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ABSTRACT Genetic regulatory networks (GRNs) are significant fundamental biological networks through
which biological system functions can be regulated. A significant challenge in the field of system biology
is the construction of a control theory of GRNs through the application of external intervention controls;
currently, context-sensitive probabilistic Boolean networks with perturbation (CS-PBNp) are used as an
important network model in research on the optimal GRN control problem. This paper proposes an
approximate optimal control strategy approach to the infinite-horizon optimal control problem based on
probabilistic model checking and genetic algorithms (GAs). The proposed method first reduces the expected
cost defined under the infinite-horizon control to a steady-state reward within a discrete-time Markov
chain. A CS-PBNp model with a stationary control policy is then constructed to represent the cost of the
fixed control strategy based on a temporal logic with a reward property, and calculations are carried out
automatically by a PRISM model checker. The stationary control policy is then encoded as an element of
the solution space of a GA. Based on the fitness of each control policy element as calculated by PRISM,
an optimal solution can be obtained by using a GA to execute genetic operations iteratively. The experimental
results generated by applying the proposed approach to the WNT5A network validate the accuracy and
effectiveness of the approach.

INDEX TERMS Genetic regulatory networks, optimal control, probabilistic model checking, genetic
algorithm.

I. INTRODUCTION
Research on gene regulatory networks [1] is primarily con-
ducted through the analysis of gene expression data via the
application of systems biology methods and techniques to
build gene regulatory network (GRN) models that can mimic
the regulation of biological systems and enable a better under-
standing of biological phenomena within their frameworks.
A variety of mathematical and computational methods are
used in the construction of GRN models that can analyze
gene expression using data structures such as Boolean net-
works (BNs) [2], probabilistic Boolean networks (PBNs) [3],
and dynamic Bayesian networks [4].

PBNs, which are extensions of BNs, can capture the rules-
based dependencies between genes to elicit translational
behavior in genetic processes and are therefore widely used to
study the optimal control of GRNs. In a PBN, each node has
multiple Boolean functions, each of which can be selected
at a given time based on a fixed probability distribution.
In this manner, PBNs, which are also known as instantaneous

random PBNs, can essentially be viewed as collections of
multiple BNs, one of which is randomly chosen at each time
step as the evolution rule.

In this paper, we consider the optimal control of a context-
sensitive probabilistic BN with perturbations (CS-PBNp) [5].
In a pure PBN, random interference can be introduced to cap-
ture the effects of the external environment on the genome.
However, real biological systems have an inherent stability
reflected in their context-sensitive attributes and, in contrast
to the instantaneous random probabilities found in PBNs,
the transition between BNs in a context-dependent probabil-
ity BN is limited within certain probability bounds. Thus,
CS-PBNps are more suitable for modeling small biological
subnets.

In this paper, we propose a novel approach that combines
the application of the PRISM probabilistic model checker
with a genetic algorithm (GA) to solve the CS-PBNp infinite-
horizon optimal control problem. Recently, Pal et al. [6] used
discounted- and average-cost formulas to solve the infinite

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

77299

https://orcid.org/0000-0003-1403-6760


L. Wang et al.: Model Checking Optimal Infinite-Horizon Control

optimization control problem of context-dependent proba-
bilistic BNs, while Abul et al. [7] reduced the infinite-horizon
control problem to solving oneMarkov decision-making pro-
cess. However, these solution methods require the calculation
of large numbers of state transitions. Wei et al. [19] used
PRISM and a GA to solve the CS-PBNp optimal control
problem, but did so based on a solution of the finite-horizon
optimization control problem.

The goal of the present study was to solve the problem
of infinite-horizon optimization control. Probabilistic model
checking [8] is a model-based automated verification tech-
nique in which model checking algorithms automatically
validate properties with specifications defined by probabilis-
tic temporal logic on a probabilistic model to enable broad
qualitative or quantitative assessment of the results of system
behavior. Under the proposed method, the expected total cost
as defined in the infinite-horizon control is first reduced to a
steady-state return on a discrete-timeMarkov chain. A model
of context-sensitive probabilistic BNs with perturbations that
contains a fixed control strategy is then constructed and a
temporal logic formula with reward-based temporal proper-
ties is used to represent the PRISM-calculated cost of each
fixed control strategy probabilistic model checker. Finally,
a GA [9] is used to encode each fixed control strategy as an
individual within the genetic algorithm solution space with a
fitness value defined based on its control cost, and PRISM is
used to obtain an approximate optimal solution by iteratively
performing genetic operations on this solution space.

This remainder of this paper is organized as follows.
In Section 2, the structure of the CS-PBNp, definition
of the infinite-horizon optimization control problem, and
genetic algorithm operation mechanism are introduced.
Section 3 presents a detailed analysis and process for
solving the infinite-horizon optimization control problem.
Section 4 describes the application of the proposed method
to the WNT5A network and presents the experimental results
validating the proposed method. In Section 5, a discussion
of related work and, finally, a summary of this paper are
presented, the main contribution of this paper is to propose
a problem solving method which combines genetic algo-
rithm and probabilistic model checker PRISM, which can
effectively solve the CS-PBNp infinite range optimal control
problem.

II. BACKGROUND KNOWLEDGE
A. THE CONTEXT-SENSITIVE PROBABILISTIC BOOLEAN
NETWORKS WITH PERTURBATION–CS-PBNp
A BN with n nodes can be defined as B = (V ,F), where
V = {x1, . . . , xn} is a set of nodes in which each node xi ∈
{0, 1}(i ∈ [1 . . . n]) indicates the expression state of gene i,
F = {f1, . . . , fn} is a list of Boolean functions used to repre-
sent the regulation interaction rules between genes, and each
fi : {0.1}n → {0, 1} is a predictive function of gene i. The
status of the network at time t can be represented as an n-bit
binary vector, x (t) = [x1 (t) , x2 (t) , . . . , xn (t)], where xi(t)
is the value of xi at time t.

The PBN provides a set of candidate Boolean functions for
each gene i denoted by Fi = {f

(i)
1 , . . . , f (i)l(i)}. The probability

value c(i)j , (j ∈ [1 . . . l(i)]), such that
∑l(i)

j=1 c
(i)
j = 1, represents

the probability of choosing f(i)j to update the expression state
of gene i. If we assume that the candidate Boolean functions
for each gene are chosen to be independent of each other,
the probabilistic Boolean network can essentially be regarded
as a collection comprising N =

∏n
i=1 l(i) Boolean networks.

Context-sensitive PBNs (CS-PBNs), which limit the
mutual switching between BNs, are generally considered
to be a more appropriate model for the inherent stability
of biological systems. A CS-PBN has a binary switch, s,
with a small conversion probability q of forcing transition
between BNs. If s is in state 1, there is a probability of q
that the CS-PBN will choose a new BN as an evolution rule
following a fixed probability distribution q. Otherwise, the
CS-PBN keeps the current Boolean network unchanged until
a transition occurs.

In this process, random interference can be added to the
structure of the PBN to capture the effects of external inputs
on gene expression status. The occurrence of an interference
event on gene I with probability p is represented by the binary
random variable peri(i ∈ [1 . . . n]). When peri = 1, for
instance, there is a probability p that the expression state of
gene i will flip from 1 to 0, and vice versa. In this case, the
Markov chain corresponding to the PBN is ergodic, that is,
it is reachable between any two states and has a steady state
distribution.

B. INFINITE-HORIZON OPTIMIZATION
CONTROL PROBLEM
The goal of an infinite-horizon optimization control [6] is to
find an optimized fixed control strategy for a control duration
approaching infinity to represent a network that is as long as
necessary while minimizing the control cost.

A CS-PBNp will have n nodes and n control inputs and
a control duration of M . For M → ∞, t = 0, 1, . . .
represent different control phases. At any t , X (t) =
[x1 (t) , x2 (t) , . . . , xn (t)] represents the current state of the
CS-PBNp and u (t) = [u1 (t) , u2 (t) , . . . , um (t)] represents
the current state of all the control inputs, where u (t) ∈
{0, 1}m. The fixed control strategy π :{0, 1}n → {0, 1}m is
a mapping function that maps the network state space to the
control space, meaning that the choice of all control inputs
depends only on the current state of the network.

Under a horizon of infinite control there is a control cost
function C (X (t) , u (t)) : {0, 1}n × {0, 1}m → R≥0 that is
used to represent the cost of applying a control input u (t)
when the network is in state X (t). The cost value must be
set to capture the cost of intervention control and the relative
preference for different states [10] so that, when (t) = 0, the
various return values of C (X (t) , u (t)) can reflect the expec-
tation of different states. A smaller return value indicates that
a state is more likely to arrive. When u (t) = 1, the return
value of C (X (t) , u (t)) must add an extra control cost based
on the degree of state expectation.
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Based on how the control cost function is set, for a
CS-PBNpmodel starting fromX (0) the total expected cost of
the network obtained over an infinite-horizon using the fixed
control strategy X (0) is as follows:

Jπ (X (0)) = lim
M→∞

1
M
E
[∑M−1

t=0
C (X (t) , u (t))

]
(1)

Thus, finding a solution to the infinite-horizon optimiza-
tion control problem involves searching an optimized fixed
control strategy π∗ to minimize the expected total cost, and
the optimal total expected cost is therefore defined as follows:

J∗π∗ (X (0)) = min lim
M→∞

1
M
E
[∑M−1

t=0
C (X (t) , u (t))

]
(2)

III. ANALYSIS AND SOLUTION OF INFINITE-HORIZON
OPTIMIZATION CONTROL
As a CS-PBNp with control inputs is essentially a Markov
decision process, the optimal expected cost solution of a
control problem over an infinite-horizon can essentially
be equated to a calculation of the minimum steady-state
reward value in a Markov decision process (MDP). However,
the model checking algorithm in PRISM cannot measure
the reward attributes of the stationary state on an MDP
model. To address this, the proposed method first adds a
specific fixed control strategy with control inputs to the
CS-PBNp and then converts the CS-PBNp into a discrete-
time Markov chain (DTMC) model. By model checking the
steady state reward attributes on this DTMC, the expected
total cost of generation under a specific fixed control strategy
is obtained. Finally, iterative genetic manipulation is applied
to the genetic algorithm to continually add new sets of fixed
control strategies to the CS-PBNp through control inputs.
These strategies are evaluated by PRISM to obtain the optimal
fixed control strategy.

A. THE REDUCTION FROM INFINITE-HORIZON CONTROL
TO THE STEADY-STATE REWARD
The expected total cost solution under infinite-horizon
control is reduced to the calculation of the steady-state
reward [11], the attributes of which can be expressed by
the probabilistic computation tree logic (PCTL) state for-
mula R∼r [S], which is used to solve the system’s long-run
average expected reward.

Consider a discrete time Markov chain D = (S,P,L),
where S is a finite set of states, P is the transition probability
matrix, and L is a label function. A reward structure [11]
on this chain can be expressed as a two-tuple r = (ρ, τ ),
where ρ : S × S → R≥0 represents a status reward
function that sets a reward value for the status of each time
step and τ : S × S → R≥0 represents a transition reward
function that sets a reward value for the state transition on
each time step. This reward structure can be used to extend
theDTMCmodel. UsingExpD(s,X ) to represent the expected
value starting from state s on the DTMC model based on
the reward attributes X, the respective calculation procedures

for cumulative and steady-state reward attributes are given as
follows:

ExpD
(
s,XC≤k

)
0 if k = 0
ρ(s+(

∑
s′∈S P(s, s

′)·(τ (s, s
′

)

+ExpD
(
s
′

,XC≤k−1
)
)) if k 6= 0

(3)

ExpD (s,Xs) = lim
k→∞

1
k
ExpD

(
s,XC≤k

)
(4)

According to the above definition, the model can check the
steady-state reward attributes obtained by setting the reward
value of the transition reward function τ (s, s

′

) to zero and
using the state reward function ρ(s) to represent the control
cost function C (X (t) , u (t)) to solve the expected total cost
defined under Equation 1 for infinite-horizon control, i.e., the
total expected cost generated by adopting a specific fixed
control strategy. Note that, in practice the control costs are
not related to time.

The S operator from PRISM [12] can also be used to
infer the steady-state (long-term operation) behavior of a
model. In this case, the steady state probability attribute is
expressed by the formula S bound [prop], which if true
indicates that the long-term probability of being in a state
satisfying the property prop satisfies the requirement of the
boundary value bound . Using the steady state probability
property formula, it is possible to determine the impact of
adopting a specific fixed control strategy on the long-term
behavior of the CS-PBNp.

B. MODELING OF FIXED CONTROL STRATEGY
Here, we provide a simple example based on the preced-
ing analysis. For a CS-PBNp model with two Boolean
nodes (x1, x2), control input u, switch probability q = 0.3,
and probability of interference p = 0.1, the dynamic equation
of the network is defined as follows:

x1 (t + 1) =

{
x1 (t) ∨ u (t) c(1)1 = 0.3

x1 (t) ∨ x2 (t) c(1)2 = 0.7
(5)

x2 (t + 1) =

{
x1 (t) ∨ ¬u (t) c(2)1 = 0.2

x2 (t) c(2)2 = 0.8
(6)

The PRISM modeling code for building a CS-PBNp that
contains the specific fixed control strategy π1 given by
π1 (00) = 0, π1 (01) = 1, π1 (10) = 0, π1 (11) = 1 is
shown in Figure 1.

In the above code, line 1 ensures that the system’s feature
model is a discrete-timeMarkov chain (DTMC). In lines 2–5,
the Boolean functions of the network are translated according
to the rules of equivalence, while lines 6–9 give the respec-
tive control decisions specified by π1. Module ‘‘SWITCH’’
(lines 10–13) ensures that the context switch s changes to
states 1 and 0 with probabilities 0.3 and 0.7, respectively.
In module ‘‘PER1’’ (lines 14–17), the random disturbance
event per1 changes to states 1 and 0 with probabilities
0.1 and 0.9, respectively. In module ‘‘NODE1’’ (lines 18–27)
the migration rules for the state of the Boolean node x1
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FIGURE 1. The code of PRISM modeling of CS-PBNp containing stationary
control policy.

are implemented. In the command statements of NODE1
(lines 21–23), the specific fixed control strategy π1 is
implemented as the condition of state transition, while line
24 ensures that the state of the Boolean node x1 remains
unchanged when the state transition conditions do not satisfy
the requirement of π1 (the code for Boolean node x2 is similar
to that for x1). Lines 28–32 implement the transformation
rules that control the value of the control input u in themodule
‘‘input’’, while lines 33–36 implement the transformation
rules for the value of the variable pu, which is used to record
the value of u at the previous instant, in the module ‘‘preu.’’

The state reward function in the reward structure of
PRISM is used to describe how the control cost function
C (X (t) , u (t)) is defined in the infinite-horizon optimization
control. The PRISM modeling code shown in Figure 1 sets
the network control cost to 1. For states [0,0], [0,1], [1,0],
and [1,1], the cost values are set to 0, 2, 4, and 6, respectively,
when pu = 0 to delineate [0,0] and [1,1] as the most and
least desirable states, respectively. These settings are used to
define the reward structure shown in Figure 2.

In the above PRISM code, the reward values set in
lines 2, 4, 6, and 8 indicate the expectation degrees of

FIGURE 2. Code for PRISM modeling of reward structure.

different states, while those in lines 3, 5, 7, and 9 consider the
costs of control based in terms of the respective expectation
degrees. Here, the PCTL formula R = {‘‘cost’’} =?[S]
is used to solve for the steady-state reward attribute on the
DMTC model reflecting the expected total cost of adopting
the fixed control strategy π1 under infinite-horizon control.
This attribute is automatically calculated by the probabilistic
model checking algorithm to have a value of 2.14. In addition,
the steady state probability attribute formula S =?[x1 =
0&x2 = 0] is used to obtain the probability (calculated here
to be 0.43) that the network remains in state [0,0] for an
interval of suitable length under strategy π1.

C. OPTIMAL FIXED CONTROL STRATEGY
OF GENETIC ALGORITHM
In the subsections above, the expected total cost produced
by adopting a specific fixed control strategy was obtained
through model checking of the steady state reward attributes
in PRISM. However, in the infinite-horizon optimization con-
trol problem, an optimized fixed control strategy is used to
minimize the expected total cost. To obtain the optimal fixed
control strategy and optimal total expected cost, we use a
process combining a GA with PRISM methodology. In the
following, we provide a detailed description of the algorithm
used in the implementation process.

1) INITIALIZE THE POPULATION
For a CS-PBNp with n nodes and m control inputs, the fixed
control strategy π determines the value of each control
input ui for each state i ∈ {1, 2, . . . ,m}. Accordingly, the
value of ui can be encoded into a binary sequence of length
2n given by pi = (i0, i1, i2, . . . , i2n−1), ij ∈ {0, 1}, 0 ≤ j ≤
2n − 1. The value of each position in the binary sequence
corresponds to the value of the respective control input ui
from among the 2n states of the network. The network status
is sorted from [0, 0, . . . 0] to [1, 1, . . . , 1]. A fixed control
strategy that contains m control inputs is encoded as a two-
dimensional matrix P = [p1, p2, p3, . . . , pm]T in which
the value of each column indicates the value of all control
inputs on its corresponding network state. In the process
of initialization, a population POP = [P1,P2,P3, . . . ,PN ]
comprising N fixed control strategies P (popsize = N) is
randomly generated. Each individual in the population
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represents a feasible solution to an infinite-horizon optimal
control problem.

2) CALCULATE INDIVIDUAL FITNESS VALUES
The fitness function of a GA, which is also called the eval-
uation function, is used to assess the excellence degree of
each individual within a population. The fitness value of a
given individual usually takes on a value of the objective func-
tion defined under the optimization problem. In the infinite-
horizon optimization control problem, the objective function
of optimization is the optimal expected total cost as defined
in Equation 2. To calculate the fitness value of each fixed
control strategy Pi within the population POP, each Pi is first
replaced with a PRISM model of the CS-PBNp with a fixed
control strategy. That is, the formula Pi is expressed as a
fixed control strategy under the PRISM model and the PCTL
formula R = {‘‘cost’’} =?[S] is then model checked to obtain
the value of steady state reward as the fitness value of Pi. This
fitness value also represents the expected total cost generated
by taking the fixed control strategy Pi.

3) SELECTING OPERATION
The selecting operation in a GA selects, with a certain proba-
bility, several individuals from a current population based on
their respective fitness values. From the popsize individuals
within a population POP, the individual that can minimize the
objective function is found through the use of the roulette
selection method, which retains some individuals with low
fitness values for as long as possible. The roulette selec-
tion method involves first summing the fitness values of
all individuals within a population to obtain a total fitness
value and then dividing each individual’s fitness value by
the total fitness value to produce their fitness rate, which is
regarded as that individual’s probability of being chosen. This
is specifically calculated as follows:

expected (P) = total_fitness (POP) /fitness(P) (7)

selectp(P) = excepted(P)/total_excepted(POP) (8)

where expected is the expected value, fitness is the fitness
value, selectp is the selection probability, total_fitness is the
total fitness value, and total_excepted is the total expected
value. Following the selecting operation, the retained fixed
control strategy with the smallest fitness value is used to
generate a new population POP′ and is transferred to the next
genetic operation, which is applied to a population of the
original size.

4) CROSSOVER OPERATION
The crossover operation in a GA is the key to maintaining
population diversity. In this operation, two parent individuals
are randomly selected with specific probabilities from the
overall population and then, in accordance with specified
exchange rules, subjected to cross-gene at a certain position
to generate two new offspring individuals. In the present
application, two fixed control strategies from the population
POP′ are selected with a predetermined crossover probability

pc to execute popsize× pc uniform crossover operations.
Following each execution of the crossover operation, two new
fixed control strategies are generated and used to replace the
original fixed control strategy. At the end of this process,
a new POP′′ is generated and passed on to the next genetic
operation.

5) MUTATION OPERATION
The mutation operation in a GA is used to induce a gene
mutation in each parent within a population by changing the
gene value, with a probability based on a specified muta-
tion rule, at a certain position in all parent individuals. New
offspring individuals are then generated. In the proposed
method, the Exchange Mutation operation is applied with a
predetermined mutation probability pm to each fixed control
strategy within the population POP′′. newly generated fixed
control strategy. In this process, each original fixed control
strategy is replaced by its mutated version, and a new POP′′′

is generated and passed on to the next genetic manipulation.
The selection, crossover, and mutation operations

described above are repeated until the following two con-
ditions hold: (1) the maximum iteration number, Max gens,
exceeds the set threshold; (2) the optimal solution obtained
from the current population remains the same, that is, the
optimal solution converges.

IV. CASE STUDY
In this section, we describe the results of applying our pro-
posed infinite-horizon optimization control method to a real
gene regulatory network, the WNT5A network. Through
analysis of the experimental results, the proposed method is
validated.

A. WNT5A NETWORK
TheWNT5A network [13] is a gene regulatory network asso-
ciated with melanoma. Biological experiments have revealed
that increasing the concentration of the WNT5A gene can
directly enhance the metastasis ability of cancer cells in cell
lines and induce cancer cell metastasis. These experimental
results suggest that the metastasis of cancer cells can be sub-
stantially reduced by down-regulating the concentration of
the WNT5A gene. To solve the infinite-horizon optimization
control problem in this context, we constructed the following
model of context-sensitive probabilistic BNs with perturba-
tion for the WNT5A network:

x1 (t + 1) = ¬x6 (t)

x2 (t + 1) = (¬x2 (t) ∧ x4 (t) ∧ x6 (t)) ∨ (x2 (t)

∧x4 (t) ∨ x6 (t) ))

x3 (t + 1) = ¬x7 (t)

x4 (t + 1) = x4 (t)

x5 (t + 1) = ¬x7 (t) ∨ x2 (t)

x6 (t + 1) = x3 (t) ∨ x4 (t)

x7 (t + 1) = ¬x2 (t) ∨ x7 (t) (9)
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Where x1 represents the concentration of WNT5A and
x2, x3, x4, x5, x6, and x7 indicate the concentrations of the
pirin, S100P, RET1, MART1, HADHB, and STC2 genes,
respectively.We chose x2 as the control gene in theWANT5A
network and obtained a CS-PBNp model by using a com-
bination of synchronous and asynchronous updates [14] to
expand its PBN dynamically to four BNs with respective
probabilities of construction of [0.35,0.15,0.35,0.15].We also
set the context switching probability to q = 0.1 and the
probability of random interference events to p = 0.2.

B. EXPERIMENTAL RESULTS AND ANALYSIS
For this CS-PBNp model of the WNT5A network, we set the
states satisfying x1 = 0 and x1 = 1 as the most expected and
unexpected network states, respectively. The control cost was
set to 1. The PRISM code of the resulting reward structure is
given in Figure 3.

FIGURE 3. PRISM code of reward structure of CS-PBNp model of WNT5A
network.

Following the modeling rules summarized in Section 3.2,
the steady-state reward formula R = {‘‘cost’’} =?[S] was
used to solve the total expected cost of the fixed control
strategy as the fitness value for each individual within the
GA solution space. Pal et al. [6] demonstrated that for a
Markov chain with ergodicity the calculation of expected
total cost will be independent of the initial state of the net-
work. In a CS-PBNp, the impact of random interference
events can impose ergodicity to the network state in this
manner, resulting in a network with a steady state distribution

following long-term evolution. Therefore, it was not neces-
sary to consider the respective initial states of the network in
this experiment. We set the population size to 20, the maxi-
mum number of iterations to 600, the crossover probability to
0.8, and the mutation probability to 0.1. Because the GA does
not always find the optimal solution, we repeated it 30 times
to obtain our experimental results.

Figure 4 shows the optimized fixed control strategy
obtained by GA, where the state number on the x-axis is
used to indicate the decimal value corresponding to the actual
binary state value. The total number of states is 27= 128, with
state values ranging from [0, 0, 0, . . . , 0] to [1, 1, 1, . . . , 1].
The red and blue circles indicate where the control inputs
are u = 1 and u = 0, respectively. Based on the obtained
optimized fixed control strategy, the total infinite optimal
expected cost is 1.69. Through model checking of the steady-
state probability attribute formula S =?[x1 = 0], we found
that when the network state satisfies x1 = 0 the steady-state
probability is 0.67.

Figure 5 shows the steady-state probabilities that the net-
work is in various states under the effect of the optimized
fixed control strategy shown in Figure 4. With an infinite
horizon of optimal control set, the status numbers from
0 to 63 belong to the expected network status while those
from 64 to 127 belong to the unexpected network status.
Figure 6 shows the steady-state probabilities that the network
is in various states without any control. When no control
strategy is adopted, the expected cost of the infinite-horizon
is 1.87; when the network state satisfies x1 = 0, the steady
state probability is 0.59, which is smaller than the steady state
probability obtained by adopting the fixed control strategy.

By comparing the experimental results in Figures 5 and 6,
it is seen that adopting the optimized fixed control strategy
can reduce the probability that the WNT5A network remains
in an unexpected state for a long time and increases the prob-
ability that it can be moved to an expected state, i.e., a state

FIGURE 4. The Optimized stationary control policy.
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FIGURE 5. Steady-state probability distribution applying a optimized stationary control policy.

FIGURE 6. Steady-state probability distribution without applying a control policy.

satisfying x1 = 0. This corresponds to reducing the ability of
cancer cells to metastasize if the goal of an infinite-horizon
optimal control is met. If, instead, the method of exhaustive
traversal is used to find the most accurate solution to the
problem, the search scale of the solution explodes to 2128,
which in practice is not feasible. Thus, the proposed method
represents an effective approach to solving large-scale search
problems.

V. RELATED WORK
In recent years, much in-depth research has been conducted
to explore the probabilistic BN optimization control problem,
resulting in many feasible solutions, including the matrix
half-tensor and probability dynamic programming methods.
However, these methods often require users to compute a
large number of state transitions, making it difficult to build
and analyze network models. Model checking is an auto-
matic method of formal verification through the use of for-
mal modeling languages that can accurately and flexibly
describe network models and apply temporal logic to express
their behavior, At present, the probability model checker
PRISM [15] is used to verify the reachability and security of
probabilistic Boolean control networks. However, the effects
of stochastic disturbances in probabilistic BNs have not

been considered [16], and there is to date no method for
applying probability model checking to automatically solve
the optimal control problem

Datta et al. [10] defined the objective function of the finite-
horizon optimization control problem of probabilistic BNs
and proposed using a probabilistic dynamic programming
algorithm to accurately solve the optimal control strategy.
Pal et al. [6] explored context-sensitive probabilistic BNs
in the context of the infinite-horizon optimization control
problem and used discounted- and average-cost formulas to,
respectively, solve the minimum expected total cost and
obtain the stationary control policy. Yang et al. [17] and
Ching et al. [18] proposed the application of a GA to approx-
imate the finite-horizon optimization control problem of a
probabilistic BN and identified the hard constraint condition
in the control strategy, namely, that the number of control iter-
ations is limited. Wei et al. [19] used a hybrid model combin-
ing PRISM with a GA to solve the CS-PBNp optimal control
problem, although their main objective was to solve the prob-
lem of finite-horizon optimal control. Mizera et al. [20], [21]
proposed a tool—ASSA-PBN—for the modeling, simula-
tion, and analysis of probabilistic BNs. ASSA-PNB applies
an efficient statistical method to calculating the steady-state
probabilities of a large PBN. Meanwhile, Mizera et al. [21]
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proposed using a GA as a parameter estimation algorithm to
calculate probabilities in the context of a BN control problem.

VI. CONCLUSIONS
In this paper, we proposed an approach to solving the
CS-PBNp infinite-horizon optimal control problem by com-
bining a GA with the PRISM probability model checker.
The proposed method first reduces the solution of the total
expected cost defined under the infinite-horizon control to
the calculation of the steady-state reward on a discrete-time
Markov chain. The specific fixed control strategy is then
added to the PRISM model of the CS-PBNp with control
inputs. A reward structure is used to represent the control
cost functions defined in infinite optimization control and the
infinite-horizon optimization control is found by encoding
each fixed control strategy as a two-dimensional matrix of
structural characteristics represented by an individual in the
GA solution space. The respective fitness values are then
calculated in PRISM, and the GA iteratively performs various
genetic operations on the solution space to obtain the optimal
total expected cost and the optimized fixed control strategy.
The results of a number of experimental evaluations applied
to a real biological network model validated the proposed
approach.
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