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ABSTRACT In this paper, a special property of the fractional lower order covariance (FLOC)-based
minimum variance distortionless response (MVDR) beamformer is found, which is the FLOC MVDR
beamformer that has greater white noise array gain (WNAG) than the classic MVDR beamformer in the
presence of non-Gaussian stable noise. In order to explain the reason, the analytic WNAG of the FLOC
MVDR beamformer is derived with respect to eigenvalues of FLOC matrix. Then, it is theoretically proved
and explained through the relation between theWNAGand the eigenvalue separation of the covariancematrix
and the reason can be concluded that the eigenvalue separation of the FLOC-based matrix is weaker than
that of conventional covariance. Simulation results verify the validity and advantages of the FLOC MVDR
beamformer over the MVDR beamformer when the received array noise obeys stable distributions and there
exist steering vector mismatches in the beamforming model.

INDEX TERMS Beamforming, fractional lower order covariance, stable distributions, white noise array
gain.

I. INTRODUCTION
Adaptive beamforming enhances the signal of interest (SOI)
and suppresses the interference and the noise at the out-
puts of an antenna array. Therefore, it has been widely
adopted in many applications including radar [1], [2], wire-
less communication [3] and wireless sensor network [4], [5].
Among the approaches proposed in the field of the
beamforming techniques, minimum variance distortionless
response (MVDR) beamforming is a popular and practical
one. Subjecting to the linear constraint, MVDR beamforming
selects the weight vector and minimizes the output power
adaptively, which causes no distortion to the SOI [1].

Conventional MVDR beamforming assumes the additive
noise is Gaussian distributed. In many practical situations,
however, the noise is more impulsive and cannot be con-
sidered as Gaussian noise [6]. Recent studies show that
alpha-stable distribution is an ideal option to model this
kind of non-Gaussian noise [6]–[11] and it is termed as
the fractional lower-order alpha-stable (FLOA) distribution
when its characteristic exponent α < 2 [6]. The prob-
ability density function of FLOA is heavy-tailed and α

controls the impulsiveness. In particular, alpha-stable dis-
tributions can be applied to depict Gaussian distributions
when α = 2.

There are numerous literatures on robust beamforming
methods in the presence of alpha-stable noise. For exam-
ple, Tsakalides and Nikias [12] address a robust beamform-
ing technique based on the fractional lower-order moment
theory and this method exhibits resistance to the presence
of alpha-stable noise. To suppress the adverse effect of the
impulsive noise, FLOC is utilized to force the nulls closer to
the DOA of interference in [13] and [14]. Subjecting to linear
constraints, geometric power is employed as the cost function
in [15] to propose robust beamforming for the heavy-tailed
stable noise. In [16], the infinite-norm is used to normalize
the received data and this approach offers better interference
rejection ability. For a generalized constant modulus beam-
forming, the convergence [17] and capture properties [18] are
presented in the presence of alpha-stable noise, respectively.
In [19], a robust M-estimation orthonormal PAST beamform-
ing is proposed to combat the hostile effect of impulsive stable
noise.
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The purpose of this paper is to explain the property that
the WNAG of the FLOC MVDR beamformer is greater
than that of the conventional MVDR beamformer under
the FLOA noise, which is found by simulation. WNAG is
an evaluation parameter of the robustness for beamform-
ing methods [1]. To the best of our knowledge, there is
little attention on the WNAG of the beamforming in the
presence of the FLOA noise. To clarify the occurrence of
this phenomenon, the WNAG of the FLOC MVDR beam-
former in the presence of the FLOA noise is studied and
its explicit expression is addressed as well. With the help
of this expression, we analyze the relationship between the
WNAG and the eigenvalue separation of the covariance
matrix.

The remaining of the paper is organized as follows. The
MVDR beamformer and the FLOC MVDR beamformer
are introduced in Section II. Section III contains our main
work which explains why the FLOC MVDR beamformer
has greater WNAG than the conventional MVDR beam-
former in the presence of the FLOA noise. Furthermore,
we discuss the similarities between the diagonal loading (DL)
MVDR beamformer and the FLOC MVDR beamformer in
Section IV. Section V involves the simulation results of the
FLOC MVDR beamformer when the received array noise
obeys stable distributions. Finally, conclusions are drawn
in Section VI.

The following notations are used throughout the paper.
The superscripts (·)∗ , (·)T , (·)H and (·)−1 stand for con-
jugate, transpose, conjugate transpose and matrix inverse,
respectively. E[·] is the mathematical expectation. ‖·‖ stands
for the Euclidean norm. < [·] denotes the real part of a
complex.

II. MVDR BEAMFORMING AND FLOC
MVDR BEAMFORMING
In this section, we introduce the fundamental framework of
beamforming including the beamforming model, the MVDR
beamformer and the FLOC MVDR beamformer.

A. BEAMFORMING MODEL
Consider a uniform linear array (ULA) with M omnidirec-
tional sensors and an adjacent sensor spacing d . Suppose
that there are J + 1 (J + 1 ≤ M ) narrowband signals
with wavelength λ impinging upon the arrays from the
far field with DOA angles θ0, θ1, · · · , θJ . Then the k-th
snapshot vector x(k) of the received array signals can be
expressed as

x(k) = s0(k)a (θ0)+
J∑
j=1

sj(k)a
(
θj
)
+ v(k),

k = 1, 2, · · · ,N , (1)

where s0(k) and sj(k) (j = 1, 2, · · · , J ) are the SOI and the
j-th interference, respectively. Here, N is the number of
training snapshots. The M -dimensional vector a

(
θj
)
is the

steer vector of sj(k) and v(k) is the additional noise vector

at instant k . Set βj = 2π
λ
d sin

(
θj
)
. Then (1) can be written as

x1(k)
x2(k)
:

xM (k)

 =


1 1 · · · 1
ejβ0 ejβ1 · · · ejβJ

: :
. . . :

ej(M−1)β0 ej(M−1)β1 · · · ej(M−1)βJ



·


s0(k)
s1(k)
:

sJ (k)

+

v1(k)
v2(k)
:

vM (k)

, (2)

where vi(k) is the i-th element of the vector v(k). Here we
assume that vi(k) obeys an isotropic symmetric stable distri-
bution.

A complex random variable n = n1+in2 obeys an isotropic
symmetric stable distribution if its characteristic function
satisfies [6]

E
{
exp

(
j<
[
ωn∗

])}
= exp

(
−δ |ω|α

)
. (3)

The parameter δ (δ > 0) denotes the dispersion, which
plays a similar role to the variance of Gaussian distribution.
The characteristic exponent α determines the shape of the
distribution. More specifically, its tail becomes heavier as α
decreases. In signal processing, the random variable n is
Gaussian noise in the case of α = 2 and n is called FLOA
noise when α < 2. We refer to [6] for more details about
isotropic symmetric stable distributions.

Since the second order statistics do not converge in the
presence of the FLOA noise [6], [11], [15], the conven-
tional signal-to-noise ratio (SNR) and interference-to-noise
ratio (INR) do not exist. Thus, the geometric power for the
FLOA noise is established in [20] and [21] as an alternate
of the conventional power. The geometric SNR is defined
by [20]

SNRG = 10 log10

(
σ 2
s0(√

2Cgu
)2
)

(4)

and the j-th geometric INR by

INRG = 10 log10

(
σ 2
sj(√

2Cgu
)2
)
, (5)

where the geometric power u is computed by

u =
1
M

M∑
i=1

exp
(
E
[
loge |vi|

])
; (6)

the constant Cg ≈ 1.78 is the exponential of Euler constant
and σ 2

sj denotes the power of sj(k)(j = 0, 1, · · · , J ).

B. MVDR BEAMFORMING
The conventional MVDR beamforming, where the additive
noise is assumed to be Gaussian distributed, is one of the clas-
sical approaches proposed in the beamforming techniques. In
the Gaussian noise environment, the MVDR beamformer can
be formulated as the following optimization problem :

w = argminwHRi+nw s.t. wHa (θ0) = 1, (7)

71582 VOLUME 6, 2018



A. Song: WNAG for MVDR Beamforming With FLOC

where

Ri+n = E
{
xi+n(k)xHi+n(k)

}
(8)

is the covariance matrix of the interference plus noise

xi+n(k) =
J∑
j=1

sj(k)a
(
θj
)
+ v(k). (9)

For convenience, we use the short-hand notation a0 := a (θ0).
Through the Lagrange multiplier, the optimal solution of (7)
is given by

w = R−1i+na0
(
aH0 R

−1
i+na0

)−1
. (10)

A major drawback of the conventional MVDR beamformer
is the convergence incapability of Ri+n since the second
statistics do not converge in the presence of the FLOA
noise [6]. Therefore, the FLOCMVDR beamformer is estab-
lished in [13] and [14] to remove the shortcoming.

C. FLOC MVDR BEAMFORMER
Compared with the conventional MVDR beamformer,
the FLOC MVDR beamformer improves the robustness
against the FLOA noise [13], [14]. Its weight is given by

wFLOC = 0
−1
i+na0

(
aH0 0

−1
i+na0

)−1
. (11)

Here the FLOC matrix of interference plus noise 0i+n is
defined by

0i+n = E
{
x̃i+n(k)x̃Hi+n(k)

}
, (12)

where x̃(k) is of the following form:

x̃(k) =
[
x̃1(k), x̃2(k), · · · , x̃M (k)

]T
; (13)

x̃i(k) = (xi(k))〈p〉 , (·)〈p〉 = |·|p−1 (·)∗ (14)

and p is the parameter we choose from the interval (0, α2 ).
In [13] and [14], the convergence of 0i+n is proved in the
presence of the FLOA noise when 0 < p < α

2 . The FLOC
matrix 0i+n reduces to the conventional covariance matrix
Ri+n when the parameter p = 1 in (14). From this perspec-
tive, the FLOC MVDR beamformer in (11) can be regarded
as the generalization of the MVDR beamformer in (10).
Note 1: Since the data xi+n(k) in (9) is unknown in prac-

tice, it is substituted by the received array data x(k) [22].
Therefore, the beamformers (10) and (11) are usually
obtained by

w = R−1x a0
(
aH0 R

−1
x a0

)−1
(15)

and

wFLOC = 0
−1
x a0

(
aH0 0

−1
x a0

)−1
, (16)

where

Rx = E
{
x(k)xH (k)

}
(17)

and

0x = E
{
x̃(k)x̃H (k)

}
(18)

are the covariance matrix and FLOC matrix of x(k),
respectively.

III. WNAG DIFFERENCE BETWEEN FLOC MVDR
BEAMFORMER AND CONVENTIONAL
MVDR BEAMFORMER
WNAG is a significant measure of robustness for the MVDR
beamformer against model uncertainties [1].We find, by sim-
ulations, the WNAG of the FLOC MVDR beamformer is
greater than that of the conventional MVDR beamformer
under the FLOA noise. Why this phenomenon occurs is at
the center of our interest. In this section, we clarify this issue
from theoretical analysis. The corresponding simulations are
implemented in V-A.

Given a beamforming weight vector w, WNAG is
defined by

G =
(
‖w‖22

)−1
, (19)

where ‖·‖2 is the 2-norm of vector. It has been proved in [1]
that the sensitivity of the beamforming decreases with the
increase of WNAG. Moreover, for a constant T0, imposing
a suitable constraint on the WNAG, i.e.,

‖w‖22 ≤ T0, (20)

results in robust beamforming against the array mismatches
(e.g. [1], [22]). Furthermore, the constraint in (20) can be
represented by the WNAG constraint (see [1]) as follows:

G =
(
‖w‖22

)−1
≥ T−10 . (21)

In order to investigate the WNAG difference between the
MVDR beamformer and the FLOC MVDR beamformer,
we first define the covariance matrix � as

� :=

{
0x for FLOC MVDR beamformer
Rx for MVDR beamformer.

(22)

Then we give the relationship between the WNAG and the
eigenvalues of � in the following theorem, which is appro-
priate for both the FLOC MVDR beamformer and the con-
ventional MVDR beamformer.
Theorem 1: Assume that the covariance matrix � in (22)

is nonsingular. Then theWNAG of theMVDR beamformer G
is given by

G =

(
t1λ
−1
1 + t2λ

−1
2 + · · · + tMλ

−1
M

)2
t1λ
−2
1 + t2λ

−2
2 + · · · + tMλ

−2
M

, (23)

where λ1, · · · , λM are the eigenvalues of � and the con-
stant ti, i = 1, 2, · · · ,M , satisfies 0 ≤ ti < M and
t1 + t2 + · · · + tM = M .

Proof: See Appendix A.
Theorem 1 shows that the WNAG of the MVDR beam-

former G is dominated by the eigenvalues of covariance
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matrix �. However, it is virtually impossible to compare the
eigenvalues of 0x with those of Rx due to the nonlinearity
of 0x. This motivates us to study the relationship between the
WNAG and the eigenvalue separation of �.
Definition 1: For the eigenvalues {λ1, λ2, · · · , λM } of �

with λ1 ≥ λ2 ≥ · · · ≥ λM > 0, the eigenvalue separation
Dis (λ1, λ2, · · · , λM ) of � is defined by

Dis (λ1, λ2, · · · , λM ) :=
1

M − 1

M−1∑
j=1

λM

λj
. (24)

Obviously, the less {λ1, λ2, · · · , λM } separates, the greater
Dis (λ1, λ2, · · · , λM ) becomes. Moreover, we have

0 < Dis (λ1, λ2, · · · , λM ) ≤ 1 (25)

and the eigenvalue separation attains the maximum value 1
if and only if λ1 = λ2 = · · · = λM . Therefore,
Dis (λ1, λ2, · · · , λM ) can be regarded as a normalized mea-
sure of the separation for λ1 ≥ λ2 ≥ · · · ≥ λM > 0.
By multiplying λ−2M in both the numerator and the denom-

inator of (23), the WNAG of the MVDR beamformer G can
be written as

G =

(
t1
(
λM
λ1

)
+ t2

(
λM
λ2

)
+ · · · + tM

)2
t1
(
λM
λ1

)2
+ t2

(
λM
λ2

)2
+ · · · + tM

. (26)

Set

u1 =
λM

λ1
, u2 =

λM

λ2
, · · · , uM−1 =

λM

λM−1
. (27)

Then (24) and (26) give rise to

Dis (λ1, λ2, · · · , λM ) =
1

M − 1

M−1∑
j=1

uj (28)

and

G : = h (u1, u2, · · · , uM−1)

=
(t1u1 + t2u2 + · · · + tM−1uM−1 + tM )2

t1u21 + t2u
2
2 + · · · + tM−1u

2
M−1 + tM

. (29)

Hence, both the eigenvalue separation of � and the
WNAG of the MVDR beamformer G are the functions
of u1, u2, · · · , uM−1. Next, we will study how ui, i ∈
{1, 2, . . . ,M − 1}, exerts impacts on the WNAG of the
MVDR beamformer G = h (u1, u2, · · · , uM−1).
Theorem 2: Let uM−1 � 1. Then we have

∂G
∂ui
=
∂h (u1, u2, · · · , uM−1)

∂ui
>0, i=1, 2, · · · ,M − 1.

(30)

Proof: See Appendix B.
We see in Theorem 2 that the WNAG of the MVDR

beamformer G is a monotone increasing function of each ui,
i = 1, 2, . . . ,M − 1. In the case of α < 2 and p < 1,
the eigenvalue separation Dis (λ1, λ2, · · · , λM ) of 0x in (18)
is bigger than that ofRx in (17). This means, ui of 0x is larger

than that of Rx, which gives rise to the phenomenon that the
FLOC MVDR beamformer, compared with the conventional
MVDR beamformer, has greater WNAG.

Based on the above analysis, we conclude that the reason
why the FLOCMVDRbeamformer possesses greaterWNAG
than the conventional MVDR beamformer under the FLOA
noise is that the eigenvalues of the FLOCmatrix separate less
than those of the conventional covariance matrix.

IV. SIMILARITIES BETWEEN DL MVDR BEAMFORMING
AND FLOC MVDR BEAMFORMER
Diagonal loading (DL) is a classical and efficient approach to
improve the robustness of the MVDR beamforming [1], [23].
In this section, we explore the similarities between the DL
MVDR beamformer and the FLOC MVDR beamformer.

To begin with, we provide the expression of the WNAG of
the DL MVDR beamformer GDL. As a robust beamformer,
the weight of the DL MVDR beamformer is obtained by [1]

wDL =
(Rx + σ

2
DLI)

−1a0
aH0 (Rx + σ

2
DLI)

−1a0
. (31)

Then we get the explicit form of GDL in the following
corollary.
Corollary 1: Assume that σ 2

DL is the amount of diagonal
loading and λ1, λ2, · · · , λM are the eigenvalues of Rx. Let

λDL,k = λk + σ
2
DL, k = 1, 2, . . . ,M . (32)

Then the WNAG of the DL MVDR beamformer is given by

GDL =

(
t1λ
−1
DL,1 + t2λ

−1
DL,2 + · · · + tMλ

−1
DL,M

)2
t1λ
−2
DL,1 + t2λ

−2
DL,2 + · · · + tMλ

−2
DL,M

, (33)

where the constant ti satisfies 0 ≤ ti < M , i = 1, 2, · · · ,M ,
and t1 + t2 + · · · + tM = M .
Obviously, the expression of GDL in (33) is similar to

that of G in (23). In fact, the proof is analogous to that
of Theorem 1 by using

(
Rx + σ

2
DLI

)
instead of �. Hence,

we omit the detail.
Moreover, we consider the eigenvalues of covariance

matrix
(
Rx + σ

2
DLI

)
. By Definition 1, we have

Dis
(
λDL,1, λDL,2, · · · , λDL,M

)
− Dis (λ1, λ2, · · · , λM )

=

M−1∑
j=1

(
λDL,M

λDL,j
−
λM

λj

)
=

M−1∑
j=1

σ 2
DL(λj − λM )

(λj + σ 2
DL)λj

. (34)

Since λj > λM > 0 (j = 1, 2, . . . ,M − 1), (34) leads to

Dis
(
λDL,1, λDL,2, · · · , λDL,M

)
> Dis (λ1, λ2, · · · , λM ) .

(35)

(35) indicates the eigenvalues of covariance matrix(
Rx + σ

2
DLI

)
separate less than those of covariance matrix

Rx, which coincides with our result that the eigenvalue
separation of FLOC based matrix is weaker than that of Rx.

Last, it has been proved that the WNAG of the DL MVDR
beamformer is greater than that of the conventional MVDR
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FIGURE 1. The WNAG comparisons between the FLOC MVDR beamformer and the conventional MVDR beamformer versus characteristic
exponent α. (a) six-element array, (b) twelve-element array. The WNAGs of the FLOC MVDR beamformer are greater than those of the
conventional MVDR beamformer under the FLOA(α < 2) noise.

FIGURE 2. Eigenvalue separation Dis
(
λ1, λ2, · · · , λM

)
versus characteristic exponent α. (a) six-element array, (b) twelve-element array.

Eigenvalue separation of FLOC matrix 0x is larger than that of conventional matrix Rx under the FLOA(α < 2) noise.

beamformer (e.g. [1]). Therefore, the DL MVDR beam-
former and the FLOC MVDR beamformer also share the
common property that both of their WNAGs are greater than
the WNAG of the conventional MVDR beamformer.

Consequently, there are similarities in the expression, in the
eigenvalue separation and in WNAG between the DLMVDR
beamformer and the FLOC MVDR beamformer.

V. SIMULATIONS
This section consists of two parts. In the first part, we present
the simulations to verify the analytical results of Section III.
In the second part, we devote to investigate the performance
of the FLOC MVDR beamformer when the received array
noise obeys isotropic symmetric stable distributions.

A. SIMULATIONS FOR WNAG AND
EIGENVALUE SEPARATION
The simulation settings in this subsection are as follows. We
consider a uniform linear array with half wavelength element

spacing. The SOI arrives from 50◦ with SNRG = 0dB and
two equal-power interferences arrive from −40◦ and 0◦ with
INRG = 0dB. The length of snapshots is 1000. The WNAGs
of the FLOC MVDR beamformer and the WNAGs of the
conventional MVDR beamformer are plotted in Fig. 1 when
the noise’s characteristic exponent α changes from 1 to 1.8.
All the curves in the figures are the average values of 200
independent simulations.

Figure 1 shows that the WNAGs of the FLOC MVDR
beamformer are greater than those of the conventional
MVDR beamformer in the presence of the FLOA noise.
Under the same simulation settings, the Dis (λ1, λ2, · · · , λM )
of 0x and that of Rx are illustrated in Fig. 2. We observe that
Dis (λ1, λ2, · · · , λM ) of 0x is larger than that of Rx when
characteristic exponent α < 2, which means that the eigen-
values of 0x separate less than those of Rx under the FLOA
noise. Therefore, the reason that the WNAG of the FLOC
MVDR beamformer, in the presence of the FLOA noise,
is greater than that of the conventional MVDR beamformer
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can be concluded that the eigenvalue separation of FLOC
based matrix is weaker than that of conventional covariance.

B. PERFORMANCE OF FLOC MVDR BEAMFORMER
In this subsection, we investigate the performance of the
FLOC MVDR beamformer in the presence of Gaussian
(α = 2) noise and the FLOA (α < 2) noise, respectively.
The array considered in this part is a uniform linear array of 6
isotropic elements with half wavelength element spacing. The
look direction of the SOI is assumed to be 50◦. There are two
interferences which arrive from−40◦ and 0◦. In all examples,
we assume the SOI is always presented in the training data
cell. We compare the performance of the FLOC MVDR
beamformer against four alternative approaches including the
MVDR beamformer [1], the MVDR-DL beamformer [23],
the MVDR beamformer with forward-backward smoothing
(MVDR-FB) [24] and the robust adaptive beamforming for
general-rank signal models (BEAMFORMER-GR) [25].

The curves of optimal signal-to-interference-plus-noise
ratio (SINR) [26]

SINRopt = σ
2
s ã

H
0 R
−1
i+nã0. (36)

are included in Fig. 3, 5 and 7 as the benchmarks for Gaussian
noise, while they are not inserted in Fig. 9, 11 and 13 since
the optimal SINR (36) does not exist for the FLOA noise.
Additionally, in Gaussian noise environment, the SINR is
obtained by

SINR =
σ 2
s

∣∣wH ã0
∣∣2

wHRi+nw
, (37)

where σ 2
s and ã0 are the power and actual steer vector of SOI,

respectively [26]. However, the SINR in (37) does not exist
if the noise obeys the FLOA distribution. In this context,
we define the geometric SINR

SINRG =
expE

[
ln
(
|s0(k)wH ã0|

)]
expE

[
ln
(
|wHxi+n(k)|

)] (38)

to evaluate the SINR performance for the beamforming in the
presence of the FLOA noise. As a result, the SNR, INR and
SINR are calculated by the conventional definitions [1], [26]
for Gaussian noise and by (4), (5) and (38) for the FLOA
noise.

We test the performance of FLOCMVDR in following two
parts. The first part consists of three examples which illustrate
the performance in the presence of Gaussian noise. The other
three examples are provided in the second part for the FLOA
noise.

1) PERFORMANCE OF THE FLOC MVDR
BEAMFORMER FOR GAUSSIAN NOISE
This part shows the performance of the beamformers in
three scenarios with Gaussian noise. The INRs are fixed to
be 10dB. The SNRs in Fig. 4, 6 and 8 are equal to 10dB.
The diagonal loading factor of the MVDR-DL beamformer is
σ 2
DL = 30. Furthermore, we employ the constants γ = 30 and

ε = 3 for the BEAMFORMER-GR. All the weights of the
beamformers are trained by 250 snapshots. The output SINR
curves are the average values of 200 independent simulations.
Example 1: Exactly Known Signal Steering Vector.

FIGURE 3. Comparison of the output SINR versus SNR. The signal steering
vector is exactly known.

In Example 1, we simulate the scenario where the actual
spatial signature of the signal is known exactly. Fig. 3 shows
the output SINR versus SNR in this case. It is observed
in Fig. 3 that the SINRs of the FLOC MVDR beamformer
are comparable to those of the other four beamformers. The
five beamformers have lower output SINRs than the optimal
SINRs due to the presence of the signal of interest in the
training data cell.

FIGURE 4. Comparison of the beampatterns. The signal steering vector is
exactly known.

Fig. 4 plots the beampatterns of the five aforementioned
beamformers. We observe that the MVDR beamformer and
the FLOC MVDR beamformer cast deep nulls at the direc-
tions of interferences. Although the MVDR-FB beamformer
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casts deeper nulls than the other algorithms, its null deviates
from the true directions of interference with 2◦ shifting. Fig. 4
also indicates that the FLOCMVDR beamformers point their
mainlobes towards the SOI direction at 50◦.
Example 2: Look Direction Mismatch

FIGURE 5. Output SINR versus SNR in the presence of look direction
mismatches. The look direction error 4θ is assumed to be a Gaussian
random variable with zero mean and standard deviation

√
3
◦
.

Example 2 is concerned with the scenario in the presence
of the signal look direction mismatches. The assumed SOI’s
look direction is 50◦ and the actual look direction is 50◦+4θ ,
where 4θ is the look direction error. Fig. 5 compares the
output SINRs in the presence of the look direction error,
where the look direction estimation error 4θ is a Gaussian
random variable with zero mean and standard deviation

√
3
◦
.

This figure reveals that there has been obvious decrease in
the SINRs of the MVDR beamformer when the SNRs are
greater than 0dB. Surprisingly, the output SINRs of the FLOC
MVDR beamformer are higher than those of the MVDR
beamformer and the MVDR-FB beamformer.

Additionally, we present the beampatterns for the five
beamformers in the scenario of the look direction error
4θ = 3◦ for Gaussian noise. It is observed from Figure 6 that
both of theMVDR beamformer and the FLOCMVDR beam-
former cast deep nulls in the interference directions. In the
look direction, the MVDR beamformer casts a null about
10dB at 50◦, which means the desired signal is suppressed.
However, the FLOC MVDR beamformer casts a null about
5dB at 50◦. These results suggest that the FLOC MVDR
beamformer is more robust than the MVDR beamformer in
the presence of look direction mismatches.
Example 3: Array Random Perturbation
Example 3 corresponds to the scenario of array ran-

dom perturbations. Here the perturbation is modeled by a
zero-mean Gaussian random variable with standard devia-
tion σp. The perturbation steer vector of angle θj is given

FIGURE 6. Beampatterns in the presence of the look direction error
4θ = 3◦.

FIGURE 7. Output SINR versus SNR in the presence of array random
perturbations. The random perturbation is assume to be a Gaussian
random variable with zero mean and standard deviation σp = 0.03λ.

by [1]

ap(θj) =
[
1, exp

{
i
2π
λ
d sin(θj)

(
1+8(θj)

)}
, . . . ,

exp
{
i
2π
λ
d sin(θj)

(
M − 1+8(θj)

)}]T
, (39)

where 8(θj) = ν sin θj + ν cos θj and ν is a Gaussian random
variable with zero mean and standard deviation σp. We plot
the output SINRs in the presence of array random perturba-
tions with σp = 0.03λ in Fig. 7. It is observed from the fig-
ure that the BEAMFORMER-GR yields higher output SINRs
which are proportional to the SNRs. As the SNR increases,
there exists SINR degradation for the MVDR beamformer
caused by the look direction mismatches and the FLOC
MVDR beamformer outperforms the MVDR beamformer.
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FIGURE 8. Beampatterns in the presence of the array perturbation.
The amount of the perturbation is ν = 0.05.

Furthermore, we plot the beampatterns when the amount of
the array perturbation is ν = 0.05 in Fig. 8. It is seen that the
MVDR beamformer and the FLOC MVDR beamformer cast
deep nulls at the directions of interferences. However, at the
look direction 50◦, the FLOC MVDR beamformer maintains
higher array gain than the MVDR beamformer.

2) PERFORMANCE OF THE FLOC MVDR
BEAMFORMER FOR THE FLOA NOISE
In this part, we display the performance of the FLOCMVDR
beamformer in the three scenarios which have been consid-
ered in the first part. Nevertheless, the received array noise
is the FLOA noise with α = 1.6 rather than Gaussian noise.
The geometric INRs are fixed to be 10dB and the geometric
SNRs in Fig. 10, 12 and 14 are equal to 10dB. The diagonal
loading factor of the MVDR-DL beamformer is σ 2

DL = 100.
We employ the constants γ = 100 and ε = 3 for the
BEAMFORMER-GR.
Example 4: In the Presence of FLOA Noise with Signal

Steering Vector Known Exactly.
The purpose of Example 4 is to investigate the performance

in the presence of the FLOA noise (α = 1.6) without any
steering vector error. We plot the output geometric SINRs
versus SNRG in Fig. 9. As the SNRG increases, the MVDR
beamformer shows performance degradation due to the pres-
ence of the SOI in the training data cell, while the FLOC
MVDR beamformer achieves the highest output geometric
SINRs among the five beamformers. We also plot the beam-
patterns in Fig. 10. Although all the beamformers cast nulls
at the directions of interferences, the FLOC MVDR beam-
former tends to have the lowest sidelobe level.
Example 5: In the Presence of Both the FLOA Noise and

the Look Direction Mismatch
Example 5 corresponds to the performance of the FLOC

MVDR beamformer in the presence of the look direction
errors and the FLOA noise (α = 1.6). Fig. 11 illustrates that

FIGURE 9. Output SINRG versus SNRG in the presence of the FLOA noise
(α = 1.6). The signal steering vector is exactly known.

FIGURE 10. Beampatterns in the presence of the FLOA noise (α = 1.6).
The signal steering vector is exactly known.

the FLOC MVDR beamformer obtains the higher geometric
SINRs than the MVDR beamformer when geometric SNRs
are greater than 0dB. Moreover, the beampatterns are pre-
sented in Fig. 12 when the look direction error is 4θ = 3◦.
Although the MVDR beamformer and the FLOC MVDR
beamformer have the similar performance in suppressing the
interferences, the former attenuates SOI about 10 dB whereas
the latter improves the gain of the SOI about 5 dB.
Example 6: In the Presence of Both the FLOA Noise and

the Array Random Perturbation
The last example aims to examine the performance in

the presence of both the FLOA noise and the array random
perturbations. The settings of this example are the same as
those of Example 3 except that the received array noise is
FLOA with α = 1.6. The output geometric SINRs in Fig. 13
demonstrate that the FLOC MVDR beamformer outper-
forms the MVDR beamformer for higher geometric SNRs.
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FIGURE 11. Output SINRG versus SNRG in the presence of the FLOA noise
(α = 1.6) and look direction mismatches. The look direction error 4θ is
assumed to be a Gaussian random variable with zero mean and standard
deviation

√
3
◦
.

FIGURE 12. Beampatterns in the presence of the FLOA noise (α = 1.6) and
the look direction mismatch. The look direction error 4θ is fixed to be 3◦.

Furthermore, we show the beampatterns in Fig. 14. It is
observed that the mainlobe of the FLOCMVDR beamformer
is relatively higher than the MVDR beamformer. These
results indicate that the FLOC MVDR beamformer provides
more robustness than the MVDR beamformer in the presence
of the FLOA noise and the array random perturbations.

In summary, these simulations show that the FLOCMVDR
beamformer enjoys the best performance in the presence of
the FLOA noise (α = 1.6) without any steering vector error.
When there exist steering vector mismatches, the MVDR-DL
beamformer and the BEAMFORMER-GR outperform the
FLOC MVDR beamformer due to adopting the suitable
amount of diagonal loading. However, the FLOC MVDR
beamformer is more robust than the MVDR beamformer
against the steering vector mismatches for higher SNRs,
which can be explained by the fact that the FLOC MVDR

FIGURE 13. Output SINRG versus SNRG in the presence of the FLOA noise
(α = 1.6) and array random perturbations. The random perturbation is
assume to be a Gaussian random variable with zero mean and standard
deviation σp = 0.03λ.

FIGURE 14. Beampatterns in the presence of the FLOA noise (α = 1.6)
and the array perturbation. The amount of the perturbation is ν = 0.05.

beamformer’s WNAG is greater than that of the conventional
MVDRbeamformer.Moreover, the figures in SubsectionV-B
show that the FLOC MVDR beamformer plays similar role
to the MVDR-DL beamformer. A possible explanation for
this might be that the MVDR-DL beamformer and the FLOC
MVDR beamformer share the common property that both of
their WNAGs are greater than that of the MVDR beamformer
in the presence of the FLOA noise.

VI. CONCLUSIONS
In order to find out the reason why the WNAG of the FLOC
MVDR beamformer is greater than that of the conventional
MVDR beamformer under the FLOA noise, we first derive
the explicit expression of WNAG, which is appropriate for
both the FLOC MVDR beamformer and the conventional
MVDR beamformer (Theorem 1). Then we analyze the
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relationship between the WNAG and the eigenvalue sepa-
ration by the expression of WNAG and conclude that the
WNAG increases with the growth of the eigenvalue sepa-
ration (Theorem 2), which results in the property that the
WNAG of the FLOC MVDR beamformer is greater than
that of the conventional MVDR beamformer. Moreover,
we present the similarities in the expression, in the eigen-
value separation and in WNAG between the DL MVDR
beamformer and the FLOCMVDR beamformer. The simula-
tion results show that the FLOC MVDR beamformer, in the
presence of the steer vector mismatches, offers improved
performance compared to the MVDR beamformer when the
received array noise obeys stable distributions.

APPENDIX A
PROOF OF THEOREM 1
According to the definition of WNAG in (19), the WNAG of
either the conventionalMVDR beamformer (10) or the FLOC
MVDR beamformer (11) can be written as follows:

G =

(
aH0 �

−1a0
)H (aH0 �−1a0)

aH0 �
−2a0

. (40)

As � is Hermitian, there exists a unitary matrix U such that

� = UH3U, (41)

where 3 = diag (λ1, · · · , λM ) and λ1, · · · , λM are the
real eigenvalues of �. Since � is positive semidefinite and
nonsingular, we set λ1 ≥ λ2 ≥ · · · ≥ λM > 0 without loss
of the generality. By (41), we get

�−1 = UH3−1U (42)

and (
�−1

)H (
�−1

)
= UH3−2U, (43)

where 3−1 = diag
(
λ−11 , · · · , λ−1M

)
. Substituting (42)

and (43) in (40), we obtain

G =

[
(Ua0)H 3−1 (Ua0)

]H [
(Ua0)H 3−1 (Ua0)

]
(Ua0)H 3−2 (Ua0)

. (44)

Set

Ua0 = (c1, c2, · · · , cM ) . (45)

Then (44) can be written as

G =

(
c∗1c1λ

−1
1 + c

∗

2c2λ
−1
2 + · · · + c

∗
McMλ

−1
M

)2
c∗1c1λ

−2
1 + c

∗

2c2λ
−2
2 + · · · + c

∗
McMλ

−2
M

. (46)

Let

t1 = c∗1c1, t2 = c∗2c2, · · · , tM = c∗McM . (47)

Then we obtain (23). Moreover, from (47), we have

t1 + t2 + · · · + tM = (Ua0)H (Ua0) = aH0 a0 = M (48)

and 0 ≤ ti < M , i = 1, 2, · · · ,M , which completes the
proof.

APPENDIX B
PROOF OF THEOREM 2
Differentiating G = h (u1, u2, · · · , uM−1) with ui,
i = 1, 2, · · · ,M − 1, we have

∂G
∂ui
=
∂h (u1, u2, · · · , uM−1)

∂ui

=

2ti
(∑M−1

j=1 tjuj + tM
)

(∑M−1
j=1 tju2j + tM

)2 [tM (1− ui)

+

M−1∑
j=1,j 6=i

tjuj(uj − ui)]. (49)

It follows from (47) and (27) that

M−1∑
j=1

tjuj + tM > 0.

Since uM−1 � 1, we get

M−1∑
j=1,j 6=i

tjuj(uj − ui)+ tM (1− ui) > 0. (50)

Substituting (50) in (49), we have (30).
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