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ABSTRACT To improve the space utilization and traffic capacity of a signalized junction, this paper
proposes a dynamic reversible lane assignment method for approaches of signalized junctions that consider
the game equilibrium between road users and traffic controllers. To theoretically analyze the behaviors of
the players involved in the leader-follower strategic game, a bi-level programming model is established.
To minimize the total queue length of approaches at signalized junctions, the upper model dynamically
optimizes the reversible lane assignments and can be solved with the enumeration method or theMonte Carlo
algorithm. The lower model outputs the traffic assignment at road sections using a Logit-based stochastic
user equilibrium model that is solved by the method of successive averages. The general impedance of road
section in lower model consists of the road travel time cost and the intra-time cost at the signalized junction
connected with current road section. In addition, the interaction between the two levels is simulated in an
iterative optimization procedure. Finally, this paper uses two numerical experiments to validate the proposed
approach.

INDEX TERMS Bi-level programming, queue length, reversible lane, stochastic user equilibrium, traffic
engineering.

I. INTRODUCTION
The junctions of a road network are important nodes. The
spatial and temporal optimization of junctions is thus critical
for guaranteeing smooth and safe urban traffic flow. Setting
reversible lanes can significantly improve the space usage of
a junction. Based on the periodicity and real-time attributes
of traffic flow, the driving direction(s) at junction lane(s)
can be reversed dynamically using traffic engineering and
computer controlling actions, which allows for more reason-
ably and effective road space use. As a result, traffic flows
through a junction can be adjusted and the junction capacity
can be improved [1]. Under the reversible lane mechanism,
the desired driving directions at junctions’ approaches or
channelized sections can be reversed with the change of traf-
fic flows into and out of the junction. Therefore, the dynamic
assignment of reversible approach lanes can make full use
of road space and alleviate the conflict between periodically
changeable heavy traffic and fixed approach lane assign-
ment of a junction. Implementing dynamic assignment of

reversible approach lanes can release the road capacity of an
urban traffic network and reduce traffic congestion.

The dynamic reversible lane assignment technique is appli-
cable to various classified roads. Without any large changes
to road structure, controlling facility or traffic infrastructure,
dynamic reversible lanes can greatly improve road capac-
ity [2]–[4]. Effectiveness, feasibility and safety issues of
implementing lane reversal have been discussed in, for exam-
ple, Hemphill and Surti [5], Waleczek et al. [6]. Reversible
lanes have been widely used in many scenarios with unbal-
anced bi-directional traffic including tidal rush hour traffic
flow [7], [8], emergency rescue [9]–[12], and temporary
road maintenance [13]–[16]. The reversible strategy becomes
more widely accepted mainly for the emergency evacuation.

The reversibility strategy is a traffic management method,
which essentially accommodates the unbalanced traffic flows
between two driving directions on a congested roadway
section during daily peak periods. Researchers provided
many controlling method and strategies of the reversible
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lanes. Tuydes and Ziliaskopoulos [17], [18] formulated
the system-optimal dynamic traffic assignment (SODTA)-
based capacity reversibility problem as a linear program,
which propagates traffic based on the cell transmission
model (CTM) to better represent vehicle-level movements,
to capture spatiotemporal changes in disaster conditions,
and to enable optimal capacity reversibility calculation. The
deficiencies of lane-based capacity-reversibility models are
on the cost of the street divisions and the risk in assigning
contradicting flows on the same highway. Karoonsoontawong
and Linet al. [8] proposed a time-varying lane-based capac-
ity reversibility (TVLCR) model based on the user-optimal
dynamic traffic assignment (UODTA) for peak-period traf-
fic management on a daily basis. The model embedded
the cell transmission model (CTM) that can capture traf-
fic realisms such as shockwaves and spillovers. Xie and
Turnquist [19], [20] established and solved a model for the
evacuation network optimization problem by integrating lane
reversal and crossing point elimination strategies. Xie et al.
assume drivers do not receive instructions from the road-
way manager and behave in a user-optimal manner, and
also assume static reversibility, and developed a Lagrangian
relaxation-based Tabu search. Kalafatas and Peeta [16] pro-
posed an optimal lane reversal model constrained by a limited
set of crossing elimination designs, in which the crossing
elimination setting at each intersection is treated as selection
of turning movements from a pre-specified allowable set.
Xu et al. [21] proposed a hybrid dynamic lane operation
that can automatically adjust the direction of tide lanes and
reversible lanes based on road structure, traffic controlling
facilities and predominant driving direction changes. Zhang
and Gao [22] built a discrete bi-level programming model to
adjust the lane assignment of road sectionswhere traffic flows
in each direction are disequilibrium. Sheu and Ritchie [23]
analyzed the potential of applying lane reversal techniques to
alleviate temporary congestion caused by traffic incidents and
formulated a discrete-time nonlinear stochastic model with
estimation of lane-changing fractions for real-time incident
management. Zhao et al. [24] presented an innovative design
and operational model for signalized diamond interchanges
by dynamically reversing certain lanes in the internal link on
a regular basis with the deployment of overhead reversible
lane control signs. Krause et al. [25] studied the advantages
of using dynamic reversible lanes for left-turn movements
at the signalized diamond interchange of freeway-to-arterial
connections. Asia and Ratroutb [26] proposed a quickmethod
of finding the optimum lane group for 3-lane and 4-lane
approaches at junctions where each approach in turn is given
its green light using the percentage of turning movements.
It was achieved by developing massive hypothetical data
sets of turning volumes (more than 600,000 data sets) for
the typical intersection. Wong and Wong [27] developed
a binary-mix-integer linear optimization model to integrate
the design of lane markings and signal timing settings for
isolated junctions. They considered two objectives: capacity
maximization and cycle length minimization. Using several

numerical examples, they concluded that their optimization
method enhanced the junction operation by increasing the
reserve capacity up to 48%.

However, in the above studies and practices, the number
and driving direction of reversible lanes are fixed, which can
neither maximize the effect of reversible lanes nor make the
best use of road space resource. Although constant changes
of canalization direction have a negative effect on driving,
dynamic reversible lane assignment has become more real-
izable with the development of driver assistance systems and
automatic drive technology [28]–[30]. Furthermore, dynamic
reversible lane assignment is meaningful for public transit,
car ride sharing and automated vehicles. Based on the behav-
iors of traffic supply and demand over road networks and the
traffic equilibrium theory, this paper proposes a method of
dynamic reversible lane assignment that is formulated using
a bi-level programming model that involves Stochastic User
Equilibrium (SUE) [31], [32]. The bi-level programming
optimization has increasingly appeared in the transportation
field [33]–[37]. In this paper, the upper model of the bi-level
programming minimizes the total queue length at junctions’
approaches to find the optimal assignment of reversible lanes,
while the lower model is a traffic assignment model based on
stochastic user equilibrium and is solved by the successive
averages algorithm. This paper uses two numerical studies
for model validation.

II. DYNAMIC REVERSIBLE LANE ASSIGNMENT MODEL
In proposed the bi-level model, the upper model is built
for optimizing reversible lane assignment by computing and
comparing the total queue length at junctions’ approaches.
The lower model is the traffic assignment model based on
stochastic user equilibrium, which assigns travel routes and
outputs traffic flows on the road sections. The model assump-
tions are as follows:

(1) All drivers are able to obtain lane reversal information
in advance and driving behaviors are free from the effect of
canalization changes.

(2) OD demands are known in the study area.

A. UPPER MODEL

minZu
(
qia, k

i
a

)
=

∑
a∈A∩N a∈I

∑
i∈Ma

H i
a (1)

Here, Zu is the average queue length at junctions’
approaches, H i

a is the average queue length (measured by
vehicle count) of direction i at approach a, qia is the flow
rate (vehicles/hour) of direction i at approach a, k ia is the lane
counts of direction i at approach a, A is the set of approaches
in the road networks, na is the lane count of approach a,
N a is the downstream node of road section a, I is the set of
signalized junctions in the road network, andMa is the set of
flow directions at approach a.
Researchers have proposed many of approaches to calcu-

late queue length, such as Miller, Akcelik, SYNCHRO 3,
SIGNAL 94, and TRANSYT [38]. Here, the classical Akcelik
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model is employed to compute the queue length at a junction’s
approaches [39] as follows:

H i
a =

q
i
ar
i
a+

exp
[
−1.33

√
siagia

(
1−χ ia

)
/χ ia

]
2
(
1−χ ia

) , 0 ≤ χ ia<1

siaλ
i
ar
i
a + 0.5siaλ

i
aT
(
χ ia − 1

)
, χ ia ≥ 1

(2)

s.t.

r ia+g
i
a = Ca, ∀a ∈ A, N a

∈ I , i ∈ Ma (3)

λia =
gia
Ca , ∀a ∈ A, N

a
∈ I , i ∈ Ma (4)

sia = sk ia, ∀a ∈ A, N
a
∈ I , i ∈ Ma (5)

χ ia =
qia
siaλia

, ∀a ∈ A, N a
∈ I , i ∈ Ma (6)

1 ≤ k ia≤na ∩ k
i
a∈N , ∀a ∈ A, N

a
∈ I , i ∈ Ma (7)∑

i∈Ma

k ia = na, ∀a ∈ A, N a
∈ I ∪ 0.5 (8)

qia ≥ 0, ∀a ∈ A, N a
∈ I , i ∈ Ma (9)

χ ia ≥ 0, ∀a ∈ A, N a
∈ I , i ∈ Ma (10)

Equation (8) is the constraint that guarantees each direc-
tional traffic flow has independent right-of-way. r ia is the red
time (hours) of direction i at approach a, sia is the saturate flow
rate (vehicles/hour), which is equal to the product of single-
lane saturate flow rate (s) and the lane count of direction i
at approach a (k ia), g

i
a is the effective green time (hours) of

direction i at approach a, Ca is the cycle time (hours) of
the signalized junction at approach a, χ ia is the saturation of
direction i at approach a, λia is the green split of direction i at
approach a, and T is the study time span (hours).

B. LOWER MODEL
The lower model is a Logit-based Stochastic User Equilib-
rium model for traffic assignment, which is formulated as
follows:

min ZL (f ) =
∑
a∈A

∫ qa

0
[ta (x)+ da (x)] dx

+
1
θ

∑
w∈W

∑
r∈RW

f wr ln f wr (11)

s.t.
∑
r∈Rw

f wr = ew, ∀w ∈ W (12)

f wr ≥ 0, ∀r ∈ Rw, w ∈ W (13)∑
w∈W

∑
r∈Rw

f wr d
w
a,r = qa, ∀a ∈ A (14)

Here, ZL (f ) is the objective function, θ denotes traveler
perception degree of impedance, which is inversely propor-
tional to perception error, f wr is the traffic flow along Route r
betweenOD pairw, and ew is the traffic demand of OD pairw.
A road network can be presented by a weighted directed

graph G(N, A, I) in which N is the node set, A is the road

section set and I is the signalized junction set. The impedance
function consists of a deterministic term and the stochastic
error, which is shown in (15) and (16). The stochastic error
term follows the Gumble distribution.

cw
r
(f ) =

∑
a

ca (qa)δwa,r + ξ
w
r (15)

ca (qa) = ta (qa)+ da (qa) (16)

Here, cwr is the general travelling impedance on Route r
between OD pair w, and δwa,r is a 0-1 parameter of Route r
between OD pair w, where road section a on Route r is 1
and otherwise δwa,r is 0. ξ

w
r is the stochastic error, ca (qa) is

the general impedance of road section a, and ta (qa) is the
traveling time cost on road section a, which can be calculated
with the BPR functions as follow [40]:

ta (qa) = t0a

[
1+ α

(
qa
Qa

)β]
(17)

Here, t0a is the free flow time on road section a, qa is
the traffic flow (vehicles/hour) on road section a, Qa is the
traffic capacity (vehicles/hour) of road section a, and α, β are
constant parameters (usually α = 0.15, β = 4).
In (16), da (qa) is the intra-time cost at the signalized

junction connected with road section a, and da (qa) can be
computed by the Webster delay model as follows [41], [42]:

da (qa) =
∑
i∈Ma

d iaq
i
a/qa (18)

d ia =



Ca
(
1−λia

)2
2(1−λiaχ ia)

+

(
χ ia
)2

2qia(1−χ ia)
−0.65

[
Ca

(qia)
2

] 1
3

(
χ ia
)2+5λia , 0 ≤ χ ia < 1 ∩ N a

∈ I
Ria
2 +

T
(
χ ia−1

)
2 , χ ia > 1 ∩ N a

∈ I
0,N a /∈ I

(19)

Here, I is the junction set, N a is the downstream node of
road section a, and d ia is the average time cost (hours/vehicle)
of direction i at road section a. If the downstream node of a is
signalized junction, the first two equations in (19) are used to
compute d ia; otherwise, d

i
a = 0 (the last equation in (19)). qia

is the flow rate (vehicles/hour) of direction i at road section
a, λia is the green split of direction i at road section a, χ ia is
the saturation of direction i at road section a, Ca is the cycle
time (hours) of the signalized junction connected with road
section a, and Ma is the direction set of road section a.

Applying the Lagrange relaxation to the lower model,
the Lagrange function can be obtained as follows:

L = ZL +
∑
w∈W

µw

ew −∑
r∈Rw

f wr

−∑
w∈W

∑
r∈Rw

νwr f
w
r (20)

Here, µw and νwr are Lagrange multipliers corresponding
to the constraints. According to the Kuhn-Tucher conditions,
the extreme point of the Lagrange function (20) satisfies the
following conditions:

∂L
∂f wr
= 0,

∂L
∂µw
= 0,

∂L
∂νwr
= 0 (21)
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which can be transformed to:
∂L
∂f wr
= cwr +

1
θ
ln f wr − µ

w
r = 0 (22)

So the flow on Route r between OD w can be determined
as:

f wr = exp
[
−θ

(
cwr − µ

w
r
)]

(23)

Substituting (23) into constraint (12), the equilibrium flow
on Route r between OD w can be finally obtained as follows:

f w∗r = ew
exp

(
−θcwr

)
∑
j∈Rw

exp
(
−θcwj

) , ∀r ∈ Rw, w ∈ W (24)

Equation (24) also proves that traveler route choice behav-
ior follows the Logit model.

III. SOLUTION ALGORITHMS FOR BI-LEVEL
PROGRAMMING MODEL
A. ALGORITHM DESIGN
To solve the bi-level programming model, this paper uses an
iteration algorithm which is described as follows [43]:
Step 1 (Initialization): Set the iteration counts n = 1. Set

da (qa)(1) = 0 (ignoring the intra-time cost in junctions).
Solve the lower model and obtain route flow f w(1)r and road
section flow q(1)a .
Step 2 (Solve the Upper Model): Substitute the route flow

f w(n)r and road section flow q(n)a into the upper model to com-
pute the flows of each direction at approaches of signalized
junctions and find the optimal reversible lane assignment in
iteration n. Compute the intra-junction time cost da (qa)(n).
Step 3 (Solve the Lower Model): Set n = n+ 1. Substitute

da (qa)(n−1) (the intra-junction time cost in iteration n − 1)
into the impedance function to solve the lower model and
obtain the route flow f w(n)r and road section flow q(n)a in
iteration n.
Step 4 (Stop Iteration): If the change rate of the objective

function value of 2 successive iterations is less than the preset
convergence precision, then the iteration procedure will be
stopped and the optimal reversible lane assignment will be
output; otherwise, go to step 2.

B. UPPER MODEL SOLUTION ALGORITHM
The upper model uses multi-variable nonlinear programming
which can be solved with the enumeration method when the
road network is small. When the road network is large and the
number of variables is high, the problem can be solved with
the Monte Carlo algorithm as follows:
Step 1: Set iteration j = 1. Set maximum iteration jmax.

Randomly generatem feasible solutions k i(j)a and compute the
corresponding objective function values.
Step 2: Find the optimal feasible solution by sorting m

objective function values in descending order. Set this best
objective function value as Z (j)u .
Step 3: According to the probability distribution of the

first n feasible solutions in descending order, generate m− n

feasible solutions k i(j+1)a . The new feasible solution set is
composed ofm−n feasible solutions k i(j+1)a and the n feasible
solutions k i(j)a .
Step 4: Find the best objective function value Z (j+1)u from

the new feasible solution. If the objective function value
difference between 2 iterations is less than the convergence
precision ε, i.e., Z (j+1)u −Z (j)u < ε, then the iteration procedure
will be stopped; otherwise, set j = j + 1 and check whether
the iteration count reaches jmax. If j < jmax, go to Step 3;
otherwise, the iteration procedure will be stopped.

C. LOWER MODEL SOLUTION ALGORITHM
The lower model is solved by theMethod of Successive Aver-
ages (MSA) based on road section flow. The MSA procedure
starts with a preset iteration step sequence {κn} where the
iteration count n = 1, 2, . . .. To guarantee the convergence of
MSA, the iteration step sequence must follow the condition
∞∑
n=1

κn = ∞,
∞∑
n=1

(κn)
2 < ∞, and the solution search direc-

tion is descent. Sheffi proved that the descent expectation
direction is adequate for guaranteeing the convergence of
MSA even though the search direction is stochastic in each
iteration [33], [44]. If the iteration step sequence κn =

{
1
n

}
,

MSA procedure is described as follows:
Step 1(Initialization): Set the iteration count n = 1. Ini-

tialize t(1)a . Randomly load route flows onto the road network
and obtain the initial road section flow q(1)a .
Step 2 (Update Road Section Impedance): Set iteration

count n = n+ 1. According to road section flow q(n)a , update
impedance c(n)a = ca

(
q(n)a

)
.

Step 3(Determine Search Direction): According to
impedance c(n)a and (24) , assign OD demands to routes and

obtain the additional road section flow q(n)a . Set the search

direction as the direction of q(n)a − q
(n)
a .

Step 4(Update Road Section Flow): The new road section

flow q(n+1)a = q(n)a +
(
q(n)a − q

(n)
a

)
/n.

Step 5(Stop the Iteration): If the change rate of road
section flows between 2 iterations is less than the convergence

precision, i.e.

√∑
a∈A

(
q(n)a − q

(n−1)
a

)2
/
∑
a∈A

q(n−1)a ≤ ε, then

the iteration procedure will be stopped and the traffic flow
assignment will be output; otherwise, go to Step 3.

IV. NUMERICAL EXPERIMENTS
A. NUMERICAL EXPERIMENT 1
The road network 1 in the first experiment is presented as
Fig. 1. The impedance function on each road section is tagged
in the figure. Road section AB, AC, BD, and CD are all
1-direction 3-lane roads, and road section BC, CB are bi-
directional, 6-lane roads. The saturate flow rate of a lane is
1700 vehicles/hour. There is only 1 OD pair ODAD in this
experiment. The demand ofODAD is 1000. There are 4Routes
from origin A to destination D, i.e., ABD (Route 1), ACD
(Route 2), ABCD (Route 3) and ACBD (Route 4).
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FIGURE 1. Road network of experiment 1.

TABLE 1. Signal timing plans of Junctions B and C.

Nodes B and C are signalized junctions, which have two
phases. The phases, phase sequence and signal timing plans
for which are presented in Table 1. g1 and g2 denote the green
time of phase 1 and phase 2. λ1 and λ2 denote the green split
of phase 1 and phase 2.

In the lower model, θ is traveler perception to road
impedance; the smaller the variance of traveler perception,
the larger the θ value and the faster the convergence of the
algorithm. And conversely, the larger the variance of traveler
perception, the smaller the θ value. Here, it is assumed that the
travelers are well aware of the impedance and the variance of
the perception is small. Thus, in this experiment, θ is set as 10.
After 3 iterations, the algorithm is converged. The low traffic
demand in this experiment is another reason for fast conver-
gence. The output results of each iteration, including the route
flows, the number of lanes at approaches of junctions B andC,
the average network impedances are listed in Table 2.

As θ varies, iteration count, route flow and average
impedance vary, as shown in Table 3. As θ increases, the
algorithm converges faster and the average impedance (rep-
resented as Avg. Imp.) decreases. When θ ≥ 0.5, the average
impedance stabilizes. When θ ≥ 0.8, the flows of Route
ABCD and ACBD remain 0, and the OD demand is always
assigned to Routes ABD and ACD.

TABLE 2. Outputs of each calculation iteration.

TABLE 3. Route flow, iteration count and average impedance for several
values of θ .

Fig. 2 displays the relationships of θ , the converged route
flow the average impedance (Avg. Imp.). For a fixed road
capacity, the OD demand ew can indicate the congestion
level of the road network. The larger ew, the more serious
the congestion. When the demand is low, the change of
impedance expectations between 2 successive iterations and
the traffic assignment results hardly change, and thus the
algorithm converges faster; the inverse case, i.e., with high
traffic demand and slow convergence, is also true. In this
experiment, the OD demand is not high and the algorithm
converges quickly.

To assess the benefits of several scenarios based on travel
demand information, we use the formulation proposed by
Chen and Kempe [45]. Although a driver experiences and
considers only his/her own travel time, the cost of the entire
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FIGURE 2. Relationships among θ , converged route flow and average
impedance.

FIGURE 3. Route flow and average impedance.

system also includes the marginal cost of the driver imposes
on all other drivers on the road segments he/she takes. The
cost function of a driver is a linear combination of the cost
he/she will incur and the total marginal cost his/her choice
imposes on everyone else, i.e.

cwa (qa)

= (1− w) [ta (qa)+ da (qa)]+ w
∂ [qata (qa)+ qada (qa)]

∂qa

= [ta (qa)+ da (qa)]+ wqa
∂ [ta (qa)+ da (qa)]

∂qa
(25)

Here, w ∈ [0, 1] defines the weight of social good, which
ranges between 0 and 1. w = 0 indicates a driver considers
only the cost of his/her route and potentiallymoves the system
away from optimality. The set of flows that occur when
every driver minimizes their own travel time is referred to
as the user equilibrium flows. Theoretically, in the resulting
system state, no driver can benefit from deviating from their
route. This idea, essentially describing a Nash equilibrium
in roads, is captured in Wardrop’s principles in transporta-
tion [46], [47]. w = 1 indicates the driver chooses routes with
respect tomarginal costs, thusmoving the system closer to the
system optimum. The resulting convex programming for the
socially aware routing problem is as follows:

min
∑
a∈A

∫ qa

0
cwa (x) · xdx (26)

TABLE 4. Road section specifications.

FIGURE 4. Road network of experiment 2.

In the above experiment, the optimized lane assignment
schemes do not change with different traffic assignment mod-
els. Therefore, the optimized result is independent of the
traveler route choice behavior described in the lower model.
Travelers always prefer Route ABD and ACD while Route
ABCD and ACBD are not chose. The equilibrium flow and
average network impedance of Route ABD and ACD with
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TABLE 5. Routes between OD(1, 25) and OD(25,1).

different traffic assignment models are displayed in Fig. 3.
FromFig.3 it can be observed that the flowonRouteABDand
ACD are not very different. The difference between the two
route flows calculated with SUEmodel is the smallest among
all traffic assignment models, and the average impedance per
vehicle is also the smallest (16.52 s). The average impedance
computed by the User Equilibrium model (w = 0) is 17.81 s,
and that computed by the System Optimization model (w =
1) is 17.79 s. Therefore, according to the traffic assignment
and the reversible lane scheme optimized by the proposed
model, the average impedance per vehicle can be reduced by
approximately 1.3 s (7.8%) compared to other models.

B. NUMERICAL EXPERIMENT 2
The road network used for experiment 2 is presented in Fig. 4.
There are 25 nodes including 6 signalized junctions which
are Nodes 4, 6, 18, 20, 22 and 24. There are 50 road sec-
tions. All bi-directional road sections are 6-lane roads and
all one-directional road sections are single-lane roads. The
specifications of the road sections are listed in Table 4.

There are 2 pairs of OD demands: OD(1,25) and OD(25,1).
There are 6 routes from origin node 1 to destination node
25 and 9 reverse routes. Table 5 lists the alternative routes
between the two ODs.

The junction 4 and 6 has two phases, junction 18 and
20 has three phases, and junction 22 and 24 has four phases.
Table 6 shows the phase sequences and signal timing plans of
the six signalized junctions.

The output optimal lane assignment by the proposedmodel
is listed in Table 7. The lane assignment is related to the trav-
eler impedance perception (θ ), because the travel impedance
perception is strongly related to the route flow assignment,
which determines the traffic flow at junction approaches.

The equilibrium flows on each route between the two OD
pairs are displayed in Fig. 5. The traffic demand of OD(1,25)

TABLE 6. Parameters of the 6 signalized junctions in experiment 2.

FIGURE 5. Flows on the routes between the 2 ODs.

is mainly assigned to Route 2 and Route 5. When θ ≥ 0.6,
almost every traveler chooses Route 5. The traffic demand of
OD(25,1) is mainly assigned to Routes 1, 4, 6 and 8. With θ
increasing, the flow on Route 1 increases but those on other
routes decrease. When θ = 1.0, all travelers choose Route 1
or Route 4.

The flow distribution is shown as Fig. 6 for θ values of
0.2 and 1.0, where the solid lines denote flows on the routes
between OD(1,25), while the dotted lines depict flows on
the routes between OD(25,1). Moreover, the thicker line,
the more flows on the route. It can be observed in Fig. 6 that
few travelers choose one-way road sections.
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TABLE 7. Optimal lane assignment.

The average impedance (i.e. travel cost) and total queue
length of the network in Experiment 2 are shown in Fig. 7.
It can be seen that the average network impedance dramat-
ically decreases at first and then stabilizes as θ is incre-
mented. When θ ≥ 0.6, the average network impedance
remains nearly identical. The average network impedance
reduces by 130.45 s as θ increases from 0.1 to 1.0. However,
the total queue length at signalized junction increases as θ is
incremented because traffic will concentrate at some certain

FIGURE 6. Route flow distribution when θ is 0.2 and 1.0.

FIGURE 7. Average network impedance and queue length with different θ .

road sections to increase traffic flow at the approaches of
signalized junctions. As a result, longer queues will appear
at signalized junctions. The tendencies of average impedance
and queue length in response to increment of θ indicate that
travel time cost has a larger impact on traveler route choice
than intra-junction time cost does.

V. CONCLUSIONS
To improve junction capacity and reduce time cost
(impedance), this paper proposes an approach to dynamically
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optimize reversible lane assignments for signalized junctions
and a bi-level programming model. The lower model is
a stochastic user equilibrium model used to compute the
equilibrium traffic flow on a road network. According to the
equilibrium traffic flow, the upper model gives the optimal
reversible lane assignment, which is used as the input of the
lower model for the next optimization iteration.

To validate the proposed model, this paper employs two
numerical experiments. The first experiment uses a simple
road network which has only 4 routes from origin to desti-
nation. The result shows that, despite using different traffic
assignment models, the same optimal reversible lane assign-
ment can be obtained. However, the stochastic user equi-
librium model can determine the smallest average network
impedance which is 7.8% smaller on average than other traf-
fic assignment models. Moreover, the algorithm convergence
speed is relevant to the impedance perception parameter θ .
The algorithm convergence is faster with θ increment. When
θ ≥ 0.5, the average network impedance is stabilized. Due to
the small scale of the first experimental network, the conver-
gence precision has little impact on the final optimal result.

The second experimental network is a field road network.
According to the result, the optimized reversible lane assign-
ment depends on the parameter θ . The larger the value of θ ,
the smaller the average network impedance. The average
impedance decreases by 40% when θ increases from 0.1 to
1.0. The optimized reversible lane assignment when θ = 1.0
is logically reasonable, so the validity of the proposed model
can be proved.

In conclusion, by using the proposed approach to optimize
the reversible lane assignment for junctions, the junction
capacity can be improved and traveler time cost can be
reduced. Furthermore, the proposed approach is expected to
improve the operation of the entire urban road network with
relatively small investment. In the future road network where
self-driving cars and traditional human-driving cars coexist,
the optimization of reversible lane assignments deserves fur-
ther study.
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