
Received October 23, 2018, accepted November 8, 2018, date of publication November 14, 2018,
date of current version December 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2881268

Fault-Tolerant Scheduling Algorithm With
Re-Allocation for Divisible Task
HEJUN XUAN 1, SHIWEI WEI2, WUNING TONG3, DAOHUA LIU1, AND CHUANDA QI1
1School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China
2School of Computer and Technology, Guilin University of Aerospace Technology, Guilin 541000, China
3School of Science, Shaanxi University of Chinese Medicine, Xinyang 712000, China

Corresponding author: Hejun Xuan (xuanhejun0896@126.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61602422 and Grant 61572417, in part
by the Science and Technology Department of Henan Province under Grant 182102210537, in part by the Innovation Team Support Plan of
the University Science and Technology of Henan Province under Grant 19IRTSTHN014, in part by the Guangxi Natural Science
Foundation of China under Grant 2016GXNSFAA380226, in part by the Guangxi Young and Middle-aged Teachers’ Basic Ability
Improvement Foundation of China under Grant 2017KY0866, in part by the Internet of Things and Big Data Application Research
Foundation of the Guilin University of Aerospace Technology under Grant KJPT201809, and in part by the Nanhu Scholars Program for
Young Scholars of XYNU.

ABSTRACT Divisible task fault-tolerant scheduling problems for a heterogeneous system on a general and
realistic platform are addressed in this paper, where the communication is in non-blocking message receiving
mode, and the processors and communication links may have different speeds and startup overheads. For
this kind of problems, the optimal sequence and the fraction of task for each processor are derived first
when the fault checkout overhead and checkout time consumption are considered. Then, to decrease the
time consumption and checkout overheads, a checkout strategy, which is more suitable for divisible task,
is employed. Moreover, an efficient algorithm with the fault fraction units re-allocated is proposed. Finally,
the experiments on some simulation examples are conducted and the experimental results indicate that the
proposed algorithm is effective, can minimize the expected execution time, and can save the time on fault-
tolerant consumption.

INDEX TERMS Divisible task, optimal sequence, task re-allocated, fault-tolerant.

I. INTRODUCTION
Divisible task is the parallel task which can be divided into
any number of fractions, and can be processed indepen-
dently on the processors in parallel since there are no prece-
dence relationships among these fractions [1]. A divisible
task is a task that can be arbitrarily split linearly among
any number of processors. The applications of the divis-
ible task model occur in many scientific and engineering
applications [2], [3], [7], including signal processing, image
processing, video and multimedia broad casting, linear alge-
bra computation, and the processing of large distributed files,
etc. Divisible task theory has been intensively studied in the
past decades. There are many papers focusing on studying
high-performance divisible task scheduling on heterogeneous
distributed system [4]–[9].

Most systems or platforms used in the real world are het-
erogeneous systems with different computation or communi-
cation speeds. For heterogeneous star/tree networks, a closed
form expression for optimal processing time was derived,
meanwhile, the effect of task distribution sequences on the

processing time was analyzed and an algorithm was devel-
oped to find the optimal distribution sequence [11]. It was
proved that the distribution order depends only on the com-
munication speeds between nodes but not on the computation
speed of each node [10]. The sequence of task distribution
should follow the order in which the communication speeds
decrease. Based on the non-blocking mode of communica-
tions, Shang proposed a more general and realistic model for
heterogeneous systems with both communication and com-
putation start-up overheads [12], [13]. The influence of start-
up overheads and task distribution sequence on processing
time was demonstrated. For the purpose of considering fault-
tolerance, we will take checkout start-up overhead and the
checkout time consumption into account in this paper, and a
closed form expression for optimal processing time will be
obtained and also the optimal scheduling sequence will be
analyzed.

Nowadays, high performance computing is facing a major
challenge with the increasing frequency of failures [14], [15].
There is a need to use fault tolerance or resiliencemechanisms

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

73147

https://orcid.org/0000-0002-3062-1591


H. Xuan et al.: Fault-Tolerant Scheduling Algorithm With Re-Allocation for Divisible Task

to ensure the efficient progress and correct termination of
the applications in the presence of failures. A large number
of fault-tolerant techniques have been developed [16]–[21].
Several techniques have been developed with different lev-
els of granularity, and the two representative methods
are: (1) Primary backup (PB), and (2) Checkpoint. Fault-
tolerant scheduling on heterogeneous system is designed in
papers [19], [21]–[23], [26]. In [24], Mohammad proposed
a dynamic fault tolerant scheduling. Each task is categorized
into critical or noncritical ones based on the task utilization
and the time at which scheduler is used to allocate resources
to the task. Noncritical tasks are scheduled on a single core,
and checkpoint with rollback recovery will be applied to
them. These methods are all designed for the independent
real-time tasks, and has a very high performance to schedule
the real-time task. However, it has a lower performance to
schedule the non-real-time task and divisible task. There is a
large body of literatures on checkpoint strategies for divisible
task. The corresponding scheduling problem is to partition
the task into several chunks and to checkpoint after each of
them. Daly studies periodic checkpoint policies (same-size
chunks) for exponentially distributed failures in [25]. In [27],
the authors develop an ‘optimal’ checkpoint policy, based on
the popular assumption that optimal checkpoint must be peri-
odic. Robert in [28] deals with the complexity of scheduling
computational work flows in the presence of exponentially
distributed failures. When such a failure occurs, rollback and
recovery are used so that the execution can resume from the
last checkpoint state.

A. MOTIVATION
Growing evidence shows that scheduling is an efficient
approach to achieving high performance of applications in
parallel systems. A wide variety of scheduling algorithms
have been developed to provide optimal scheduling for het-
erogeneous system supporting divisible tasks applications in
the past decade. Unfortunately, to the best of our knowledge,
no work has been done on designing scheduling algorithm
which takes checkout start-up overhead and the checkout
time consumption into account. Re-execution on the same
processor is a commonly strategy to fault-tolerant schedul-
ing algorithms for divisible task. But it is not an optimal
technique for fault-tolerance. In order to minimizing the time
consuming, we can re-distribute those parts of the tasks on
the processor with a long re-execution time of the fault tasks
to the idle processor or a processor whose finishing time is
early.

B. CONTRIBUTIONS
The major contributions of this study are summarized as
follows:

(1) For heterogeneous system, we derive a closed form
expression for optimal processing time and analyze
the optimal distributed sequence when checkout
start-up time and checkout time consumption are
considered.

TABLE 1. Notations.

(2) To save checkout time, a checkout strategy that is fit
for the divisible task is employed. The checkout is
not performed until all the tasks are executed over.

(3) In order to minimize the time consuming, an effi-
cient algorithm with a fault task units re-allocated
strategy is proposed.

II. SCHEDULING MODEL AND OPTIMAL SEQUENCE
A. MATHEMATICAL MODEL
The platform considered in this paper is heterogeneous dis-
tributed systems. Processors are connected in a star topol-
ogy, where the center is the master processor P0, while
P = {P1,P2, · · ·,Pm} are slave processors. The master
processor divides the task into n(n ≤ m) task fractions,
denoted as α1, α2, · · ·, αn, and distributes them among all the
n-processors in a particular sequence. Therefore, we have

n∑
i=i

αi = Wtotal, (1)

where Wtotal is the entire worktload. Upon receiving their
respective task fractions, the slave processors start com-
puting their respective task fractions. The problem is then
to determine the optimal sizes of these task fractions that
are assigned to the processors and the particular sequence
of the task fractions assigned to each slave processor such
that the total processing time is minimized. We now intro-
duce some notations that will be used throughout the paper
in Table 1.

A primary principle used in the earlier studies in DLT
to derive optimal solution is as follows [29]–[33]: in order
to obtain an optimal processing time, it is necessary and
sufficient to require that all the processors participating in the
computation must stop computing at the same time instant.
The time diagram of divisible task scheduling in heteroge-
neous distributed systems is shown in Fig.1.

Because finish times for all processors are equal,
the following equation can be obtained intuitively using
T 0
i = T 0

i+1.

si−1 + wiαi−1 + ci−1 + βi−1wi−1αi−1 = gi−1αi−1
+ oi + si + wiαi + ci + βiwiαi (2)

73148 VOLUME 6, 2018



H. Xuan et al.: Fault-Tolerant Scheduling Algorithm With Re-Allocation for Divisible Task

FIGURE 1. Optimal timing diagram of DLS in a particular sequence.

where i = 2, 3, · · · , n.We can rewrite this equation as

αi =
(1+ βi−1)wi−1 − gi−1

(1+ βi)wi
αi−1

−
si−1 + ci−1 − si − ci − oi

(1+ βi)wi
(3)

Let

γi =
(1+ βi−1)wi−1 − gi−1

(1+ βi)wi
(4)

ηi =
si−1 + ci−1 − si − ci − oi

(1+ βi)wi
(5)

Thus, Eq.(3) can re-written as

αi = γiαi + ηi (6)

So,

αi = γiαi + ηi

= γiγi−1αi−2 + γiηi−1 + ηi

= γiγi−1γi−2αi−3 + γiγi−1ηi−2 + γiηi−1 + ηi
... (7)

We can obtain

αi = µiα1 + λi, (8)

where

µi =

i∏
k=2

γk , (9)

λi =

i∑
k=2

ρk i∏
j=k+1

γj

. (10)

Combining Eq.(1) and Eq.(8), we can obtain α1 as follows

α1 =

Wtotal −
n∑

k=2
λk

1+
n∑

k=2
µk

, (11)

FIGURE 2. Comparison of the two possible sequences.

Thus, the closed-form expression of the checkout finish
time T 0

i is given by Eq(12)

T 0
= T 0

1

= o1 + s1 + c1 + (1+ β1)w1α1

= o1 + s1 + c1 + (1+ β1)w1

Wtotal −
n∑

k=2
λk

1+
n∑

k=2
µk

(12)

B. OPTIMAL DISTRIBUTED SEQUENCE
Task scheduling problems are among the well-known hard-
est combinatorial optimization problems in heterogeneous
system. An optimal distributed sequence of divisible task is
discussed. Using the similar analysis to that in [12], optimal
distributed sequence of divisible task is analyzed as follows.

Firstly, we consider the simplest case of scheduling divis-
ible workload on heterogeneous system with only two pro-
cessors P1 and P2. As shown in Fig.2, there are two possible
sequences for scheduling.

If T ′ donate the finish time of the checkout, from Fig.2(a),
we can obtain Eq.(13) and Eq.(14) as follows:

T ′ = o1 + s1 + c1 + (1+ β1)w1α1, (13)

T ′ = o1 + g1α1 + o2 + s2 + c2 + (1+ β2)w1α2. (14)

Then

α1 =
T ′ − (o1 + s1 + c1)

(1+ β1)w1
, (15)

α2 =
T ′ − (o1 + o2 + s2 + c1)

(1+ β2)w2

−
T ′ − (o1 + s1 + c1)

(1+ β1)(1+ β2)w1w2
g1. (16)

VOLUME 6, 2018 73149



H. Xuan et al.: Fault-Tolerant Scheduling Algorithm With Re-Allocation for Divisible Task

Let s′i = si+ci,w′i = (1+βi)wi, i = 1, 2, Eq.(15) and Eq.(16)
can be rewritten as Eq.(17) and Eq.(18).

α1 =
T ′ − (o1 + s′1)

w′1
, (17)

α2 =
T ′ − (o1 + o2 + s′2)

w′2
−
T ′ − (o1 + s′1)

w′1w
′

2
g1. (18)

Hence the entire workload W 0
total to be processed in T

′ is

W 0
total = α1 + α2

=
T ′ − (o1 + s′1)

w′1
+
T ′ − (o1 + o2 + s′2)

w′2

−
T ′ − (o1 + s′1)

w′1w
′

2
g1. (19)

As shown in Fig.2(b), using the same way above, we can
obtain δ1 and δ2. Thus, the entire workload W 1

total to be pro-
cessed in the same time period T ′ in this alternate sequence
is

W 1
total = δ1 + δ2

=
T ′ − (o2 + s′2)

w′2
+
T ′ − (o1 + o2 + s′1)

w′1

−
T ′ − (o2 + s′2)

w′1w
′

2
g2. (20)

The difference between W 0
total and W

1
total is

W 0
total −W

1
total =

T ′(g2 − g1)+ o2(w′2 − w
′

1)

w′1w
′

2

+
o1(g1 − w′1)+ s

′

1g1 − s
′

2g2
w′1w

′

2
(21)

Even when the checkout start-up overhead and checkout time
consuming are considered, we have also derived the similar
computing formula ofW 0

total−W
1
total as that in literature [12].

We can see from this formula that if the workload is large,
then, the finishing time T ′ is long enough, which makes item
T ′(g2 − g1) the most significant and the other items may be
neglected. The following conclusion can be obtained if T ′ is
large enough.

W 0
total > W 1

total ⇔ g1 < g2

From the conclusion above, we know that for the
2 − processors, the optimal sequence is g1 < g2 when
the workload is large enough. For the heterogeneous system
which has n − processors and each processor has arbitrary
checkout, computation and communication start-up over-
heads, as well as computation and communication speeds,
if the workload is large enough, the sequence of workload dis-
tribution according to the decreasing order of the link speeds
in the non-blocking mode of communication is optimal too.
The conclusion can be proven using the similar method in
literature [12].

III. A PROPER CHECKOUT STRATEGY FOR
DIVISIBLE TASK
A strategy of checkpointing is adopted in order to detect
whether the tasks are carried out incorrectly or not. Check-
pointing, as a technique for improving the reliability and
availability of fault-tolerant computing systems, has been an
active area of research in fault-tolerant aware task scheduling
system. Most of the works on checkpointing are designed
for the real-time system [26], [27], [29], [34]–[37]. Although
there have been many researches on this area, how to select
the interval of the checkpointing is still a critical issue. Firstly,
when a computing error is occurred in some task interval it
needs to make the re-execution from the last checkpointing.
If the interval of the checkpointing is larger, it will result in
the increase of the task re-execution time. On the other hand,
if the interval of the checkpointing is smaller, the checkout
will start several times and this will increase the checkout
overheads. Although there are some other researches on
studying the divisible task, they focus only on the probability
of failure satisfying a certain distribution [26], [28]. In this
paper, a checkout strategy, which is suitable for divisible task,
is employed and it has nothing to do with the distribution
model of computing failure.

For the divisible task, task fractions are independent and
do not depend on the other fractions. We can checkout
the task when the tasks execution is finished, as is shown
in Fig.1. So the checkout time consumed can be computed by
using Eq.(22)

T ci = ci + βiwiNF
i . (22)

where NF
i is the number of fault task units on processor Pi.

To decrease the checkout time consumed, the checkout
only starts one time and is applied to the task unit. The work-
load is not divided into several chunks. When a computing
error occurs in some units, these units will be marked as
fault tasks units and re-execution or re-allocation starts when
checkout finishes.

IV. FAULT-TOLERANT TASK UNITS RE-ALLOCATION
A. THE NECESSITY OF RE-ALLOCATION
In the work [28], fault-tolerant scheduling algorithms for
divisible workload re-execute the tasks incorrectly on the
original processor when some failures occur. It is necessary
to improve these methods further. Let us imagine a scenario,
if a processor has several failure task units and its speed of
computing is slow, it will take a long time to re-execute the
failure task units. Meanwhile, some high speed processors
may have no failure task units. Thus, these processors will be
idle when the others are busy in re-executing the failure task
units. In this case, it is bound to increase the total time. Thus,
the task units can be re-executed not only on the original
processor, but also on other processors in order to minimize
the total time. To do so, we select two processors, ideally, one
has the failure task units and the maximum re-execution time,
and another has the minimum sum of the start-up overheads
and the highest computing speed. Then, the failure task units

73150 VOLUME 6, 2018



H. Xuan et al.: Fault-Tolerant Scheduling Algorithm With Re-Allocation for Divisible Task

FIGURE 3. The diagram of fault task units re-execution on original
processor.

are re-allocated on the processor which has the minimum sum
of the start-up overheads and the minimum re-execution time.

As is shown in Fig.3. The processor Pi has five fault task
units and a very slow computing speed. So it has the biggest
finish re-execution time among all the processors. This will
make execution of all the workload continue a long time
and increase the complete time. In this case, suppose the
finish time of the system is T ′. The processor Pj has only
one fault task unit and a much higher computing speed than
processor Pi. It has a shortest re-execution time of all the
processors. It is reasonable to re-allocate three fault task units
of processor Pi to processor Pj. As a result, the finish time of
processor Pi will be shortened and the system finish time will
be decreased. As shown in Fig.4, the finish time of the system
is T ′′. Obviously, T ′ is much larger than T ′′.

B. THE PRINCIPLE OF THE FAULT TASK UNITS
RE-ALLOCATION
From previous analysis, we know that the reasonable task
units re-allocation can decrease the system execution time.
However, there are three problems need to be addressed. First,
which processor should be selected as the source processor.
Second, which processor should be selected as the target
processor to which the fault task units will be re-allocated.
The last is how many fault task units should be re-allocated
from the source processor to the target processor. In this
section, we will deal with these problems.

1) THE SOURCE PROCESSOR TO BE SELECTED
The purpose of fault task units re-allocation is to minimize
the time consumption of the system. Thus, the objective is to
minimize the makespan, i.e., the processing time of the entire
task. Let T donates the optimal makespan, we have

T = min
(
max
1≤i≤n

{
T 0
i + T

1
i

})
(23)

where the definitions of T 0
i and T 1

i are given in Table 1.
Eq.(23) shows that the makespan is the maximum process-
ing time of all the processors. So, if we want to minimize

FIGURE 4. The diagram of fault task units re-allocation.

the makespan, we must minimize the maximum processing
time among all the processors. So it is reasonable to select
the processor with maximum processing time as the source
processor. That is, the processor Ps is selected as the source
processor when s satisfy the Eq.(24)

s = argmax
i

{
T 0
i + si + wiN

F
i

}
, (24)

where NF
i is the number of fault task units on processor Pi.

Since T 0
i = T 0

j (i 6= j and i, j = 1, 2, · · ·, n), so the source
processor Ps can be selected according to Eq.(25)

s = argmax
i

{
si + wiNF

i

}
. (25)

2) TARGET PROCESSOR AND NUMBER OF RE-ALLOCATED
TASK UNITS DETERMINED
If a processor has the minimum processing time, it may
have a lower computing speed. Similarly, if a processor has
a high speed, it may have a longer processing time. Thus,
how to select the target processor is not an easy task. Also,
considering the processing time and the computing speed
separately is unreasonable.Moreover, start-up overheads can-
not be neglected and they should be taken into account. So,
we must take the processing time, computing speed and all
start-up overheads into account together while we select the
target processor.

Another critical issue is how to determine the number
of fault task units, which will be re-allocated to the target
processor. In this paper, an optimization model is set up to
determine the target processor and the number of fault task
units to be re-allocated. As shown in Eq.(26), the purpose
of the model is to minimize the maximum processing time
of the source processor and target processor. The fault task
units will be re-allocated to the target processor immediately
once the target processor and the number of fault task units

VOLUME 6, 2018 73151



H. Xuan et al.: Fault-Tolerant Scheduling Algorithm With Re-Allocation for Divisible Task

are determined.

min
l,x

f (l, x) = min
(
max

{
T cs − wsx,1

})
s.t.
1 ≤ x ≤ NF

s

1 ≤ l ≤ n
x ∈ Z , l ∈ Z

(26)

where x is the number of fault task units to be re-
allocated to the target processor, Pl is the target processor,∑j−1

k=1 osk is the sum of start-up overheads of the last (j − 1)
installment re-allocation, Ps is the source processor and
NF
s is the number of fault task units on the processor Ps,

1 =
j−1∑
k=1

osk + ol + T
1
l + wlx

If m and NF
s are larger, the model (26) has a lager search

space and it is hard to solve. So, a simpler and equivalent
model is given.In order to minimize the maximum processing
time of the source and target processor, the processing time
of the source and target processors should be equal. Since the
start-up overheads exist, the finish time is hard to be equal,
but it is better to re-allocate fault task units such that the finish
time is approximately equal. If let Tm denote the mean of the
processing time of source and target processors, so the pro-
cessing time of source and target processors should approach
to Tm as much as possible after re-allocation. In order to
minimize the finish time of source and target processors,
the the finish time must be greater than Tm − max{ws,wt }
and less than Tm+max{ws,wt } as shown Fig.(5). Thus, from
Fig.(5) (a) and (b), Eq.(27) and Eq.(28) can be obtained.

j−1∑
k=1

ok + ot + T ct + wtx > Tm −max{ws,wt }

T cs − wsx < Tm +max{ws,wt }

T cs − wsx < Tm +
j−1∑
k=1

ok + ot + T ct + wtx

(27)



j−1∑
k=1

ok + ot + T ct + wtx < Tm +max{ws,wt }

T cs − wsx > Tm −max{ws,wt }

T cs − wsx < Tm −
j−1∑
k=1

ok + ot + T ct + wtx

(28)

From Eq.(27) and Eq.(28), we can obtain Eq. (29) as
follow.

Cc − Cw ≤ x ≤ Cc + Cw (29)

where Cc =
(T cs −T

c
t )−

∑j−1
k=1 ok−ot

ws+wt
and Cw =

max{ws,wt }
ws+wt

.
From analysis above, we can re-write Eq.(26) as Eq.(30).
The larger search space of the can be reduced to d2Cwe × n.
SinceCw < 1, the search space of Eq.(30) is 2n. In this paper,
the method that is proposed in literature [38] is used to solve

FIGURE 5. Comparison of the two possible sequences.

this ‘‘Min-Max’’ model.

min
l,x

f (l, x) = min
(
max

{
T 1
s − wsx,1

})
s.t.
Cc − Cw ≤ x ≤ Cc + Cw
1 ≤ l ≤ n
x ∈ Z , l ∈ Z

(30)

The solution of the optimization model above is to deter-
mine the target processor and the number of fault task units to
be re-allocated. If the optimization model has the solution of
{sour, 0}, it means that there is no need to do the re-allocation.
If the optimization model has more than one solution, then,
a further judgement is needed. Assuming that {souri, xi} is
the ith solution of the optimization model, we will select
a solution which has the minimum of {xi} as the optimal
solution in order to save energy consumption when the task
units are re-allocated.
Theorem 1: T ∗ is the makespan of fault-tolerant schedul-

ing of the original strategy. T ∗∗ is the makespan of fault-
tolerant scheduling with the above re-allocation strategy.
Then we have T ∗∗ ≤ T ∗.

Proof: (1) when the first re-allocation is executed and
the number of fault task units re-allocated is x = 0, that is,
∀x 6= 0, l 6= s (Ps is the source processor) and l cannot satisfy
the following Eq.(31)

max
{
T 1
s − wsx,T

1
l + ol + wlx

}
< T 1

s (31)

It means that there is no need to do the re-allocation.
So T ∗∗ = T ∗.
(2) When the first re-allocation is executed and the number
of fault task units re-allocated is x 6= 0, that is, ∃l 6= s and
l satisfies the Eq.(31). So T ∗∗ < T ∗.

73152 VOLUME 6, 2018



H. Xuan et al.: Fault-Tolerant Scheduling Algorithm With Re-Allocation for Divisible Task

TABLE 2. Parameters of the heterogeneous distributed system.

(3) From(2), we know that as long as one installment re-
allocation is implemented successfully, T ∗∗ < T ∗ is satisfied.
So if j > 1 (j is the number of the successful re-allocations),
Eq. (32) can be obtained.

T ∗∗ = T ∗∗j < T ∗∗j−1 < · · · < T ∗∗1 < T ∗ (32)

where T ∗∗k is the makespan after k installments re-allocations
are implemented successfully. Thus, T ∗∗ ≤ T ∗. �

C. FAULT-TOLERANT SCHEDULING ALGORITHM
To obtain the optimal makespan of the task, frictions of the
task should be distributed in the decreasing order of the link
speeds. Then, checkout the tasks among all the processors.
If the fault task units are not re-allocated to other processors,
it will decrease the utilization of the processors and increase
the makespan of the task. So, fault-tolerant with the fault
task units re-allocated strategy should be implemented rea-
sonably.When the fault task units are re-allocated to the target
processor, they will be processed on the target processor.
The pseudocode of fault-tolerant scheduling algorithm with
task re-allocation for divisible task scheduling(FTR_DLS) in
heterogeneous computing systems is outlined in Algorithm1.

V. EXPERIMENTS AND ANALYSIS
A. EXPERIMENTS
1) COMPARED EXPERIMENT
In this subsection, all experiments are carried out on a
personal computer of HP with Intel(R) Core(TM) i7 CPU,
8G RAM and a 64-bit OS. The parameters in Shang [12]
are adopted in the heterogeneous distributed system in our
simulation studies and shown in Table 2. Since Shang [12]
does not provide the parameter of checkout speed, some data
is generated randomly and added in Table 2. Also, since the
probability of failure often obeys Exponential distributions
in literature [28], we also use this assumption in the experi-
ments.

Literature [25] proposes an algorithm aiming at optimizing
checkpoint interval (HOEOCI) for restart dumps. Failures
may occur during the execution of a task. Re-execution of
the fualt task units only on the former processor is employed,
and not on other processors [25]. So the makespan is bigger
than that of the re-allocated strategy. Literature [28] proposes

Algorithm 1 Fault-Tolerant With Task Re-Allocation for
DLS(FTR_DLS)
Input: o, s, g, w, c, β
Output: Makespan

1 Task scheduling according to decreasing order of gi.
2 Initialization:reallocate_flag = 1;j = 1,K =
φ, sum_overheads = 0;

3 max_Loc = arg mini{T 0
+ si + wi × NF

i };
4 min_Loc and num_transfer are obtained by solving
Eq.(30);

5 while reallocate_flag == 1 do
6 current_reallocate_flag == 1;
7 if num_transfer == 0 then
8 current_reallocate_flag = 0;
9 else

10 update the T 1
max_Loc and N

F
min_Loc

11 if min_Loc ∈ K then
12 sum_overheads1 =

∑j−1
k=1 ok ; flag = 0;

sum_overheads =
∑m−1

k=1 ok ; %
m is the position in K.

13 else
14 sum_overheads =

sum_overheads+ omin_Loc + smin_Loc;
K (1, j) = min_Loc;
sum_overheads1 = sum_overheads;
flag = 1, j = j+ 1;

15 end
16 T 1

min_Loc = T 1
min_Loc + flag× sum_overheads+

wi × num_transfer ;
max_Loc = arg mini{T 0

+ si + wi × NF
i };

17 min_Loc and num_transfer are obtained by
solving Eq.(30);

18 current_reallocated_flag = 1;
19 end
20 reallocate_flag = current_reallocate_flag;
21 end
22 Makespan = max

i
{T 0
+ T 1

i };

a method (CSCW) to deal with the complexity of scheduling
computational workflows in the presence of Exponentially
distributed failures. When such a failure occurs, rollback and
recovery are used so that the execution can resume from
the last checkpointing state. The goal is to minimize the
expected execution time (makespan). However, the fault tasks
will be re-executed on the former processor, and we can
know from theorem 1 that the makespan is larger than that
of the re-allocated strategy. For the divisible task, tasks do
not depend on the other tasks. Making check on the tasks will
also decrease the checkout time consumption when the tasks
execution is finished. So the FTR_DLS algorithm has more
advantages compared with the other algorithms in decreasing
execution time. Fig.6 shows the makespan of the workload
ranges from 104 to 106.

VOLUME 6, 2018 73153



H. Xuan et al.: Fault-Tolerant Scheduling Algorithm With Re-Allocation for Divisible Task

FIGURE 6. The makespan of FTR_DLS, HOEOCI and CSCW.

To evaluate the stability of the proposed algorithm and
the compared algorithms, we give the statistical results
(Mean and Variance) in the experiments with the different
experimental scenes. Table 3 shows the mean and variance
results of the makespan with different scenes. In the sta-
tistical results, the workloads are set as Wtotal = χ × ν,
and χ = 10000, 20000, · · · , 60000; ν = 2, 4, · · · , 10.
From the statistical results, we can see that proposed

TABLE 3. Statistical results (Mean and Variance) of the makespan.

algorithm (BiHMA) is better than the compared algorithms.
Not only the statistical results of mean but also the statistical
results of variance are smaller than the compared algorithms.
In addition, the variance are increased with the workload
increased.

2) PERFORMANCE EVALUATION
In this subsection, we present several groups of experimental
results obtained from extensive simulations to evaluate the
performance of FTR_DLS. The parameters of the heteroge-
neous distributed system are shown in Table 2. To study the
influence of the probability of failure to PIR, several groups
of the experiments with different probabilities of failure are
conducted. In this paper, the probability of failure in every
group of the experiments is generated randomly among 0.5%-
1%, 1%-2%, 2%-3%, 3%-4%, 4%-5% respectively.

To show the advantage of the proposed scheduling of the
fault task units re-allocation, a definition of the performance
improvement ratio (PIR) is used. PIR is defined as follows.

PIR =
T c0 − T

c
1

T c0
(33)

73154 VOLUME 6, 2018



H. Xuan et al.: Fault-Tolerant Scheduling Algorithm With Re-Allocation for Divisible Task

FIGURE 7. The variation of PIR with the task size ranges when the
probability of failure is in1%-2%.

FIGURE 8. The mean PIR variation with the workload size and the
probability of failure.

where T c0 is fault-tolerant time (from T 0 to T ′ as shown
in Fig.4) without the re-allocation strategy, T 1 fault-tolerant
time (from T 0 to T ′′ as shown in Fig.4) with the re-allocation
strategy employed.

Figs.7(a), (b), (c) and (d) show the statistical results of
PIR when the workload size ranges from 104 to 107, and the
probability of failure is generated randomly among 1%-2%.
Some representative workload sizes are simulated and every
workload size is executed 1000 times.

Fig.8 shows the variation tendency of the mean of PIR
when the workload size ranges from 104 to 108 with the
different probabilities of failures.

B. EXPERIMENT ANALYSIS
As shown in Fig.7(a), PIR does not monotonically increase
because the failure is random and the condition of re-
allocation is difficult to satisfy when the workload size is

smaller. The number of fault task units is approximately
equal to the ideal one and the condition of re-allocation is
easy to satisfy with the increase of workload size, so the
variation of PIR is stable and increases slowly as shown
in Fig.7(b), (c) and (d), respectively. Fig.8 shows the mean
PIR varies with the workload size and the probability of
failure, we can observe that when the task size is considerably
large, the mean of PIR reaches 35% when the probability of
failure is in 1%-2%. That is to say, fault-tolerant scheduling
with re-allocation strategy can save 35% time consuming than
without re-allocation. Moreover, for the fixed workload size,
the PIR decreases with the increase of p/pmax , When the
workload size is large enough, we can re-write Eq.(33) as

PIR =

max
1≤i≤n

{piαi} −
(
pα +

n∑
i=1

(oi + si)
)

max
1≤i≤n

{piαi}
(34)

where p =
∑n

i=1 pi/n and α = Wtotal/n. When the workload
size is large enough, we have

n∑
i=1

(oi + si)

max
1≤i≤n

{piαi}
→ 0, (35)

then

PIR ≈
max
1≤i≤n

{piαi} − pα

max
1≤i≤n

{piαi}

≥ 1−
pα

pmaxαmax

= 1−
p

pmax
δ, (36)

where δ = Wtotal/nαmax and it has nothing to do with the
the probability of failure. Since δ = Wtotal/nαmax is close
to a constant gradually when the workload size gradually
becomes large enough, thus, the PIR will be close to a con-
stant. From Eq.(26), we know that the PIR decreases with
the increases of p/pmax , In our experiments p/pmax increases
when the probability of failures is in 0.5%-1%, 1%-2%, 2%-
3%, 3%-4%, 4%-5%, respectively. The PIR decreases for the
same workload as shown in Fig.8.

VI. CONCLUSION
The goal of this paper is to find an optimal fault-tolerant
scheduling for divisible task in heterogeneous distributed sys-
tems. By setting up an optimization model for fault task units
re-allocation, we propose an effective scheduling algorithm.
First, a closed form expression for optimal processing time
and optimal scheduling sequence are derived. Then, a check-
out method which is suitable for divisible task is employed.
Finally, we proposed a novel fault-tolerant scheduling algo-
rithm with a fault task units re-allocation strategy. In order to
examine the performance of the proposed algorithm, a set of
experiments are carried out. From the experimental results,

VOLUME 6, 2018 73155



H. Xuan et al.: Fault-Tolerant Scheduling Algorithm With Re-Allocation for Divisible Task

we can see that the proposed fault-tolerant scheduling algo-
rithmwith re-allocation strategy can save time comparedwith
re-execution on original processor without re-allocation.

REFERENCES
[1] T. G. Robertazzi, ‘‘Ten reasons to use divisible load theory,’’ Computer,

vol. 36, no. 5, pp. 63–68, May 2003.
[2] C.-Y. Chen and C.-P. Chu, ‘‘Divisible nonlinear load distribution on hetero-

geneous single-level trees,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 54,
no. 4, pp. 1664–1678, Aug. 2018.

[3] J. Li, W. Yao, Y. Zhang, H. Qian, and J. Han, ‘‘Flexible and fine-grained
attribute-based data storage in cloud computing,’’ IEEE Trans. Services
Comput., vol. 10, no. 5, pp. 785–796, Sep./Oct. 2017.

[4] X. Kong, C. Lin, Y. Jiang, W. Yan, and X. Chu, ‘‘Efficient dynamic task
scheduling in virtualized data centers with fuzzy prediction,’’ J. Netw.
Comput. Appl., vol. 34, no. 4, pp. 1068–1077, 2011.

[5] G. Lizheng, S. Zhao, S. Shen, and C. Jiang, ‘‘Task scheduling optimization
in cloud computing based on heuristic algorithm,’’ J. Netw., vol. 7, no. 3,
pp. 547–553, 2012.

[6] X. Wang and B. Veeravalli, ‘‘Performance characterization on handling
large-scale partitionable workloads on heterogeneous networked com-
pute platforms,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 10,
pp. 2925–2938, Oct. 2017.

[7] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, and
D. H. Epema, ‘‘Performance analysis of cloud computing services for
many-tasks scientific computing,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 22, no. 6, pp. 931–945, Jun. 2011.

[8] D. Liang, S. Zhong, C. Ting, and Y. Chang ‘‘Analysis and modeling of task
scheduling in wireless sensor network based on divisible load theory,’’ Int.
J. Commun. Syst., vol. 27, no. 5, pp. 721–731, 2014.

[9] O. Beaumont, L. Eyraud-Dubois, C. T. Caro, and H. Rejeb, ‘‘Heteroge-
neous resource allocation under degree constraints,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 24, no. 5, pp. 926–937, May 2013.

[10] H. J. Kim and V. Mani, ‘‘Divisible load scheduling in single-level tree
networks: Optimal sequencing and arrangement in the non-blocking
mode of communication,’’ Comput. Math. Appl., vol. 46, nos. 10–11,
pp. 1611–1623, 2003.

[11] K. Sung-Soo, B. Ji-Hwan, Y. Hong, and L. Hongbo, ‘‘Biogeography-based
optimization for optimal job scheduling in cloud computing,’’ Appl. Math.
Comput., vol. 247, pp. 266–280, Nov. 2014.

[12] S. Mingsheng, ‘‘Optimal algorithm for scheduling large divisible work-
load on heterogeneous system,’’ Appl. Math. Model., vol. 32, no. 9,
pp. 1682–1695, 2008.

[13] H. Han,W. Bao, X. Zhu, X. Feng, andW. Zhou, ‘‘Fault-tolerant scheduling
for hybrid real-time tasks based on CPB model in cloud,’’ IEEE Access,
vol. 6, pp. 18616–18629, 2018.

[14] J. Dongarra et al., ‘‘The international exascale software project: A call
to cooperative action by the global high-performance community,’’ Int. J.
High-Perform. Comput. Appl., vol. 23, no. 4, pp. 309–322, 2009.

[15] G. Yao, Y. Ding, and K. Hao, ‘‘Using imbalance characteristic for fault-
tolerant workflow scheduling in Cloud Systems,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 12, pp. 3671–3683, Dec. 2017.

[16] H. Xiaomin, Q. Xiao, and Q.Meikang, ‘‘QoS-aware fault-tolerant schedul-
ing for real-time tasks on heterogeneous clusters,’’ IEEE Trans. Comput.,
vol. 60, no. 6, pp. 800–812, Jun. 2011.

[17] S. Haider and B. Nazir, ‘‘Dynamic and adaptive fault tolerant scheduling
with QoS consideration in computational grid,’’ IEEE Access, vol. 5,
pp. 7853–7873, 2017.

[18] J. Bahman, T. Parimala, and B. Rajkumar, ‘‘Enhancing performance
of failure-prone clusters by adaptive provisioning of cloud resources,’’
J. Supercomput., vol. 63, no. 2, pp. 467–489, 2013.

[19] B. Jasma andR. Nedunchezhian, ‘‘Performance-driven load balancingwith
a primary-backup approach for computational grids with low communi-
cation cost and replication cost,’’ IEEE Trans. Comput., vol. 62, no. 5,
pp. 990–1003, May 2013.

[20] N. Babar, Q. Kalim, and M. Paul, ‘‘Replication based fault tolerant job
scheduling strategy for economy driven grid,’’ J. Supercomput., vol. 62,
no. 2, pp. 855–873, 2012.

[21] Q. Zheng, B. Veeravalli, and C. K. Tham, ‘‘On the design of fault-tolerant
scheduling strategies using primary-backup approach for computational
grids with low replication costs,’’ IEEE Trans. Comput., vol. 58, no. 3,
pp. 380–393, Mar. 2009.

[22] Z. Xiaomin, H. Chuan, G. Rong, and L. Peizhong, ‘‘Boosting adaptivity of
fault-tolerant scheduling for real-time tasks with service requirements on
clusters,’’ J. Syst. Softw., vol. 84, no. 10, pp. 1708–1716, 2011.

[23] S. Wei, Y. Chen, D. Xavier, and I. Yasushi, ‘‘Dynamic scheduling real-
time task using primary-backup overloading strategy for multiprocessor
systems,’’ IEICE Trans. Inf. Syst., vol. E91.D, no. 3, pp. 796–806, 2008.

[24] M. H. Mottaghi and H. R. Zarandi, ‘‘DFTS: A dynamic fault-tolerant
scheduling for real-time tasks in multicore processors,’’ Microprocessors
Microsyst., vol. 38, no. 1, pp. 88–97, 2014.

[25] J. T. Daly, ‘‘A higher order estimate of the optimum checkpoint interval for
restart dumps,’’ Future Gener. Comput. Syst., vol. 22, no. 3, pp. 303–312,
2006.

[26] W. Tongquan, M. Piyush, W. Kaijie, and Z. Junlong, ‘‘Quasi-static fault-
tolerant scheduling schemes for energy-efficient hard real-time systems,’’
J. Syst. Softw., vol. 85, no. 6, pp. 1386–1399, 2012.

[27] P. M. M. Shastry and K. Venkatesh, ‘‘Analysis of dependencies of check-
point cost and checkpoint interval of fault tolerant MPI applications,’’
Analysis, vol. 2, no. 8, pp. 2690–2697, 2010.

[28] Y. Robert, F. Vivien, and D. Zaidouni, ‘‘On the complexity of scheduling
checkpoints for computational workflows,’’ in Proc. IEEE/IFIP 42nd Int.
Conf. Dependable Syst. Netw. Workshops (DSN-W), Jun. 2012, pp. 1–6.

[29] V. Bharadwaj, D. Ghose, and T. G. Robertazzi, ‘‘Divisible load theory:
A new paradigm for load scheduling in distributed systems,’’ Cluster
Comput., vol. 6, no. 1, pp. 7–17, 2003.

[30] B. Veeravalli, X. Li, and C. C. Ko, ‘‘On the influence of start-up costs in
scheduling divisible loads on bus networks,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 11, no. 12, pp. 1288–1305, Dec. 2000.

[31] S. Charcranoon, T. G. Robertazzi, and S. Luryi, ‘‘Parallel processor config-
uration design with processing/transmission costs,’’ IEEE Trans. Comput.,
vol. 49, no. 9, pp. 987–991, Sep. 2000.

[32] C. A. Moritz and M. I. Frank, ‘‘LoGPG: Modeling network contention in
message-passing programs,’’ IEEE Trans. Parallel Distrib. Syst., vol. 12,
no. 4, pp. 404–415, Apr. 2001.

[33] V. Bharadwaj, L. Xiaolin, and C. C. Ko, ‘‘Design and analysis of load
distribution strategies with start-up costs in scheduling divisible loads
on distributed networks,’’ Math. Comput. Model., vol. 32, nos. 7–8,
pp. 901–932, 2000.

[34] S. W. Kwak and J.-M. Yang, ‘‘Probabilistic optimisation of checkpoint
intervals for real-time multi-tasks,’’ Int. J. Syst. Sci., vol. 44, no. 4,
pp. 595–603, 2013.

[35] N. Babar, Q. Kalim, and M. Paul, ‘‘Adaptive checkpointing strategy to
tolerate faults in economy based grid,’’ J. Supercomput., vol. 50, no. 1,
pp. 1–18, 2009.

[36] P. Paul, I. Viacheslav, E. Petru, and P. Zebo, ‘‘Design optimization of time-
and cost-constrained fault-tolerant embedded systems with checkpointing
and replication,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17,
no. 3, pp. 389–402, Mar. 2009.

[37] M. Chtepen, F. H. A. Claeys, B. Dhoedt, F. D. Turck, P. Demeester, and
P. A. Vanrolleghem, ‘‘Adaptive task checkpointing and replication: Toward
efficient fault-tolerant grids,’’ IEEE Trans. Parallel Distrib. Syst., vol. 20,
no. 2, pp. 180–190, Feb. 2009.

[38] X. Wang, E. Aboutanios, andM. G. Amin, ‘‘Reduced-rank STAP for slow-
moving target detection by antenna-pulse selection,’’ IEEE Signal Process.
Lett., vol. 22, no. 8, pp. 1156–1160, Aug. 2015.

HEJUN XUAN received the B.Sc. degree in com-
puter science and technology from Xinyang Nor-
mal University, China, in 2012, and the Ph.D.
degree in computer software and theory from Xid-
ian University, China, in 2018. He is currently with
the School of Computer and Information Tech-
nology, Xinyang Normal University. His research
interests include cloud/grid/cluster computing and
scheduling in parallel and distributed systems.

73156 VOLUME 6, 2018



H. Xuan et al.: Fault-Tolerant Scheduling Algorithm With Re-Allocation for Divisible Task

SHIWEI WEI received the B.Sc. and M.Sc.
degrees in computer science and technology
from the Guilin University of Electronic Tech-
nology, China, in 2004 and 2007, respectively.
He is currently an Associate Professor in com-
puter and technology with the Guilin University
of Aerospace Technology. His research interests
include cloud computing and machine learning.

WUNING TONG received the B.Sc. and M.Sc.
degrees in computer science and technology from
the Shaanxi University of Science and Technol-
ogy, China, in 2004 and 2007, respectively. She is
currently an Associate Professor in science with
the Shaanxi University of Chinese Medicine. Her
research interests include cloud computing and
machine learning.

DAOHUA LIU received the Ph.D. degree in com-
puter science and technology from the Xi’an Uni-
versity of Architecture and Technology, China.
He is currently a Professor with the School of
Computer and Information Technology, Xinyang
Normal University. His research interests include
machine learning and image processing.

CHUANDA QI received the B.Sc. degree in math-
ematics and applied mathematics from Xinyang
Normal University, China, and the Ph.D. degree in
computer science and technology from PLA Infor-
mation Engineering University, China. He is cur-
rently a Professor with the School of Computer and
Information Technology, Xinyang Normal Univer-
sity. His research interests include machine learn-
ing and image processing.

VOLUME 6, 2018 73157


	INTRODUCTION
	MOTIVATION
	CONTRIBUTIONS

	SCHEDULING MODEL AND OPTIMAL SEQUENCE
	MATHEMATICAL MODEL
	OPTIMAL DISTRIBUTED SEQUENCE

	A PROPER CHECKOUT STRATEGY FOR DIVISIBLE TASK
	FAULT-TOLERANT TASK UNITS RE-ALLOCATION
	THE NECESSITY OF RE-ALLOCATION
	THE PRINCIPLE OF THE FAULT TASK UNITS RE-ALLOCATION
	THE SOURCE PROCESSOR TO BE SELECTED
	TARGET PROCESSOR AND NUMBER OF RE-ALLOCATED TASK UNITS DETERMINED

	FAULT-TOLERANT SCHEDULING ALGORITHM

	EXPERIMENTS AND ANALYSIS
	EXPERIMENTS
	COMPARED EXPERIMENT
	PERFORMANCE EVALUATION

	EXPERIMENT ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	HEJUN XUAN
	SHIWEI WEI
	WUNING TONG
	DAOHUA LIU
	CHUANDA QI


