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ABSTRACT In this paper, an alternative approach for topology optimization of truss-type structures is
presented. The structural design is translated to a constrained discrete optimization problem based on weight
reduction, with performance considerations included in its objective function. The constraints are related to
the maximum global stress and to the individual strain energy density. Each member has a standard profile
and its absence/presence in the structural representation is implemented with a binary coding; in order to
avoid singularities while in the structural analysis, a scheme for simulating the effects of missing members
by means of the birth/death element technique is applied. An energy-based approach is employed to detect
those elements that not contribute to the overall stiffness. The optimization problem is solved by applying
a Modified Binary Differential Evolution algorithm, and the graph theory is applied in parallel with the
optimization process to discard unfeasible structures and reduce execution time. The structural performance
is evaluated by an execution-time static analysis based on the finite-elementmethod, considering the behavior
in a 3-D environment and using commercial software to reduce the uncertainty in this step. The presented
proposal is implemented in ANSYS APDL, using as case studies two different structures with a specific load
case. The obtained results show a volume reduction of more than 40% off the initial structures, indicating
that the proposed approach can be a high-quality tool for structural design in real engineering problems.

INDEX TERMS Truss design, FEM, topology optimization, birth/death element, metaheuristic.

I. INTRODUCTION
Trusses are 2D or 3D structures composed by lineal members
connected to joints for supporting loads with compression
or stress [1]. They are used in a wide variety of engineering
applications and many structures in the real world can be
modeled with them, such as roofs, bridges, electric lines
towers, among others [2]. These structural systems employ
trusses because of their cheapness and simple processes of
manufacture, transport, and storage. Normally, they include
several elements characterized by diverse parameters: length,
cross-section area, shape, material, etc.

Structural optimization is the design and development of
structures to get the maximum profitability of the avail-
able resources [3], considering the material limitations, envi-
ronmental impact, and economic competition that generate

requirements of weight, cost, and reliability [4]. A general
difference in the optimization of truss design with respect
to other types of structures is the application of the Finite
ElementMethod (FEM) for the structural analysis. Generally,
the number of state variables in truss problems is limited; so,
it is not required an advanced FEM analysis. The structural
optimization for trusses is important because it can be used
to simplify the development of new concepts or prelimi-
nary models, for their further analysis and detailed design.
From the optimization point of view, the difficulty of truss
design problems increases when more complex structures are
addressed, adding design variables or constraints. Usually,
the weight of the structure is considered as the base for
structural optimization [5], with constraints such as displace-
ment, deflection, profitability, stress, critical buckling load,
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and natural frequency varying in dependency to the specific
optimization problem.

The optimal design of structures can be determined as
a combination of up to four optimization problems, cor-
responding to issues of material, dimension, topology, and
geometry. The material optimization is focused on the prop-
erties of the manufacturing materials, while in dimensional
optimization the cross-section areas are optimized as is also
optimized the thickness of the continuous structures, to obtain
the minimum total weight [6]. The topological optimiza-
tion is related to the connectivity or to the problem of
absence/presence of elements. Finally, the geometry opti-
mization determines the optimum nodal coordinates, assum-
ing a fixed topology [7]. The optimization of geometry and
topology has received less attention, although them can con-
siderably improve the design process [25].

The first work on topological optimization was presented
by Michell et al. [8] more than a century ago, determining
the solutions for lighter trusses and introducing the general
theory of this field. A number of works were developed in the
subsequent decades, mainly in the continuous-problem area.
The works on topological truss optimization with discrete
variables are less frequent since the application of mathemat-
ical methods to these problems is a complex task [9].

Classic methods have been applied for the structural
optimization, such as sensibility analysis or approxima-
tion concepts, which provide efficient solutions to solve
truss optimization problems; however, as stated before they
present deficiencies when addressing big and complex
problems [17], [18], and specially they are inefficient for
representing the connectivity between elements. The non-
gradient and metaheuristic methods such as evolutive algo-
rithms have demonstrated their ability to search for the global
optimum in these problems [3]. The best-known approaches
for defining search spaces are based on the use of ground
structures [12], which are formed by all possible connections
between nodes and are controlled by the length of the ele-
ment. In this method, the elimination/inclusion of members
is developed sequentially until achieving the design objective
[13], [14]. Truss Topology Optimization (TTO) faces two
main drawbacks: the possibility of being trapped in a local
optimum grows due to the high number of members in the
structure; and it can lead to isolated or singular solutions
since the stress constraints are not applied over the eliminated
members [15].

Metaheuristics have been successfully implemented as an
alternative to mathematical methods, for solving structural
problems of optimum design with complex constraints and
non-convex objective functions, with continuous, discrete
and mixed variables [19], [20]. The element-placement prob-
lem in rigid-node trusses is a discrete case; the number of
possible variants depends on the number of nodes and is
quite considerable even in the case of small-scale struc-
tures. A natural strategy for TTO is the use of Genetic
Algorithm (GA), adapting the solution to the constraints
and objective function [16]. Algorithms such as Differential

Evolution (DE) [22], Particle Swarm Optimization (PSO)
[23], Ant Colony Optimization (ACO) [24], among others,
have produced quality results in the solution of structural
problems.

Mashayekhi et al. [21] used a two-step method for topol-
ogy optimization based on two-layer mesh reliability, apply-
ing the Mobile Asintota Method (MAM) and ACO. The
results of MAM are used to enhance ACO through four
modifications based on the importance rate of the topology,
finding the stress types in elements, changing the threshold
of cross-sections and modifying the process to generate ran-
dom structures. Deb and Gulati [10] proposed a method for
TTO with a modified genetic algorithm to solve the weight
minimization problem by determining the cross-section areas
of the members subject to geometrical, stability, stress, dis-
placement and size constraints. In [38], a Single-Loop Deter-
ministic Method (SLDM) was developed by approximating
deterministic constraints and using mix variables. In the
Reliability-Based Design Optimization (RBDO), problems
can be transformed into approximate deterministic optimiza-
tion cases, and be solved with a combination of SLDM
and an improved ED. In [39], the size, shape and topology
of spatial and planar trusses are optimized by the Fully
Stressed DesignâĂ"GreyWolfâĂ"Adaptive Differential Evo-
lution (FSD-GWADE) algorithm, considering the stiffness
matrix properties for stability checking. A penalized objective
function is employed to handle the displacement and stress
constraints.

Shakya et al. [40] used a ground-based representation to
detect unwanted elements in trusses, with an element-removal
algorithm to translate the representation code to its corre-
sponding geometrical form and mapping it in kinematic sta-
ble solutions. A multi-population PSO is employed to solve
the truss topology optimization problem. In [41], the strain
energy of trusses is minimized with a limited amount of
nodes by applying a simple heuristic based on the alterna-
tive direction method of multipliers. An overlapping-member
treatment is implemented to supply a chain (a set of mem-
bers) replacing the corresponding nodes by a simple longer
member. Cui et al. [42] developed a two-level approximation
method for truss topology optimization, with local member
buckling constraints on member intersections and overlaps,
considering this phenomena in the objective function. The
mix variable optimization problem is solved by GA, and the
structure is replaced by explicit approximation functions in
the execution process.

Most of the work on optimum structural design is related
to the optimization of cross-sections solving a standard
problem, based on weight and strain energy and subject to
response constraints. The topology optimization is obtained
by discarding members whose cross sections are lower than
a minimum. Elements cannot be eliminated from the struc-
ture if they are subject to buckling constraints [11]. The
structural analysis is carried out by an approximate func-
tion or by assembling the global stiffness matrix given the
element matrix. Other disadvantage is the necessity to apply
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special treatments for avoiding overlapped members and
unstable element cases; in large-scale problems, the mem-
bers are grouped to assign the same cross-sections reduc-
ing the number of design variables. Some methods improve
the algorithm convergence by only considering the cross-
section area, without taking into account the transversal shape
(square, circular, etc.); in other approaches, the FEM results
are approximated or require more complex considerations for
overlapping elements or unstable cases.

This work presents a truss-design topological optimization
based on an alternative approach, whose objective is to pro-
duce the lightest structure. It considers the present elements
and evaluates the structural performance by energetic media,
fulfilling the response requirements for a load case. Geometry
criteria based on graph theory is applied for analyzing the
load paths by means of the adjacency matrix, reducing the
computing time by discarding non-feasible configurations.
The Birth/Dead Element technique is employed for the repre-
sentation of necessary/unnecessary elements and their condi-
tions in the FEMmodel. Unnecessary elements are identified
by their Strain Energy Density SED response, that is lower
than a established threshold. The proposed methodology was
programmed in FORTRAN, while the performance analy-
sis was obtained by a static subroutine based on the Finite
Element Method; both procedures were implemented in the
Programming Design Language environment of ANSYSr.
The design problem is translated to an optimization case
that in turn is solved by the Modified Binary Differential
Evolution algorithm. Two well-known case studies were used
to verify the performance of the proposal, analyzing loaded
structures and obtaining their minimum weight while still
supporting the established loads. The results show a weight
reduction of 42.78% and 91.81% off the original weight,
indicating that this approach can be used in the design of 2D
and 3D structures for real engineering problems, such as the
manufacturing of large-dimension passenger-transport vehi-
cles (buses, trains, ships, etc.)

This work is organized as follows: Section 2 describes the
proposed approach, detailing both the problem conversion of
the design problem to a topological optimization case and
the applied solution method. The ANSYSr implementation
of the proposed approach is presented in Section 3, while
Section 4 shows the cases studies and the analysis of the
corresponding results. Finally, Section 5 includes the conclu-
sions and future work.

II. PROPOSED APPROACH FOR STRUCTURAL
TOPOLOGICAL OPTIMIZATION
The main objective of this approach is the weight reduction
of a reticular structure by eliminating redundant elements, but
still satisfying the original operational constraints. The initial
structure is defined as a discrete media, knowing the number
of elements n and the connections between them.
There are different options to represent design variables

in structural optimization: binary string coding, pre-shape
generation, and graph translation [26]. The first two methods

are commonly used in topological optimization, converting
each element in a variable and then modifying its state in the
structure. The binary string coding was implemented in this
proposal, expressing as 1/0 if an element is active/inactive.
Thus, the design variable vector corresponds to expressions
(1) and (2).

Ex = x1, x2, . . . . . . , xn (1)

xi ∈ (0, 1) (2)

It is possible to focus the problem on the elements, taking
into account that their characteristics are similar and the total
volume VT of the truss depends on them, as is shown in
Eq. (3). The gravity force and the material density are consid-
ered as constant, and the design problem is of a topological
character (geometry). Therefore, the weight directly depends
on the Number of Active Elements NEA in the structure,
as expressed in Eq. 4:

VT =
n∑
i=1

vi · xi (3)

NEA = N (Ex) =
n∑
i=1

xi; ∀ xi = 1 (4)

If the structures have similar characteristics and predefined
lengths, it is difficult to differentiate them by a simple element
count; for this reason, the Strain Energy Density SED is
applied as a structural responsemeasure [27], making it possi-
ble to quantify the strain energy (flexibility) per area/volume
of material to determine which members are necessary. Two
conditions must be met:

1) The structure has to be fully stressed with an equitable
distribution, that is, the present elements must have a
similar response.

2) The strain energy must be decreased for a stiffness
increment.

For the first condition, it is proposed that the differ-
ence between the most stressed element (SEDmax) and
the less stressed member (SEDmin) must be decreased to
search a workload equilibrium between all present elements;
the aforementioned condition is shown in expression (5).
The second condition is valid when the modifications are
applied over an initial structure; however, when the optimiza-
tion starts from a set of possible structural configurations,
the stiffness in the worst case tends to zero; for this proposal,
the SEDmax must be decreased to keep the stiffness according
to expression (6). The objective function of the optimization
problem is presented in expression (7); the parameters α1,
α2, α3 are normalization values, since the terms in the linear
combination have different ranges of magnitude, depending
on the specific load case.

min U (Ex) = SEDmax (Ex)− SEDmin (Ex) (5)

min K (Ex) = SEDmax (Ex) (6)

min f (Ex) = α1 · N (Ex)+ α2 · U (Ex)+ α3 · K (Ex) (7)
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A. DESIGN CONSIDERATIONS
Truss design is subject to a set of requirements to ensure that
the designed structure supports the required load. The struc-
tures must meet basic criteria such as geometry, maximum
effort, and displacement, as well as additional criteria of man-
ufacturing, buckling and frequency response, derived from
the design problem and the operation ranges. This proposal
only considers the basic issues; the first group (geometric
character) makes it possible to determine if the structure
will be analyzed by FEM, reducing the computation time.
By checking the topology of the structure it can be determined
if there are connections between the base nodes (load and
support nodes); in other words, it is verified that the structure
is able to transmit the applied force through a set of elements
to the support nodes. One way to corroborate this condition
is by graph theory [28], as seen in Fig. 1. Variables a, b,
and c store a predefined value that is used to indicate if the
constraints are not fulfilled.

FIGURE 1. Load path checking by graphs.

It is verified that there is at least one continuous connection
between the loading points and the fixed support points,
taking the nodes as vertices and the members as edges. The
adjacency matrix is use to verify the load paths, establishing
initial points (load nodes) and arrival points (support nodes).
If there is at least one valid connection, then q = 1 and
the structure is candidate to be analyzed; on the other hand,
q = 0 and the structure is penalized with a high value in
its variable a, as shown in expression (8), preventing the
structural analysis to be performed on an inviable structure.

a =

{
1E12 if q = 0
0 if q = 1

(8)

Next, it is considered the maximum stress σmax , commonly
used to measure the structural performance, establishing that
the maximum stress in a structure must not exceed the admis-
sible stress σad [29], as indicated in equation (9).

σmax < σad (9)

The allowable stress is a relation between the selected
material and a safety factor fs established by the designer,

as in Eq. (10). For this case, the global maximum is con-
sidered, since the stress per element is less than or equal to
this value. If the maximum stress is greater than the design
stress (allowable), the variable b stores the difference between
them, making it possible to verify how deficient a geometry
is, as indicated in expression (11).

σad = σu/fs (10)

b =

{
σmax − σad if σmax > σad

0 if σmax ≤ σad
(11)

By means of the SED is possible to identify the active
elements in the structure (xi = 1) that do not contribute
to the stiffness (discardable members); for those elements,
their SED is in the range [0,1], since the element is a direct
connection between support nodes. It also applies for ele-
ments isolated from the main geometry and those that are not
connected to other(s), as shown in Fig. 2. This process ismade
by sorting the SEDi values in descending order. It is proposed
that when this performance is detected, these elements are
discarded from the total SED value SEDT of the structure,
accordingly to expressions (12) to (14).

SEDT (Ex) =
n∑
i=1

SEDi · xi; i = 1, 2, . . . , n (12)

h = SEDT (Ex)− SEDi (13)

c =

{
0 if SEDi > 1;
h if SEDi < 1;

(14)

FIGURE 2. Necessary/unnecessary element check.

Finally, the nonlinear optimization problem is established
in expressions (15) to (19) for the design of a structural
system, based on volumeminimization and considering stress
and energy constraints:
Find

−→x = [x1, x2, . . . . . . , xn]T (15)

to minimize

f (Ex) = α1 · N (Ex)+ α2 · U (Ex)+ α3 · K (Ex) (16)
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subject to

g1
(
−→x
)
= σmax − σadm ≤ 0 (17)

g2
(
−→x
)
= SEDi − 1 ≤ 0 (18)

h1
(
−→x
)
= q− 1 = 0 (19)

B. DIFFERENTIAL EVOLUTION ALGORITHM
The algorithm of Differential Evolution (DE), proposed by
Storn and Price [30], has proved to be one of the most
efficient global search methods to solve continuous opti-
mization problems [31]. DE has been successfully applied
on diverse fields, including constrained optimization, multi-
objective problems, and the solution of real engineering
design cases [32]. The main idea behind DE is the creation of
new test candidates as offspring of a base population, trying
to generate better solutions; it| iterates through the popula-
tion and creates the test candidates by vectorial differences,
applying operations of mutation and crossover. DE has three
control parameters: scaling factor F, population size NP, and
crossover factor CR [33].
The algorithm generates an initial population randomly,

and themutation aims to generate variations for displacing the
solution vectors toward the correct direction and magnitude;
there are different versions of DE taking into account how the
mutation is implemented. The simplest form is ED/ran/1/bin,
represented in Eq. (20), where F is a value in the range [0,1]
that controls the vector difference, with r1 6= r2 6= r3 6= i:

vi,G = xr1,G + F ·
(
xr3,G − xr2,G

)
(20)

The crossover or recombination merges the information
from the parent and mutant vectors into the descendant. Each
element of the child vector is taken from the original or the
mutated vectors, and jrand is used to ensure that at least one
parameter of suchmutation is considered, whereCR is a value
in the range [0,1], as shown in Fig. 3.

FIGURE 3. Selection of variables between original and mutated vectors.

The selection is carried out by means of a tournament,
where both the father and offspring are compared based on
their aptitude and the best survives to the next generation,
as shown in expression (21).

−→x i,G+1 =

{
−→ui,G if f

(
−→ui,G

)
< f

(
−→xi,G

)
−→xi,G other case

(21)

III. IMPLEMENTATION
A square profile under the UNE-EN-10210-1-2007 standard
is assigned to every member in the structure; its characteris-
tics are shown in Table 1.

TABLE 1. Structural profile characteristics.

Although the topologies are represented in binary form
indicating presence/absence, a different consideration for
eliminating/adding elements is applied, since the elimination
introduces inconsistencies in the static analysis. For this rea-
son, a Birth/Dead Element strategy is applied [34]. Active
elements are given the label ealive, while the inactive ones
are labeled as edead and deactivated from the truss, so they
are not considered for the structural analysis; however, they
are only suspended (standby), as shown in Fig. 4, and can
be activated if required. The stiffness of edead members is
reduced by a factor, so the equations that govern the system
can be calculated; for this work was considered the factor
proposed by ANSYS (1E-6). Loads associated with edead
still appear in the load vector although they are set to zero;
similarly, mass, tension, damping, specific heat and other
effects are set to zero. The mass and energy of the deactivated
elements are not included in the quantification of the model,
and neither are considered in the FEM analysis.

FIGURE 4. Alive/dead element.

A set of initial structures is generated, and each variable
is randomly assigned a value of 1/0, corresponding to the
label ealive/edead (see Fig. 5). Subsequently, each structure
is evaluated by a strategy that allows to differentiate between
feasible/unfeasible trusses; if the generated structure fails to
fulfill the constraints, the value of its Constraint Violation
CV calculated by expression (22) is greater than zero and
consequently, the objective function OF is penalized with
a high-value P, as indicated in expression (23). Otherwise,
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FIGURE 5. Initial population exemplifying for Np=4.

if CV=0, OF is calculated by expression (16).

CV =


0 no constraint violation
a connection constraint
b+ c stress and SED constraint

(22)

OF =

{
f
(
−→x
)

if CV = 0
P if CV > 0

(23)

A. MODIFIED BINARY DIFFERENTIAL EVOLUTION MBDE
MBDE [35] is a version of Differential Evolution used when
the design variables are of discrete nature, such as in this
implementation where the absence/presence of elements is
represented with binary integer values. As mentioned before,
the mutated vector is created by randomly choosing three
different vectors r1, r2 and r3, and then a modification for
binary handling is applied. The algebraic operations are per-
formed based on the behavior of logical gates: XOR gate
(⊕) is applied for the difference between vectors, while the
multiplication is implemented with an AND gate (⊗), and
the sum uses an OR gate (�). The complete expression is in
Eq. (24), where F is dynamically adjusted per generation as
indicated in expression (25).

vi,G = xr3,G � (F ⊗ ( xr1,G ⊕ xr2,G )) (24)

F = round(rand(0, 1)) (25)

The generation of the child vector is carried out if the con-
ditions of CR and jrand are fulfilled, combining the values of
the original and the mutated vector (see Fig. 6). The selection
is by a tournament, comparing father and child by means of
the rules of Deb [36], that are as follows: 1) between two
feasible individuals the one with better aptitude is selected;
2) between a feasible and an unfeasible individual, the fea-
sible is chosen; and, 3) between two unfeasible individuals,
the one with the lower constraint violation is selected. The
pseudocode of MBED is shown in Algorithm 1.

IV. CASE STUDIES
In order to test the proposed approach, two case studies were
considered. In both cases, the problem consists of minimizing

FIGURE 6. Crossover in BDE.

Algorithm 1 MBDE

1 begin
2 Set parameters NP, CR, Gmax ;
3 Generate randomly a initial population

x0ij; i = 1, . . . ,NP;
4 Evaluate population individuals −→xi,0 computing its

OF and CV;
5 repeat
6 Define F by Eq. 25;
7 for i = 1 a NP do
8 select randomly r1 6= r2 6= r3 6= i;
9 jrand = round(rand(1,D)) (D, number of

variables);
10 for j = 1 to D do
11 create mutated vector vgij by Eq. 24;
12 end
13 for j = 1 a D do
14 create child ugij by binomial crossover;
15 evaluate child computing its OF and

CV;
16 end
17 if ugi is bettre than x

g
i (Deb rules) then

18 xgi = uij;
19 else
20 xgi = xg−1i ;
21 end
22 end
23 G=G+1;
24 until G = Gmax ;
25 end

the total weight starting from a defined initial structure,
to obtain a truss that still fulfills the design constraints. The
specific details of the case studies and their corresponding
results are presented in the following subsections.

For this work, the structure was analyzed without consider-
ing superimposed elements; so, for each element intersection,
a connection node was generated. The selected material is
structural steel ASTM A36, with a elasticity modulus E =
200GPa, Poisson’s ratio v = 0.3 and tensile ultimate strength
σu = 400 MPa; as a safety factor it was considered fs = 1.5.
The parameters α1, α2 and α3 are set to 100, 1/1000 and 1/10,

72614 VOLUME 6, 2018



M. Pedroza-Villalba et al.: Truss Topology Optimization Based on a Birth/Death Element Approach

respectively. The algorithmwas implemented on a computing
platform with an Intel Core(TM) i7@5930K 3.5 GHz proces-
sor and 32 GB of RAM DDR4, programmed in ANSYSr
APDL Release 18.1. Thirty simulations were carried out for
each case study, with the following configuration: population
Np=100, crossover Cr=0.9, and F dynamically changing
per iteration. The maximum number of iterations Gmax was
100 for the first case and 1000 for the second.

A. CASE STUDY 1 (CS1)
The structure shown in Fig. 7 is formed by fifteen elements;
this truss supports two point loads P1 = P2 = 10, 000 N
and is embedded in its leftmost ends (FS), with L=2 m. The
weight of the initial structure is W = 2, 373.34 kg, with the
profile and material previously mentioned.

FIGURE 7. Structure for case 1.

FIGURE 8. Optimum topology for CS1.

Fig. 8 shows the resulting truss, which has a weight ofW =
1.358.16 kg, representing a volume reduction of 42.78% off
the original; the security factor is fs = 7.03, indicating that
the structure can support higher loads without failing. Table 2
presents a comparison between the result of method A (see
Fig. 9), applied in [37], and the proposed approach labeled
as B; as can be seen, the final truss obtained in this work
surpasses the reported results in the cited reference.

The corresponding stress of the obtained truss is σmax =
37.9 MPa, shown in Fig. 10; this value does not exceed

TABLE 2. Results for both optimization processes.

FIGURE 9. Reported optimum topology.

FIGURE 10. Truss stress distribution and SED layout.

the allowable stress, and its global SED level SEDmax is
2706.31 J/m3 with a difference between maximum and min-
imum SEDdiff of 2030.3 J/m3.
Figures 11 and 12 show the convergence of the proposed

MBDE implementation for the best value obtained after the
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FIGURE 11. Objective-function convergence graph for CS1.

FIGURE 12. Feasible-individuals convergence graph for CS1.

thirty simulations, presenting the objective function and the
feasible individuals, respectively. As can be seen in both
graphs, the algorithm has a good performance since at the
end of the iterations all its individuals are feasible.

B. CASE STUDY 2 (CS2)
The structure shown in Fig. 13 supports a point load P =
10, 000 N , and is supported on its left and right lower lateral
ends, with L = 1 m and a weight W = 3, 239.03 kg, using
the profile and material previously established.

FIGURE 13. Structure for case study 2.

The obtained result is shown in Fig. 14. The total weight
is W = 265.2 kg, representing a 91.81% of volume removed
from the original structure; in spite of being quite simple, this
geometry has a safety factor of fs = 39.45, demonstrating that
the resulting truss can support a higher load margin.

FIGURE 14. Optimal geometry for case study 2.

FIGURE 15. Stress distribution and SED layout of load case.

FIGURE 16. Objective-function convergence graph for CS2.

The stress of the resulting truss, shown in Fig. 15, is σmax =
6.76 MPa, which does not exceed the allowable stress. The
global SED level SEDmax is 84.27 J/m3, with a difference
between maximum and minimum of 0.65 J/m3, this means
that the elements have a good distribution of energy through-
out the geometry, and they are acting synergistically.

Figures 16 and 17 show the convergence of the proposed
MBDE for the mesh of the CS2, presenting the objective
function and the feasible individuals, respectively. As can be
seen in both graphs, the algorithm has a good performance,
since at the end of the iterations all its individuals are feasible.
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FIGURE 17. Feasible-individuals convergence graph for CS2.

It is remarkable that the behavior is quite similar to the
corresponding to the implemented solution for CS1, in spite
of CS2 is a much more complex problem because of its
higher mesh density, and this complexity is reflected in the
generation of feasible solutions.

V. CONCLUSIONS
This paper presents an alternative approach for topologi-
cal design of truss-type structures, by addressing it as an
optimization problem based on weight minimization, that
is solved with a metaheuristic algorithm. For this objective,
the management of necessary and unnecessary elements uses
a scheme considering alive/dead members in order to carry
out the structural analysis. The objective function is a linear
combination composed by the design goal and a performance
metric to evaluate the quality of the generated structures.
Simultaneously to the optimization process, a FEM static
analysis is applied to the best result already obtained at the
end of each cycle of the metaheuristic algorithm; by means of
a geometric constraint the computation time is reduced, since
any unsuitable structure is not analyzed. The FEM analysis is
programmed in a subroutine, so it can be executed whenever
it is required.

The metaheuristic applied for solving the optimization
problem is the differential evolution algorithm, with a series
of modifications to handle the design variables by execut-
ing the mutation process using logical gates to create the
bit differences in each chromosome of the individual. The
obtained results show feasible geometries with weight reduc-
tions of more than 40% with respect to the original trusses,
fulfilling favorably the structural requirements despite having
a lower number of elements, verifying its viability by the
FEM analysis.

The use of the Birth/Death Element strategy for identify-
ing members in topological optimization allows to analyze
structures that have no instabilities in the stiffness matrix,
unlike traditional methods that use a predefined value in
some of the element characteristics (rigidity, cross-sectional
area). Additionally, the use of the adjacency matrix makes
it possible to verify the trajectories along the structure for
the transmission of the load. The obtained results indicate
that the proposed approach can be used as a high-quality tool
in engineering applications for structural optimization tasks.

As a future work, it is considered the analysis of different load
cases applied to diverse structures, variating both the material
and the type of mesh. It is also contemplated to implement
the profile selection from a database, to determine its effect
on the final result when the size and topology of the structure
are simultaneously optimized.
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