layers position-sensitive offset fields are generated
through convolutional computation. Then, position sensitive
ROI pooling on offset fields generates k × k offsets for k × k
bins of the RoI. Finally, the position-sensitive RoI poolings
score maps with additional offset in the location of each bin
generates k × k output features.

IV. INTELLIGENT VISUAL SERVO CONTROLLER
A. KINEMATICS CONTROLLER FOR THE IMAGE
CONFIGURATIONS
Vision servo control integrates visual information feedback
with robotic orientation and position control. Since the low
cost absorptive ROVdoes not equipwith theDoppler Velocity
Log (DVL) like position sensor, its visual based control is
based on the estimation of displacement and orientation of
feature pixels. Vision based capture control can be expressed
from FIGURE 10 in terms of image coordinates. The objec-
tive of vision based autonomous capture control is to control
the ROV movement towards the recognized target, until the
target enters into the absorption range of the pipe to realize
quick absorption. During the ROVmoving towards the recog-
nized organism target, the target feature should be kept within
the CCD image plane.

There four coordinate frames have been set in FIGURE 10,
namely the global frame

∑
O-XYZ, the vehicle frame∑

Ov-XvYvZv, the camera frame
∑

Oc-XcYcZc, and the tar-
get frame

∑
Op-XpYpZp. If we set the vector (xt(t), yt(t),
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zt(t))T as the position of feature point in the vehicle frame,
vector (xct (t) , y

c
t (t))

T as the feature point projection on the
image plane, one has: xct (t)yct (t)

1

 = 1
zc(t)

MT


xt (t)
yt (t)
zt (t)
1

, (5)

where zc(t) is the feature point depth in the camera frame,
M is a 3×4 matrix determined by the intrinsic parameters of
the camera.

M =

αc −αc cotϕc uc 0
0 γc/ sinϕc vc 0
0 0 0 0


where αc and γc are the scalar vectors of the uc and vc axis
in the image plane. uc and vc represent the position of the
principle point of the camera. ϕc represents the angle between
the two axes [32]. T is the homogeneous transformation
matrix of the vehicle frame with respect to the camera frame,

T =
[
R d t
0 1

]
where R and T are the rotation and translation components of
the transformation matrix. Thus (4) can be rewritten as:

[
xct (t)
yct (t)

]
=

1
zc(t)

MpT


xt (t)
yt (t)
zt (t)
1

, (6)

whereMp is the 2×4 sub matrix of matrixM .

Mp =

[
m11 m12 m13 m14
m21 m22 m23 m24

]
IfmT

i denotes the ith row vector of matrixM, the depth of the
feature point is:

zc(t) = mT
3 T


xt (t)
yt (t)
zt (t)
1

. (7)

Sincemonocular ranging often involves distance deviation,
this paper will propose a goal-oriented visual servo scheme in
this section. From (6) and (7), the camera can provide devia-
tion information of depth and orientation for the vehicle. If we
set�d denotes desired position of�, the expected orientation
and depth of the target feature point can be expressed as:

θd = arctg
ytd (t)
xtd (t)

and zcd (t) = mT
3 T


xtd (t)
ytd (t)
ztd (t)
1

.
The orientation and depth deviation can be expressed as:{

eθ (t) = θd (t)− R(θ )θ (t)
ed (t) = zcd (t)− z

c(t),
(8)

FIGURE 11. Diagram of Type-II Fuzzy Learning Controller.

where R(θ ) is the rotation function of orientation angle of
the vehicle frame with respect to camera frame. Therefore,
the vision based control can be realized through orientation
and distance control.

B. BLEARNING BASED TYPE-II FUZZY CONTROLLER
The learning based type-II fuzzy approaching controller
should not only keep the visual feature within the image, but
also enable the pipe approaching the target. The advantage
of this controller is to autonomously improve control perfor-
mance through the action-selection policy.

Moreover, for low cost vehicle without horizontal veloc-
ity or position sensor, it is important to keep the target feature
within the image and enable the pipe approaching the target.
In compare with type-I fuzzy systems, type-II fuzzy system
can helpminimize uncertain effects of unknown environment.
The following will integrate nonlinear controller for ROV
stable and accuratemotions control and type-II fuzzy learning
to ensure the target insight and continuously closing. A novel
learning based PSO fuzzy rules optimizer has been developed
for uncertain environmental and dynamic change and factors
during capturing process (See FIGURE 11)

From FIGURE 12, states St = {pe1 pe2 ... pen} are defined
as a set of position states and errors of target in the field
of camera. The 2048×1536 pixels CCD image plane can
be divided into 32×24 discrete-grid with each grid contain
64×64 pixels. FIGURE 12 can illustrate current and expected
states of depth and orientation of the pipe, the field of camera
include desirable states area, approaching states area, danger-
ous states area, safe states area, et al.

1) TYPE-II FUZZY CONTROLLER
The type-II fuzzy inference system is designed to construct
action rules and decide action output ranges according to
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FIGURE 12. Discrete grid of 2048×1536 CCD image plane.

current and expected states of depth and orientation of the
pipe. This system contains a type-reducer and a normal defuz-
zfier. The type-reducer maps a type-II fuzzy set into a type-I
fuzzy one, while the defuzzfier transforms the fuzzy output
into the crisp one. The proposed type-II fuzzy set is defined
as following:

D̃{((pet(t), µ(t)), µD̃(pe(t), u(t)))|∀pe(t)∈St,∀Js⊇ [0, 1]}

(9)

whereµD̃(pe(t), u(t)) ∈ [0, 1], pe(t) represents the input state
element of the target in the field of camera, St denotes the
state set of pe(t), Js represents the membership of pe(t) in
the St .

A Gaussian primary membership function can be
expressed as:

µD̃ij
= exp[−

1
2

(
pe(t)ij − mij

σij

)2

], (10)

where mij is uncertain mean mij ∈
[
m1
ij,m

2
ij

]
, σij is fixed

standard deviation, µD̃ij (t) denotes the membership degree,

which is a bounded set µD̃ij ∈
[
µ
D̃ij
, µ̄D̃ij

]
, where µ

D̃ij
and

µ̄D̃ij
are the lower and upper bound respectively:

µ̄D̃ij
=


µD̃ij

(
m1
ij, σij, pe(t)ij

)
, pe(t)ij < m1

ij

1, m1
ij ≤ pe(t)ij ≤ m

2
ij

µD̃ij

(
m2
ij, σij, pe(t)ij

)
, pe(t)ij > m2

ij

and

µD̃ij
=


µ
D̃ij

(
m2
ij, σij, pe(t)ij

)
pe(t)ij ≤

m1
ij + m

2
ij

2

µD̃ij

(
m1
ij, σij, pe(t)ij

)
pe(t)ij >

m1
ij + m

2
ij

2
.

(11)

The fuzzy operation is implemented through algebraic
product operation. We compute the firing strength corre-
sponding with the ith rule:

Fi =


[
f
i
, f̄i
]

f
i
=

ni∏
j=1
µ
D̃ij
, f̄i =

ni∏
j=1
µ̄D̃ij

,
(12)

where ji and ji are the lower and upper firing strength respec-
tively. Therefore the left most point uL and the right most
point uR can be expressed as:

uL =

∑Lc
i=1 f̄iai +

∑mr
i=Lc+1 fiai∑Lc

i=1 f̄i +
∑mr

i=Lc+1 f i
,

uR =

∑Rc
i=1 f iai +

∑mr
i=Rc+1 f̄iai∑Rc

i=1 f i +
∑mr

i=Rc+1 f̄i
, (13)

where mr is the number of the rules, Lc and Rc are the left
and right crossover points respectively. Thus the defuzzified
output is the average of uL and uR:

uo =
(uR + uL)

2
. (14)

2) LEARNING BASED FUZZY RULES OPTIMIZATION
ALGORITHM
In this paper, the purpose of fuzzy rules is to choose the
ROV action to approach the target for absorption according
to current and expected status of depth and orientation of the
ROV pipe. The rules can be expressed as:

Rules: If pe1(t) is St1 and ,. . . , pen(t) is Stn, then u1(t) is
a1(t) and,. . . , um (t) is am(t)

Where action setA(t) =
{
a1(t) a2(t) ... am(t)

}
represents

a set of actions for the vehicle. The vehicle will execute an
action such as advance, sideway, heading and diving motions
through state evaluation in order to stabilize its pose, keep the
target in the camera, control the ROV approach the target and
be ready for absorption.

The state evaluation function will predict return through
state-action pairs. In the consideration with different field
environment during the capture process, manual selection
with fixed fuzzy rules is difficult to be universally feasible.
This study will optimize fuzzy rules through the following
improved particle swarm optimization algorithm.

Improved particle swarm optimization (PSO) algorithm
has been applied as an intelligent evolutionary algorithm to
train and optimize fuzzy rules. In the PSO algorithm [33],
each particle searches and adjusts its status to find the optimal
solution according to the experiences of the particle and its
neighbors. In other words, each primarily proposed singleton-
type fuzzy rule is purposed as a particle candidate so that the
action can be optimize through improved PSO algorithm.

Since the PSO algorithm is likely to be affected
by the initial state, the inertial weight ω has been
adopted to balance local search and global search abil-
ity in the improved PSO algorithm. The improved
PSO is defined as:

vck (t + 1) = ωvck (t)+ c1 × r()×
(
Pbestdk − x

c
k (t)

)
+ c2 × r()×

(
xck (t)− Pworstdk

)
+ λ3

×r()×
(
Gbestdk − x

c
k (t)

)
xck (t + 1) = xck (t)+ v

c
k (t + 1),

(15)

where vck (t) is the kth particle current speed, k = 1, . . . , kp,
kp is the particle population size, c1 and c2 are constant
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acceleration coefficients, Pbestdk denotes the best previous
position for the kth particle, Gbestdk denotes the best previous
position of all the particles in the swarm, Pworstdk denotes the
worst previous position for the kth particle, xck (t) denotes
current position for the kth particle, r() denotes the random
number between one and zero. Moreover, the weight ω is
obtained from:

w = wmax −
wmax − wmin

Nmax
× Nc. (16)

where Nmax is the maximum iteration number, Nc is the
current iteration number.

The improved PSO fuzzy rule optimization algorithm
consists of five major stages: initialization, fitness function
determination, particle memorization and selection. The opti-
mization process is described in the following:

I. Initialization: Before proceeding improved PSO opti-
mization, fuzzy rules of actions vs input state have been ran-
domly generated. The population of rule particle size is set to
be 15, and the dimension of the fuzzy rule is 4, corresponding
to 4 DOFs motions of ROV.

II. Fitness function determination: For each trial of fuzzy
rule, the fitness function is very important to decide the
best actions for the controller. Since the designed learning
based type-II fuzzy approaching controller should realize the
accurate and stable absorption capture online, fuzzy rules can
not be literately optimized from each step of control errors,
which not only will reduce the controller convergence speed,
but also may involve adverse effect. Therefore, to select an
effective and intelligent fitness function is important to realize
fuzzy rules quick iteration and optimization in each step
length of control command release. In order to realize quick
target approaching and absorption maintenance, the control
actions are expected to be loosely large when the deviation
is relatively large, to be strictly small when the deviation
is relatively small. Sigmoid function (see FIGURE 13) of
equation (21) is one of these functions.

u =
2

1+ exp(−kpe− kd ė)
− 1, (17)

where kp and kd are the proportional and derivative gains.

FIT =
m∑
i=1

∣∣∣∣∣∣ ke(|ei| + |ėi|)

ku( 2
1+exp(−kpei−kd ėi)

− 1)− ai

∣∣∣∣∣∣, (18)

where ke and ku are adjustable parameters, ei and ai are the
error of a certain direction and corresponding actions of fuzzy
rule.

III. Particle memorization and selection: each rule particle
will be evaluated through the memorization of its own fit-
ness value and the selection of the maximum one as Pbestdk ,
the maximum rule vector is obtained as:

Therefore, the fitness function is defined as:

Pbest =
[
Pbestd1

,Pbestd2
, ...,Pbestd15

]
. (19)

FIGURE 13. Sigmoid function.

IV. Learning based particles further optimization: On the
other hand, some uncertain factors except environmental
effects will carry out great effects on the vehicle. For exam-
ple, the capturing weight change could cause disturbance
and dynamic change during the capture process. Since the
Q-learning algorithm [34] is very effective in improving the
controller’s robustness, it is applied to further optimize the
fuzzy rule actions.

The Q-learning algorithm is purposed to predict the and
optimized rule output from the mapping of the state and
action pairs of current vehicle pose & position state and rule
action pairs. According to Q-learning algorithm, the action ak
will be updated as follows:

Qt+1(pe(t), a(t)) = Qt (pe(t), a(t))

+α [r(t+1)+γQbest (pe(t+1))−Qt (pe(t), a(t))] (20)

where r(t+1) is the immediate reinforcement reward,α and γ
are the discount parameter and learning rate respectively, γ ∈
[0, 1], Qbest (pe(t + 1)) is the best estimation of Qt (pe(t + 1))
value. The Q value will be updated as:

1Q = r(t + 1)+ γQ∗(pe(t + 1))− Q(pe(t), a(t)). (21)

Through type-II fuzzy operation, Q values are updated at
each control time step, the expected Q value output for each
rule and action is:

Q(pe(t+1))=
1
2

mr∑
i=1

(
fi(pe(t))∑mr
j=1 f j(pe(t))

+
f̄i(pe(t))∑mr
j=1 f̄j(pe(t))

)qi(t),

(22)

where qi(t + 1) = qi(t) + ε1qi(t) i = 1, ...,mr , ε is the
learning rate.

1qi(t) =
1
2
1Q(

fi(pe(t))∑mr
j=1 f j(pe(t))

+
f̄i(pe(t))∑mr
j=1 f̄j(pe(t))

). (23)
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FIGURE 14. URPC introduction. (a) Terrain of the net cage. (b) Robot entry of the net cage. (c) Large screen of the contest.

TABLE 1. Performace comparisons between the original R-FCN and improved R-FCN on the data sets of marine organism.

TABLE 2. Detection comparisons on the multi scal marine organism between the original R-FCN and the improved R-FCN.

Based on equation (23), each particle is further modified.
and steps I, II, III and IV are repeated iteratively untilGbest is
obviously improved. The particle with best fitness of Pbest is
the global best one Gbestd . Therefore the best fuzzy rule fit-
ness value is obtained to deal with environmental disturbance
and pose change during capturing process.

V. FIELD TRIALS IN ZHANGZIDAO ISLAND
FromSeptember 19th to September 23th, the first Underwater
Robot Picking Contest (URPC) was launched in Zhangzidao
Island sponsored by National Natural Science Foundation of
China (NSFC). This objective of this contest is to promote
underwater robot autonomous perception and manipulation
for the organism target machines agilely capture. The major
items in the contest include Object recognition off-line on the
computer and online recognition with robot; and autonomous
perception and manipulation capture. 16 teams from different
universities and companies participated this contest. In order
to launch this contest, the contest organizers, Dalian Uni-
versity of Technology and Zhangzidao Group Corporation,
have constructed a 15m×15m (length × width) net cage in
the offshore pasture field and laid a great number of sea
organisms such as sea cucumbers, sea urchins and scallops
(see FIGURE 14). Moreover, the organizers have provided

a great many submarine organism photo samples for the
training of objects off-line recognition.

A. COMPARISONS OF OFF-LINE VISUAL RECOGNITION
The marine organism detection and recognition model have
been trained from the data sets provided from the URPC
organizing committee. There are totally 12882 labeled under-
water images in the data sets, the data annotation files sets are
provided in PASCLAVOC format. Themodel is trained on an
Ubuntu 16.04 computer with an NVIDIA GTX 1070 graphic
card (8 GB graphic memory).

The mean average precision (mAP) scores are applied
in (Everingham et al. [35] 2010) for the evaluation of the
model. And the greater the mAP scores, the better the
model. In the off-line experiments, mAP scores are applied
to as an Intersection-over-union (IoU) thresholds valued
at 0.5 and 0.7. When the IoU threshold is set as 0.7, the eval-
uation criteria will be more strict.

In the off-line experiments (see FIGURE 15), the outputs
from the original R-FCN and the improved R-FCN are visu-
alized in FIGURE 15. The evaluation results of two models
are illustrated in TABLE 1 and TABLE 2.

In TABLE 1, the effects of the improved R-FCN are
evaluated on the living marine organism detection. Although
the living marine organism shows varied forms, scales and
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FIGURE 15. R-FCN (top) vs. improved R-FCN (bottom) on marine organism recognition task.

so on in different situations, the improved R-FCN algorithm
which take deformable convolution and deformable position
sensitive RoI pooling into consideration, manifests the detec-
tion accuracy improvement in different categories of living
marine organism.

In TABLE 2, the effects of the improved R-FCN are
evaluated in small object detection. From TABLE 2,
the improved R-FCN manifests detection accuracy improve-
ment on different scales, especially in small scale object.
The mAP@0.5 scores are 35.45% and 42.94% respectively,
from the comparisons between the original R-FCN and the
improved R-FCN on small scale object detection Moreover,
the mAP@0.7 scores are 22.40% and 29.78% respectively,
from the comparisons between the original R-FCN and the
improved R-FCN in small scale object detection.

Therefore, the improved R-FCN algorithm manifests
improvement on the living marine organism and small scale
objects detections

B. ONLINE VISUAL RECOGNITION
In compare with off-line recognition, Online visual recog-
nition means the realization of recognition during vehicle
cruising. It requires the detection and recognition algorithm
being more robust during the vehicle moving and shaking.
Since the capsule space of underwater vehicle is compact
while the graphics card is too large to integrate into the
capsule. So, an external laptop with GTX 1070ti was used
for object detection.

In the online recognition contest, the evaluation criterion is
described as follow:

error =
3∑
i=1

wi (ti − gi)2 /
3∑
i=1

gi,
3∑
i=1

wi = 1,wi ≥ 0,

(24)

where t1, t2 and t3 are the numbers of detected object, i.e.
sea cucumber, sea urchin and scallop; g1, g2 and g3 are the
numbers of labeled object, i.e. sea cucumber, sea urchin and
scallop, which are labeled by the URPC organizing commit-
tee; w1w2 and w3 are the weights of different categories. The
smaller the error scores, the better the performance of the
online recognition algorithm.

TABLE 3. Performace of the online visual recognition contest.

FIGURE 16. Some video frames in the online recognition.

C. VISUAL SERVO CONTROL FOR AUTONOMOUS
CAPTURE
The autonomous capture process is manifested from
FIGURE 17 to FIGURE 21. FIGURE 19 and FIGURE 20
describe two target following scenarios. The authors have
compared the experimental results of target following
and absorption process with and without learning based
fuzzy rules optimization algorithm of section IV. FIGURE
20 describes the target switching process from disturbance
and blocks. The relationship between pixel distance and
real distance is obtained from the underwater fixed height
calibration and measurement.
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FIGURE 17. Autonomous capture process of scenario I without learning based fuzzy rules optimization algorithm. (a) Angle comparisons. (b) Pixel
distance between target and pipe during capture. (c) Vehicle rolling state.

FIGURE 18. Autonomous capture process of scenario I with learning based fuzzy rules optimization algorithm. (a) Angle comparisons. (b) Pixel
distance between target and pipe during capture. (c) Vehicle rolling state.

FIGURE 19. Video frames in the autonomous capture process scenario I.

FIGURE 17 (b) and FIGURE 18 (b) describe the pixel dis-
tance between target and pipe during capture of FIGURE 19,
while FIGURE 17 (c) and FIGURE 18 (c) describe the
ROV rolling states during capture of FIGURE 19. From
Figure 17 and 18, although the ROV can realize target
following and absorption through type-II fuzzy visual servo

FIGURE 20. Video frames in the autonomous capture process scenario II.

controller, environmental disturbance and rolling change dur-
ing the capture could cause the vehicle shaking and partly
unstable during the capture process. Although the type II
fuzzy controller is advantaged in the control of nonlinear
process and external disturbances, the target following still
experienced some fluctuation process. With learning based
fuzzy rules optimization algorithm of Section IV, the
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FIGURE 21. Autonomous capture process of scenario II with learning based fuzzy rules optimization algorithm. (a) Angle comparisons (b) Pixel
distance between target and pipe during capture (c) Vehicle rolling state.

following and absorption process can be more stable and
convergence.

Furthermore, experiments in FIGURE 20 and 21 describe
another process, in which the environmental disturbance and
target block cause the target switch. But robot can still realize
capture with learning based fuzzy rules optimization algo-
rithm of Section IV. In the autonomous capture process, the
proposed learning based type-II fuzzy controller can realize
target following in complicated submarine environment. The
learning based fuzzy rules optimization algorithm can opti-
mize following rules and adapt to the environment. Although
the expected angle is disturbed by robot shaking and image
distortion, the robot can still realize target capture.

VI. CONCLUSION
This study has designed a novel sea organism absorptive
type ROV with pilot operation and vision based autonomous
capture modes. In order to realize online recognition of
target organism, a novel region-based fully convolutional net-
work with deformable convolutional network has been devel-
oped to realize organism target recognition. From off-line
and online experiment, the recognition accuracy can reach
90.23 mAP (see TABLE 2). A novel learning based type-II
fuzzy controller has been developed to realize organism target
following and capture control. Through particle optimization
and learning, the learning based fuzzy rules optimization
algorithm could optimize the following process under vehicle
dynamic change and external disturbance, particularly when
the target blocked. The controller can realize organism target
following and capture control under image coordinate with-
out vehicle velocity or position information in the horizontal
plane under complicated submarine environment. Empirical
trials manifest the designed absorptive type ROV can realize
online organism target recognition, following and capture in
the real submarine environment
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