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ABSTRACT Principal component analysis (PCA) and linear discriminant analysis (LDA) have been
extended to be a group of classical methods in dimensionality reduction for unsupervised and supervised
learning, respectively. However, compared with the PCA, the LDA loses several advantages because of the
singularity of its between-class scatter, resulting in singular mapping and restriction of reduced dimension.
In this paper, we propose a dimensionality reduction method by defining a full-rank between-class scatter,
called reversible discriminant analysis (RDA). Based on the new defined between-class scatter matrix, our
RDA obtains a nonsingular mapping. Thus, RDA can reduce the sample space to arbitrary dimension and
the mapped sample can be recovered. RDA is also extended to kernel based dimensionality reduction.
In addition, PCA and LDA are the special cases of our RDA. Experiments on the benchmark and real
problems confirm the effectiveness of the proposed method.

INDEX TERMS Between-class scatter, dimensionality reduction, linear discriminant analysis, supervised
learning.

I. INTRODUCTION
Principal component analysis (PCA) [1], [2], the classical lin-
ear dimensionality reduction method for unsupervised learn-
ing, has been widely studied and applied [3]–[7]. PCA seeks
an orthogonal mapping such that the mapped samples are
as far as possible to each other, leading to solve an eigen-
value problem. The dimension of the sample space can be
reduced by the eigenvectors corresponding to some larger
eigenvalues, and the principle component of the mapping can
be estimated by the sum of the eigenvalues corresponding
to the selected eigenvectors. It is easy to obtain a nonsin-
gular mapping by setting the principle component to 100%
in PCA, i.e., the original samples can be recovered with-
out loss of information. Generally, PCA does not suit for
classification, because PCA ignores the information from
the classes. In contrast, linear discriminant analysis (LDA)
[8], [9], another classical dimensionality reduction method,
is proposed for supervised learning. LDA hires the within-
class scatter and between-class scatter such that the mapped
samples from the same class are close to the class center and
the class centers are far away from the other class centers,

leading to solve a generalized eigenvalue problem (GEP).
LDA has also been widely studied and applied [10]–[18].

Instead of a nonsingular mapping by PCA, LDA would
obtain a singular mapping, because its between-class scatter
matrix may be singular. Some improvements were proposed
to obtain nonsingular mapping, e.g., orthogonal least squares
discriminant analysis (OLSDA) [11], orthogonal centroid
method (OCM) [13], minimal distancemaximization (MDM)
[15], maximummargin criterion (MMC) [14], fisher discrim-
inant analysis with L1-norm (L1LDA) [10], worst-case linear
discriminant analysis (WLDA) [16], and linear discriminant
analysis with worst between-class separation and average
within-class compactness (WSAC) [17]. However, OLSDA
ignores the between-class scatter, OCM and MDM ignores
the within-class scatter. They don’t use the class information
sufficiently. MMC replaces division in LDA with substrac-
tion to avoid the computation of the inverse of a matrix,
but it may obtain some mapping vectors corresponding to
negative eigenvalues, resulting in trouble for classification.
L1LDA that reduces one dimension by solving a GEP in each
iteration, WLDA and WSAC that solve many semi-definite
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FIGURE 1. Toy example: (i) original dataset includes 202 samples in R3, where ‘×’ denotes class 1 and ‘+’ denotes class 2;
(ii) dimension redundancy samples obtained by LDA in R; (iii) dimension redundancy samples obtained by RDA in R;
(iv) dimension redundancy samples obtained by RDA in R2. (a) Dataset. (b) LDA. (c) RDA in R. (d) RDA in R2.

programming problems, are often sensitive for the initializa-
tion and spend too much learning time.

In this paper, we propose a reversible discriminant analysis
(RDA) for dimensionality reduction. Similar to the LDA, our
RDA considers the within-class compactness and between-
class separation. However, a full-rank between-class scatter
matrix is defined and used in RDA, which makes the RDA
obtain a nonsingular mapping. Thus, our RDA can reduce the
sample space to arbitrary dimension, and the primal space
can be recovered by the inverse of the mapping. In fact,
the between-class scatter used in our RDA includes three
different scatters, i.e., sample-to-sample, class-to-class, and
sample-to-class. The sample-to-sample scatter used in the
PCA keeps the mapped samples discriminative to each other.
The class-to-class scatter used in the LDA keeps the mapped
class centers discriminative to each other. And the sample-
to-class scatter, which has not been used for dimensionality
reduction, keeps the mapped samples discriminative to dif-
ferent class centers. Therefore, the PCA and the LDA are the
special cases of the RDA. Our RDA solves a GEP similar to
the LDA, and it obtains a generalized orthogonal mapping,
which can be regarded as an orthogonal mapping in a new
space. Thus, the mapping vectors in the RDA can be selected
by their corresponding eigenvalues similar to PCA.

Now, we give an example to show the superiority of the full
rank between-class scatter used in RDA. In Fig. 1(i), there
are about two hundreds samples in R3 from binary classes.
Fig. 1(ii) shows the samples after reducing dimension by
LDA. Due to the mapping space’s dimension is no more
than k − 1 by LDA, where k is the class number, it is

obvious that LDA reduces the dimension of these samples
to one dimension, resulting in difficulty for classification.
Figs. 1 (iii) and (iv) show the results of our RDA on the
toy example. It is obvious that the samples by RDA overlap
in R but distinguish to each other in R2. Thus, the samples
in Fig. 1(iv) can be classified much better than in Fig. 1
(ii) or (iii) by some classification methods, e.g., GEPSVM
[19] or TWSVM [20], [21]. In addition, we also extend RDA
to kernel based dimensionality reduction. The experimental
results on benchmark and practical problems show its better
performance compared with LDA and its extensions.

The rest of this paper is organized as follows:
Section II briefly reviews PCA, LDA and its extensions;
in Section III, we elaborate the RDA; the experiments are
arranged in Section IV; finally, some conclusions are given.

II. BACKGROUND
Consider a dataset in the n-dimensional real space Rn rep-
resented by X = (x1, x2, . . . , xm) ∈ Rn×m, where xj ∈ Rn

is the jth sample with its label yj ∈ {1, 2, . . . , k}. Let ci
(i = 1, . . . , k) be the center of the ith class. Without loss
of generality, suppose the samples are centeralized, i.e., the
whole data center is at origin. Below, we give a brief outlines
of PCA, LDA, OLSDA, OCM, and MMC.

A. PCA
PCA [1] directly uses X without Y for dimensionality reduc-

tion. By the covariance matrix S =
m∑
i=1

xix>i , PCAmaximizes

JPCA(w) = w>Sw, (1)
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where w ∈ Rn is the mapping vector, leading to solve an
eigenvalue problem as follow

Sw = λw, (2)

where λ ∈ R is the eigenvalue. Note that S only considers
the relation of the samples without class information, which
is regarded as sample-to-sample scatter.

In practice, S is positive definite, and thus there are n lin-
ear independent eigenvectors which construct an orthogonal
mapping. Therefore, the samples can be reduced to arbitrary
dimension and the mapped samples can be recovered. The
contribution of eachmapping vector (i.e., the eigenvector) can
be estimated by its corresponding eigenvalue.

B. LDA
For supervised learning, LDA [8] defines the within-class
scatter matrix Sw and the between-class scatter matrix Sb as

Sw =
k∑
i=1

∑
j∈Ni

(xj − ci)(xj − ci)>,

Sb =
k∑
i=1

micic>i , (3)

where Ni is the index set of the ith class with i = 1, . . . , k .
To realize the within-class compactness and the between-
class separation, LDA maximizes the so-called Fisher
criterion [22]

JLDA(w) =
w>Sbw
w>Sww

, (4)

leading to solve a generalized eigenvalue problem as

Sbw = λSww, (5)

where λ is the generalized eigenvalue of Sw w.r.t. Sb, and
w 6= 0 is its corresponding eigenvector. Note that Sb only
considers the relation of the class centers, which is regarded
as class-to-class scatter.

In practice, LDA obtains k− 1 eigenvectors (k << n) cor-
responding to k−1 nonzero eigenvalues, because rank(Sb) =
k− 1. Thus, LDA obtains a singular mapping, which reduces
the samples into a space with the dimension no more than
k − 1, and the mapped samples cannot be recovered.

C. OLSDA
To obtain a nonsingular mapping in supervised learning,
OLSDA [11] considers the within-class compactness only by
minimizing

JOLSDA(w) = w>Sww, (6)

leading to solve an eigenvalue problem as

Sww = λw. (7)

The eigenvectors corresponding to smaller eigenvalues are
selected as the mapping vectors.

Since Sw is positive definite in practice, OLSDA can
obtain an orthogonal mapping to reduce the samples to arbi-
trary dimension. However, OLSDA ignores the between-class
separation which may cause trouble for classification. For
example, consider four samples from two classes, where the
samples are at the vertexes of a box and the diagonal two
samples belongs to the same class. Due to the two classes
share the same class center, OLSDA reduces these samples at
one point.

D. MMC
Different from LDA uses division to measure the within-class
and between-class scatters, MMC [23] uses subtraction to
measure them by maximizing

JMMC (w) = w>Sbw− w>Sww, (8)

leading to solve an eigenvalue problem as

(Sb − Sw)w = λw. (9)

Thus, MMC can obtain an orthogonal mapping.
It is worth to mention that MMC may obtain a much small

w>Sbw in (8) corresponding to negative eigenvalues from (9).
Thus, the mapped class centers would be close to each other
by the corresponding eigenvectors, resulting in trouble for
classification. By the way, Song et al. [24] improved MMC
by adding a regular parameter between two parts in (8).

III. RDA
A. LINEAR FORMATION
Before we elaborate our RDA, let us define a new between-
class scatter matrix as

S∗b =
k∑
i=1

mi
m− mi

∑
j/∈Ni

(cic>i − γ1(cix
>
j + xjc

>
i )+ γ2xjx

>
j ),

(10)

where γ1 and γ2 are nonnegative parameters.
It is obvious that the new between-class scatter includes

the class-to-class scatter used in Sb in LDA and the sample-to-
sample scatter used in S in PCA, which helps RDA to achieve
the purposes of LDA and PCA to some extent. The new
part, i.e., the symmetric part (cix>j + xjc

>
i ), which we called

sample-to-class scatter, is first introduced into the between-
class scatter. The geometric interpretation of the between-
class scatters is shown in Fig. 2. Maximizing the class-to-
class between-class scatter ignores the data structure, while
minimizing the sample-to-class one leads the samples from
different class lie on the opposite direction of the correspond-
ing class center. Thus, our RDA maximizes

JRDA(w) =
w>S∗bw

w>Sww
. (11)

The mapping vectors can be obtained by solving following
generalized eigenvalue problem

S∗bw = λSww. (12)
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FIGURE 2. Geometric interpretation of maximizing class-to-class and
sample-to-class scatter. There are two classes in R2, where two circles
(c1 and c2) lie on the horizontal axis denote the class centers,
respectively. For between-class scatter, two strategies to reduce the
above samples into R are to maximize class-to class scatter (used in
LDA) or sample-to class scatter (used in RDA). Maximizing class-to-class
scatter (w>||c1 − c2||

2w) requires the class centers have the largest
distance in the reduced feature space, resulting in two classes lies on the
horizontal axis and thus they may overlap each other (showed in the
bottom-left figure). Maximizing sample-to-class scatter (−w>(x>i c1)w
where xi ∈Class 2, or −w>(x>j c2)w where xj ∈Class 1) requires the
sample and the different class center lie on the opposite directions,
resulting in two classes lie on such two opposite directions that they
can be classified easily (showed in the bottom-right figure).

Generally, Sw is full-rank. In fact, we have
Theorem 1: Sw is positive definite if and only if there exist

n pairs of i and j (1 ≤ i ≤ k, j ∈ Ni) such that the vectors
xj − ci are linear independent.

Proof: Suppose there are n pairs of i and j (1 ≤ i ≤
k, j ∈ Ni) such that the vectors xj− ci are linear independent.
Then, we can construct a matrix A ∈ Rn×n where its columns
are these n linear independent vectors. Since A is nonsingular,
and since Sw = A ∗ A> + R (where R is the rest component
and positive semi-definite), Sw is positive definite. On the
contrary, suppose Sw is positive definite. Thus, Sw must have
the decomposition Sw = A ∗ A> + R, where A ∗ A> is
positive definite. Note that Sw is the sum of xj − ci for all
1 ≤ i ≤ k, j ∈ Ni. The columns of A are the n linear
independent xj − ci. �

Instead of rank(Sb) = k − 1 in LDA, we have a full-rank
S∗b in RDA in practice. In fact, we have
Theorem 2: Suppose γ2 6= 0, γ 2

1 ≤ γ2, and there exist n
pairs of i and j (1 ≤ i ≤ k, j /∈ Ni) such that the vectors
γ1xj − ci are linear independent, then S∗b is positive definite.

Proof: Note that

S∗b =
k∑
i=1

mi
m−mi

∑
j/∈Ni

((ci−γ1xj)(ci − γ1xj)>+(γ2−γ 2
1 )xjx

>
j ).

(13)

From the proof of Theorem 1, it is easy to obtain the
conclusion. �

In practical problems that the sample number is much
larger than the dimension, the conditions of Theorems 1 and 2
are always satisfied. Thus, RDA obtains a nonsingular
linear mapping, which reduces the sample space into a
new space with arbitrary dimension. If the sample num-
ber is smaller than the dimension, e.g., small sample size
problems [25]–[28], the conditions of Theorems 1 and 2 can-
not be satisfied, i.e., Sw or S∗b may be positive semi-definite.
However, the regularization technique [29] can help them to
be positive definite by adding an εI on them, where ε > 0
is a very small number and I is the identity matrix. In the
following, we discuss the generalized orthogonality of RDA
and how to estimate the reconstruction error for a generalized
orthogonal mapping.

Note that RDA is equivalent to

max
W

tr(W>S∗bW )

s.t. W>SwW = I , (14)

where W ∈ Rn×n. The solution of the above problem is such
a matrix where its columns are the n generalized eigenvectors
to (12). Thus, the mapping obtained by RDA is generalized
orthogonal w.r.t. Sw.
Note that Sw has the unique Cholesky decomposition as

Sw = L>L, where L is an upper triangle matrix and its
diagonal elements are larger than 0. Let V = L−1 and
W = VU , then the problem (14) is recast to

max
U

tr(U>V>S∗bVU )

s.t. U>U = I . (15)

Since the linear mapping V is nonsingular and it is constant
for the given samples, each column of W is decided by V
and the corresponding column of U , i.e., discarding some
columns from W is equivalent to discarding corresponding
columns from U . Due to the columns of U correspond to
the generalized eigenvalues to (12) (i.e., the eigenvalues
to U>V>S∗bVUw = λw), the mapping vectors should be
selected by their corresponding eigenvalues the same as PCA.

Moreover, the process of RDA can be regarded as two
steps. First, the primal samples are transformed by a nonsin-
gular linear mapping V . Then, an orthogonal mapping U is
used tomaximize the between-class scatter in the transformed
space. Since the loss of information when discarding some
mapping vectors just happens in the second step, the recon-
struction error can be estimated by

RE = ||X>V − X>VŨŨ>||F , (16)

where Ũ is constructed by the columns selected fromU (cor-
responding to the columns ofW ), and ‖ · ‖F is the Frobenius
norm.

In addition, PCA and LDA are the special cases of our
RDA by adjusting appropriate parameters. It is obvious that
Theorem 3: (1) If γ1 = γ2 = 0, RDA is equivalent to

LDA.
(2) If γ1 = 0, γ2→∞, RDA is approximate to PCA.
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B. KERNEL BASED FORMATION
In this subsection, we extend RDA to kernel based dimen-
sionality reduction [30], [31]. Suppose the data samples X ∈
Rn×m are first transformed into a high dimensional space F
by an nonlinear mapping φ(·). Then, RDA is implemented
in the space F , i.e., we seek the mapping vector w in F .
According to the theory of reproducing kernels [30], the map-
ping vector w ∈ F must lie in the span of all transformed

data samples φ(X ), i.e., an expansion of w can be
m∑
i=1
αiφ(xi),

where αi ∈ R with i = 1, . . . ,m. Thus, we have

< φ(x),w > =
m∑
i=1

αi < φ(xi), φ(x) >

=

m∑
i=1

αiK (xi, x) = a>K (x,X ), (17)

where < ·, · > denotes the inner product, K (·, ·) is a pre-
determined kernel function, and all of ai (i = 1, . . . ,m)
construct a ∈ Rm.
Without loss of generality, suppose the samples in X

have been collected together by the class labels, i.e., X =
(X1, . . . ,Xk ). Thus, the within-class scatter and between-
class scatter matrices in F can be defined as

Sφw == φ(X )Dφ(X )
>

S∗φb = φ(X )(E − γ1E ′ + γ2M )φ(X )>, (18)

where D,E,E ′,M ∈ Rm×m. D and E are two block diag-
onal matrices, where the ith block diagonal element of D is
I − 1

mi
emie

>
mi , the ith one of E is ( 1

mi
+

2γ1
m−mi

)emie
>
mi , with

i = 1, 2, . . . , k , and emi is a vector of ones with the dimension
mi. E ′(i, j) = 1

m−myi
+

1
m−myj

with i, j = 1, 2, . . . ,m. M

TABLE 1. LOO results by NN/SVM classifier with linear dimensionality reduction on the benchmark datasets.
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is a diagonal matrix and M (i, i) =
k∑
j=1

mj
m−mj

−
myi

m−myi
with

i = 1, 2, . . . ,m.
Combined (17) with (18), we have

w>Sφww = a>K (X ,X )DK (X ,X )a

w>S∗φb w = a>K (X ,X )(E − γ1E ′ + γ2M )K (X ,X )a. (19)

Thus, our kernel based RDA maximizes

JφRDA(w) =
w>S∗φb w

w>Sφww
, (20)

i.e.,

JφRDA(a) =
a>K (X ,X )(E − γ1E ′ + γ2M )K (X ,X )a

a>K (X ,X )DK (X ,X )a
. (21)

The solution to (21) can be obtained by solving following
generalized eigenvalue problem

(E − γ1E ′ + γ2M )K (X ,X )a = λDK (X ,X )a. (22)

After solving the problem (22), we can obtain m gen-
eralized eigenvectors a. Then, some eigenvectors can be
selected by their corresponding eigenvalues similar to linear
case. Though we cannot get the explicit mapping vector w,
the mapped sample x can be obtained explicitly by (17).

IV. EXPERIMENTS
In this section, we analyze the performance of our RDA com-
paredwith PCA and LDAwith its extensions. The dimension-
ality reduction methods, including PCA [1], PCA+LDA [3],
LDA [8], OLSDA [11], OCM [13], MMC [14], and our RDA
were implemented by Matlab [32] on a PC with an Intel

TABLE 2. LOO results by NN/SVM classifier with kernel based dimensionality reduction on the benchmark datasets.
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TABLE 3. LOO results by NN/SVM classifier with linear dimensionality reduction on the benchmark datasets.

Core Duo processor (4.2 GHz) with 16 GB RAM. The near-
est neighbor (NN) classifier [33] with Euclidean metric and
support vector machines (SVM) are used for classification in
the experiments, where the parameter c in SVM is selected
from {2i|i = −8,−7, . . . , 7}. The parameters γ1 and γ2
are selected from {2i|i = −8,−7, . . . , 7}. For kernel based
methods, the Gaussian kernel K (x, y) = exp{−µ||x − y||2}
[34] is used and its parameter µ is selected from {2i|i =
−10,−7, . . . , 5}.
First, we test these methods on some benchmark datasets

[35]. To clearly show their best performances, the accuracy
was calculated for all possible dimensions by the leave-one-
out (LOO) technique [36], [37], and the highest accuracy (%)
with its corresponding dimension (No.) was recorded. Table 1
shows the results on 14 datasets where the sample number
of each dataset is no more than 500, and Table 3 shows
the results on 8 datasets with the sample number over 500.
The highest accuracies are bolded and the mean accuracies
are also computed. From Tables 1 and 3, it is clear that
RDA exhibits a much better performance on most datasets
than other methods. There are many datasets on which RDA
works much better than others, and there are few datasets
on which RDA works much worse than others. Moreover,
the features obtained by our RDA are more useful than other
methods. For example, RDA owns the highest accuracies on
‘‘Hepatitis’’ and ‘‘WPBC’’ with only one feature. And the
second-best OLSDA needs equal or more features than RDA
on 17/22 datasets. Table 2 shows the results for kernel based
dimensionality reduction, and RDA also has the highest mean
accuracy than other methods. Due to all these dimensionality

reductionmethods solved an eigenvalue or generalized eigen-
value problem, we also reported the main computation time
in Tables 1, 2 and 3. From these tables, it is obvious that the
difference of the main computation costs is within 1 second.
Therefore, there is no significant difference on the learning
speed among these methods.

To further exhibit the performance of our RDA compared
with PCA and LDA, the dimensional reduction results are
depicted for each feature on 8 datasets (we just depict the
box plot for the first 6 features to have a clear comparison).
Figs. 3 and 4 shows the box plots of these methods on binary
and multiple class datasets, respectively. The horizontal axis
denotes the feature sequence number, and different classes are
depicted with different colors. The samples for each feature
are normalized to [0, 1]. From Figs. 3 and 4, we observed
that: (i) the samples from different classes cannot be separated
well by PCA for each feature; (ii) LDA generally can obtain a
well separation of two classes on binary class datasets with its
only feature; (iii) RDA always owns a well separation by one
feature similar to LDA, and the overlapped samples by this
feature can often be separated by other features. Thus, our
RDA has a better classification performance than PCA and
LDA. For example, on the ‘‘Ionosphere’’ dataset, our RDA
obtains 13% higher accuracy than LDA by adding additional
3 features; and on the ‘‘Car’’ dataset, our RDA obtains 17%
higher accuracy than LDA by adding additional 4 features. In
fact, RDA performs better than PCA on 20/22 datasets, and
does better than LDA on 21/22 datasets, from Tables 1 and 3.
Therefore, our RDA can obtain much more useful features
than PCA and LDA on these datasets.
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FIGURE 3. Dimensionality reduction results for the first 6 features on the binary class datasets, where the subtitle of each figure denotes the
dataset and the method used, e.g., (a) German(PCA) shows the results of PCA on the ‘‘German’’ dataset. For each figure, there are two classes
depicted by two colored boxes, where the horizontal axis denotes the feature sequence number. The box shows the distribution of the samples
for one dimension, which includes the minimum, lower quartile, median, upper quartile, maximum, and some outliers. (a) German(PCA).
(b) German(LDA). (c) German(RDA). (d) Hourse(PCA). (e) Hourse(LDA). (f) Hourse(RDA). (g) Housevotes(PCA). (h) Housevotes(LDA).
(i) Housevotes(RDA). (j) Ionosphere(PCA). (k) Ionosphere(LDA). (l) Ionosphere(RDA). (m) Tictactoe(PCA). (n) Tictactoe(LDA). (o) Tictactoe(RDA).
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FIGURE 4. Dimensionality reduction results for the first 6 features on the multi-class datasets, where the subtitle of each figure denotes the
dataset and the method used. For each feature, there are multiple classes depicted by different colored boxes. (a) Car(PCA). (b) Car(LDA). (c)
Car(RDA). (d) Seeds(PCA). (e) Seeds(LDA). (f) Seeds(RDA). (g) Wine(PCA). (h) Wine(LDA). (i) Wine(RDA).

TABLE 4. Classification results by the dimensionality reduction methods on the YALE and ORL datasets.

In the following, we test the reconstruction of RDA com-
pared with PCA and LDA. These methods were implemented
on the above 8 benchmark datasets, and the reconstruction
error (%) with the increasing features was depicted in Fig. 5.
It is obvious that LDA cannot recover the primal space, while

PCA and RDA can recover that space on most datasets except
‘‘Tictactoe’’. On the dataset ‘‘Tictactoe’’, though PCA and
RDA cannot recover the primal space, our RDA can recover
20% more information than PCA. Moreover, the reconstruc-
tion error curves of our RDA are more uniform than PCA
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FIGURE 5. Reconstruction error (%) with the increasing features for PCA, LDA, and RDA. (a) PCA. (b) LDA. (c) RDA.

FIGURE 6. Influence of parameters in RDA for linear case. (a) German. (b) Hourse. (c) Housevotes. (d) Ionosphere. (e) Tictactoe. (f) Car. (g) Seeds.
(h) Wine.

FIGURE 7. Influence of parameters in kernel based RDA. (a) Hourse. (b) Housevotes. (c) Ionosphere. (d) Seeds.

on these datasets. Thus, the primal space would be recovered
by RDA more homogenously than PCA. Fig. 6 shows the
influence of parameters in RDA on the 8 datasets, and Fig. 7
shows the influence in kernel based RDA. From Figs. 6 and 7,
we observed that the parameters γ1 and γ2 significantly affect
the performance of linear RDA, while in kernel based RDA
the parameter µ plays an more important role compared with
γ1 = γ2.
To further evaluate the performance of RDA, we experi-

mented these methods on the image dimensionality reduc-
tion (including YALE and ORL face datasets [38], [39])
by NN classifier. The YALE dataset contains 165 images
of 15 individuals under various facial expressions, where
each individual has 11 different images. The YALE dataset
was grouped into two parts the same as in [38]. One part
is used for training and the other is used for testing. In this
experiment, the number of training images chosen for each

individual is 2, 3, 4, 5, 6, 7, and 8, respectively, from which
we obtain seven training subsets. The ORL dataset contains
400 images of 40 individuals, and it was also grouped the
same as the YALE dataset. The image size of YALE and
ORL is uniformed to 32 × 32. The dimension of the testing
dataset was reduced by the mapping which was learned from
the training datasets (where the reduced dimension is fixed
to 50), and then the NN classifier was employed to predict
the testing samples. Table 4 shows the average accuracies
and the standard deviations of these methods on the YALE
and ORL datasets. The bold number in Table 4 highlights
the highest classification accuracy on each training subset.
From Table 4 we see that, on most cases, these dimensionality
reduction methods greatly improve the performance of NN
classifier, and the accuracy increases with the training set for
each method. Thereinto, our RDA performs much better than
other methods. To further exhibit the reconstruction ability
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FIGURE 8. Reconstructed faces by the dimensionality reduction methods
from 20%-100% features on the YALE and ORL faces. (a) YALE. (b) ORL.

of these methods, we depicted the reconstructed faces from
20%−100% features in Fig. 8. It can be seen from Fig. 8 that
our RDA owns the best reconstruction performance among
these methods. LDA and OLSDA cannot reconstruct the
faces, unless using the whole features in OLSDA. Not only
our RDA can recover the faces better with more features, but
the recovered faces by RDA is much better than PCA, OCM,
and MMC with the same features.

V. CONCLUSION
In this paper, a linear dimensionality reduction method based
on a new defined between-class scatter has been proposed,
called RDA. Since the new between-class scatter matrix is
generally full-rank, RDA obtains a full-rank mapping matrix.
Therefore, RDA reduces the sample space to arbitrary dimen-
sion and the mapped samples can be recovered. More dimen-
sionality features greatly improve the performance of RDA,
and the primal space can be recovered by the whole features.
Preliminary experiments on several benchmark datasets con-
firm the better performance of RDA compared with other
dimensionality reduction methods. For convenience, theMat-
lab code of our RDA is uploaded upon http://www.optimal-
group.org/Resources/Code/RDA.html. Due to RDA hires a
similar formation as LDA, the future work includes extending
RDA into other between-class scatter based methods, such as

L1-norm dimensionality reduction [10], [40] and 2D dimen-
sionality reduction [41], [42].
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