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ABSTRACT Traffic congestion has gradually become a focal issue in people’s daily life. When the traffic
flow on a road segment exceeds its actual capacity, congestion takes place. During rush hours, a congested
road segment must carry heavy loads for a long time and is very likely to spread traffic congestion to this
road’s adjacent segments via the spatial structure of the road. The new infected road segments continue
propagating congestion in the same way. In this paper, we attempt to model the congestion propagation
phenomenon with a space-temporal congestion subgraph (STCS). To this end, we detect each segment
regardless of whether it is congested during consecutive time intervals and build the connection of two
segments in terms of their spatio-temporal properties. Due to the sparseness of the trajectory data, two
strategies of filling missing congestion edges from both temporal and spatial viewpoints are also proposed.
Since STCSes are constructed from the same time interval over different days, we design a specific algorithm
to discover the frequent congestion subgraphs. Finally, we evaluate the solution on Shanghai taxicab data
and the corresponding road network. The experiment shows that the frequent congestion subgraph can reveal
an urban congestion propagation pattern.

INDEX TERMS Congestion propagation, frequent subgraphs, trajectory data processing.

I. INTRODUCTION
The rapid growth in the number of vehicles and people’s
various travel demands have made urban traffic congestion
increasingly severe. Every day, people have to suffer from
serious traffic jam during rush hours, which leads to the loss
of time and heavy air pollution. At first, congestion usually
takes place on a few road segments instead of the majority of
roads. In case the congestion is maintained for a long time,
the current segment would probably infect its neighbours
through the spatial connection between them (e.g., some vehi-
cles move into a neighboring road). Then the new infected
roads still have a chance to diffuse the congestion to their
adjacent roads. This process can continue until the traffic
volume starts to decrease. In some extreme cases, such as bad
weather, sports event, or natural disaster, this phenomenon
becomes more obvious and congestion can be spread over a
large range of the road network.

Although there are some researches focusing on urban traf-
fic congestion pattern [1]–[5], these studies place emphasis
on spatial correlations between adjacent congested roads over
a single time interval instead of consecutive time intervals,

which leads to the lack of a useful solution that dynami-
cally reflects the evolution of urban congestion. For exam-
ple, Rempe et al. [2] proposed an algorithm of finding urban
congestion clusters and investigated correlations between
congestion clusters. Therefore, it is significant to model the
process of transformation between appearance and disappear-
ance on a road segment and contagion from congested road
segments to their neighbours as a specific propagation behav-
ior of traffic congestion. This research field is rarely tackled.
To our best knowledge, only [6] has investigated the process
of traffic congestion propagation. A congestion tree is built to
describe the propagation pattern, but the tree structure is not
sophisticated enough to reveal the spreading dynamic, thus
a more powerful model of revealing urban traffic congestion
pattern is urgently needed. To this end, we design a dynamic
Space-Temporal Congestion Subgraph (STCS) to delineate
the latent pattern of urban traffic propagation. This raises the
following research challenges:
• Due to the lack of real historical data, we need to extract
traffic condition on each road segment with the help of
massive trajectory data.
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• The time of transformation between existence and
nonexistence for congestion on every road segment
varies from each other. In the meantime, the duration
when each congested segment spends spreading the con-
gestion to its neighbours is also different.

• Each road segment has its respective characteristics,
such as length, the number of lanes, maximum speed,
and so on, while spreaders of the traffic propagation
in complex networks do not have their own unique
attributes (i.e., the only difference between these spread-
ers is their positions in the network) [7]–[10].

To tackle these challenges, we implement a Map-Matching
algorithm for high-sampling-rate taxi trajectory data to com-
pute the average speed along one or two directions on a road
segment during different time intervals. Congestion on the
segment is detected in terms of the index TSI [11]. We pro-
pose a directed graph named Space-Temporal Congestion
Subgraph (STCS) to demonstrate the spread dynamic.

The main contributions of this paper are briefly summa-
rized as follows:
• Inspired by the trajectory data sparseness, two strategies
from both temporal and spatial perspectives are designed
for filling missing congestion edges, respectively.

• We model the traffic congestion propagation as the
STCS and illustrate the algorithms to dynamically
construct the specific subgraph over contiguous time
intervals.

• We evaluate our solution to discover frequent STCS
through the taxicab trajectory data and Shanghai road
network. The frequent subgraphs reveal the congestion
propagation pattern in Shanghai.

The remainder of the paper is organized as follows: prelim-
inaries are introduced in Section II. The Map-Matching algo-
rithm is demonstrated in Section III. We explain congestion
detection in Section IV. The strategies of fillingmissing edges
are presented in Section V. In Section VI, we detail how to
construct the Space-Temporal Congestion Subgraph (STCS).
The method of discovering frequent STCSes is illustrated in
Section VII.We evaluate our methods based on real trajectory
data in Section VIII. The related work are summarized in
Section IX. In Section X, we conclude our research.

II. PRELIMINARY
In this section, we give the definitions throughout the paper
to avoid possible confusion.
Definition 1: A GPS point is collected by a Positioning

System at regular intervals. It herein refers to a quintuple
which conclude its timestamp, longitude, latitude, instanta-
neous velocity, and instantaneous direction.
Definition 2: A GPS trajectory is a GPS point sequence

ordered by timestamps. The duration of a trajectory is the
interval between the first point’s timestamp and the last ones.
These points in a trajectory should be consecutive in their
timestamps and no point within the interval can be missed.
Definition 3: A road segment is a directed edge corre-

sponding to one real road on amap. These edges are classified

FIGURE 1. Road structure.

into two categories: one-way and double-way. The car can
travel along the former only in a single direction and along
the latter in both directions. Every edge is assigned a unique
ID, and the attributes of a segment contain its location, length,
road grade, the number of lanes and name of this segment.
Definition 4: An intersection is a terminal of one certain

road segment or one common end of several segments. Every
intersection is associated with its own ID and location.
Definition 5: A road network is a directed graph G(V ,E),

which is comprised of the set of road segments E and the
according set of intersections V .
Definition 6: A path is a segment sequence where two

arbitrary, adjacent segments are connected, i.e., one car can
traverse the segments in the sequence from beginning to end
one by one.
Definition 7: A subgraph is defined in the following pas-

sage. Given a directed graph G′(V ′,E ′), V ′ ⊆ V , E ′ ⊆ E , for
∀ei, ej ∈ E ′, one of the constraints needs to be satisfied:

1) In the graph G′, there must at least be one path from ei
to ej or it’s inverse.

2) There is another edge, ek ∈ E ′ so that both the path
from ei to ek and the path from ej to ek exist. (Every
segment that appears in the two paths pertains to E ′).

Such graph likeG′ is a subgraph of the road networkG(V ,E).
Fig. 1 shows the original roads just like those that appear on

ordinary maps. From Fig. 1, we only distinguish whether two
neighboring roads share the same terminal rather than at least
a path can be formed from one road to the other. On the basis
of the structure of roads, the road network can be modeled as
shown in Fig. 2. Road segments are divided into two kinds:
One-way (rendered in orange) and Double-way (rendered in
purple). The direction of a segment is represented in the form
of an intersection pair. For example, the direction of road
segment e0 is (v0,v1) and for the segment e4, its direction is
(v4,v5) and (v5,v4). Though v1 is not only e0’s end but also
e1’s end, the sequence (e0, e1) is not a path, but (e0,e3,e5),
(e2,e1,e3,e5) and so on are paths. V ′ = {v0, v1, v2, v5, v7} and
E ′ = {e0, e1, e3, e5} constitute a subgraph G′ of the whole
road network. Although no path can be found between the
segment e0 and e1, both (e0,e3) and (e1,e3) are paths at the
same time.

III. MAP-MATCHING
When we use graph models (road segments as vertices, inter-
sections as edges or road segments as edges, intersections

69482 VOLUME 6, 2018



Z. Chen et al.: Discovering Urban Traffic Congestion Propagation Patterns With Taxi Trajectory Data

FIGURE 2. Road network.

Algorithm 1Map-Matching
Input: a trajectory Tr(P1,P2, ...,Pn), the road network

G(V ,E), a distance threshold r
Output: the matched path Pa(e1, e2, ..., em)
1: initialize p as an empty point geometry and Pa as an

empty list
2: for i in 1:n do
3: p.X = pi.LON
4: p.Y = pi.LAT
5: candidate = projectionOperation(p,G,r)
6: if candidate is not empty then
7: select the nearest road segment e from the candi-

date generation
8: query the corresponding intersection set of segm-

ent e
9: if the size of intersection set equals 2 then
10: distinguish the moving direction of pi on curr-

ent segment
11: put the directional e into the list Pa
12: return Pa;

as vertices) to analyze the urban road network, the statisti-
cal traffic volume or flow rate is usually allocated to every
segment as respective weight. However, the raw GPS log is
not able to be directly utilized for traffic statistic data. This
is why Map-Matching is always taken as an indispensable
preprocessing.

Map-Matching is inevitable as a fundamental preprocess-
ing in the trajectory-based analysis and applications. Caused
by the sampling errors and frequency of terminal devices,
the GPS data with relevant longitude, latitude, timestamp,
and other information is not completely accurate. Therefore,
we need to map these observed GPS points onto exact corre-
sponding road segments on a real road network. This proce-
dure of establishing themapping between original GPS points
and roads is calledMap-Matching. In this paper, we make use
of the taxi GPS trajectory data and the road network of Shang-
hai, China. Thereinto, the time interval of trajectory data is
10s. According to the sampling frequency, ourMap-Matching
process is designed to deal with a high sampling rate of GPS
data. It is no doubt that the longer the time interval of GPS
data sampling is, the sparser the points become, the more
steps of matching process are taken, the more difficult Map-
Matching is, and thereby the usability of trajectory data itself
get worse.

FIGURE 3. Map-Matching schematic diagram.

The detailed procedure of a Map-Matching algorithm is
illustrated in Algorithm 1. First, the program loads current
point and then project the objective GPS point into its adja-
cent candidate road segments within a circle of radius r ,
respectively (line 5). If this candidate generation is empty
(p5 in Fig. 3), the point would be neglected. In this case,
we think that the car has no effect on the traffic condition
of the roads around it. Otherwise, select the nearest road
segment e from the candidate generation as the matched edge
(line 7), e.g., there are two segments in the candidate set of
the point p8 in Fig. 3, with one mapping point inside each
of them (painted in purple and red separately). From the two
segments, we choose the one with the nearest mapping point.
Besides the nearest road, we still need to know the direction
of the car’s movement from one terminal to the other (the
order of two intersections) according to the instantaneous
direction of the current point (line 10). The instantaneous
direction ranges from 0◦ to 359.9◦ and this range is divided
into 4 subranges: [45◦,135◦), [135◦,225◦), [225◦,315◦), and
[315◦,45◦). The instantaneous direction which falls in the
four different subranges reveals respectively the eastward,
southward, westward, and northward motion trend. If the
instantaneous direction of a point is within [315◦,45◦), then
an eastward movement tendency is presented, so it is reason-
able to judge that the car travels from the western intersection
to the other. For the road segments with only one intersection
(the circular road in Fig. 3), we are not able to distinguish the
motion direction of a point, because nomatter which direction
the car travel towards, the intersection pair are all the same.
The time cost of theMap-Matching algorithm isO(nk), where
k denotes the maximum size of all candidate generations.

IV. CONGESTION DETECTION
After the process of the aforementioned Map-Matching, all
available GPS points are projected into the corresponding
road segments. Then we can receive the information of the
road network’s traffic conditions at that time with the help of
the mass trajectory data.

To detect whether the drivers suffer from traffic conges-
tion on a road segment along one direction or both during
a specified time interval, the Traffic State Index (TSI) is
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adopted as the evaluation criteria [11], which is proposed by
Shanghai urban and rural construction and the Transportation
Development Research Institute. Basic TSI, defined as (2),
is a relative value that evaluates the traffic conditions of urban
roads within a certain period of time.

TSI =
vf − vi
vf

. (1)

vi =
1
n

∑ dist(p(k,i,last), p(k,i,first))
p(k,i,last).t − p(k,i,first).t

(2)

In (2), vf represents the free flow speed of a segment i,i.e.,
the average velocity of the segment bearing a light load. vi
denotes the actual average speed at which cars travel along
this road during a given time interval. vi is computed by (2),
where p(k, i, last) and p(k, i,first) are the last mapping point
and the first mapping point lying on the segment i of the
car k during the given period, respectively. The function
dist outputs the spacial distance between the two points.
P(k,i,first/last).t is the timestamp of thismapping point. vi is just
the average speed of those cars which pass by the segment i
within that time interval by chance. n is not allowed to be less
than a threshold, because if n is very small, the result from
only a few cars cannot reflect the actual average speed well.

The TSI quantifies the congestion degree of the road
network and it ranges from 0 to 1. The greater the index
is, the more crowded the drivers feel on the segment. The
segment is regarded as congested when its TSI is beyond
the fixed value. However, the traffic condition of the entire
road network varies dynamically over time. It is impossible
to get all traffic data of every moment for the study of urban
road congestion. In addition, if a congestion happens on a
segment, it would last for a period of time. Hence, as shown
in Fig. 4, we divide a given time interval into (n − 1) equal-
size pieces in terms of a unit time such as 5 mins. Next, all
trajectories within the time interval are extracted to compute
the average speeds of every segment during different time
pieces. In each time piece, we estimate whether one segment
is congested according to its average speed and TSI. As a
result, the original continuous time interval is replaced by
some discrete slices.

Road segments are classified into two categories: one-way
and double-way. For the former, the orientation of conges-
tion, which occurs on it, is consistent with the segment’s
direction. But for double-way road segments, it is a bit more
complicated. In most cases, a congestion on the double-
way segment is usually along one direction of the segment
instead of both. It is also possible that both directions of
the segment are congested in the meantime. In addition,
the road segment is static without changing over time, while
the congestion on the segment fluctuates dynamically. For
instance, there is a double-way segment e with two inter-
sections v1 and v2. A driver suffers from traffic jam in the
morning along the orientation (v1→v2) and again experiences
traffic congestion in the direction (v2→v1) during the after-
noon rush hour unfortunately. Regardless of the jam in the
morning or the second one, the segment e is constant all the

FIGURE 4. The road network in each time piece.

time while the directions of the two traffic congestions are
different. Thus the segment reflects the connectivity of the
road network, while the congestion demonstrates the real-
time traffic conditions. On account of the distinction between
congestion and segments, congestion edge is defined below.
Definition 8: Congestion edge. If a congestion takes place

on a road segment during a specific time piece t , then a
congestion edge is formed. In case only one direction of the
bidirectional segment is congested, the 1st rule is applied.
Otherwise, the 2nd rule is complied with.

1) Remove the direction in contrast with the Congestion’s
direction from the road segment, the left unidirectional
segment is the congestion edge.

2) Congestion edge is equivalent to road segment
(Definition 3).

V. FILL MISSING CONGESTION EDGES
The daily trajectories are derived from more than 10, 000
local taxis in Shanghai. However, compared with the tremen-
dous quantity of the road segments and overall motor vehicles
in Shanghai, the trajectories are still relatively sparse. Taxis
mainly appear in urban commercial districts and run along
primary roads. Besides, only those segments whose traffic
flow exceeds a threshold value during a period are deter-
mined whether it is congested. Caused by this, congestion
edges detected from these trajectories aggregate in the core
regions of this city. On the other hand, there are still some
missing road segments even in the core areas. For the former,
enlarging the volume of trajectories is the only solution to
solve it. To tackle the latter, we design two strategies of filling
missing congestion edges from both temporal and spatial
perspectives, respectively.

A. TEMPORAL VIEW
From a temporal viewpoint, we pay close attention to how
the congestion on the same road segment changes over time
pieces. Given three contiguous time pieces, there are two
congestion edges from the first and third time piece sepa-
rately. Furthermore, the two congestion edges with an iden-
tical direction occur on the same road segment, and if no
congestion edge on that segment can be found out within
the middle time piece, then a new congestion edge consistent
with those two would be inserted into the second time piece
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Algorithm 2 Fill Edges From Temporal View
Input: Congestion edges set at each time piece

Layer(s1, s2, . . . , st )
Output: the new congestion edges set at each time piece

Layer ′(s′1, s
′

2, . . . , s
′
t )

1: i = 2
2: while i < t do
3: initialize miss as an empty set
4: common = si−1 ∩ si+1
5: miss = common− si
6: if miss is not empty then
7: s′i = si ∪ miss
8: else
9: s′i = si
10: i = i+ 1
11: s′1 = s1, s′t = st
12: return Layer ′(s′1, s

′

2, . . . , s
′
t )

FIGURE 5. Filling missing congestion edges from spatial view.

(as shown in Algorithm 2). This is because the congestion
on a road segment usually lasts for a certain time and is
not likely to transform between existence and nonexistence
frequently during contiguous time pieces. If we assume that
there are at most m congestion edges at one time piece,
the time complexity of algorithm 2 is O(tm2).

B. SPATIAL VIEW
From the spatial standpoint, we focus on the spatial distribu-
tion of congestion edges at each time piece. Given three road
segments ei, ej and ek , they can constitute a path Pa(ei, ej, ek ).
At a certain time piece, two congestion edges e′i and e

′
k are

formed on the segments ei and ek respectively. In addition,
there is no congestion edge on the segment ej. If these condi-
tions are satisfied, we aim to judge whether a new congestion
edge e∗j can be inserted on segment ej so that (e′i,e

∗
j ,e
′
k ) can

be a path. If not, no new congestion edge would be added.
In particular, e∗j would be bidirectional if and only if e′i, e

′
k

and ej are all bidirectional. For example, as shown in Fig. 5,
only pink congestion edges at current time piece are found
through the procedure of congestion detection and the two
yellow ones are filled afterwards. There are no congestion
edges on the other light grey road segments (the directions of
all road segments are ignored and the directions of congestion
edges are displayed in form of arrows). In reality, congestion

Algorithm 3 Fill Edges From Spacial View
Input: the congestion edges set at each time piece

Layer(s1, s2, . . . , st ), the road network G(V ,E)
Output: the new congestion edges set at each time piece

Layer ′(s′1, s
′

2, . . . , s
′
t )

1: for i in 1:t do
2: select from E the candidate segment set canSeg each

of which shares at least one identical intersection with the
congestion edges from si

3: for j in canSeg do
4: origin, end = j.direction[1 : 2]
5: originSet = startFrom(si,G), endSet =

goTo(si,G)
6: initialize an empty congestion edge nEdge
7: if(origin ∈ endSet , end ∈ originSet) then
8: add j.ID into nEdge
9: add the direction (origin→ end) into nEdge
10: if j is double-way then
11: origin, end = end, origin
12: execute line 7-10 again
13: if nEdge is not empty then
14: add nEdge into si
15: s′i = si
16: return Layer ′(s′1, s

′

2, . . . , s
′
t )

always happens on one or more road segments at first and
then its or their neighbours would be infected after some time.
That is why our strategy of filling congestion edges from a
spatial view is necessary. But if the new congestion edge to be
filled is extremely long, wewould compare it with its adjacent
congestion edges in terms of length to determine whether this
congestion edge can be added or not. Algorithm 3 illustrates
the process in detail. The complexity of algorithm 3 isO(tkm),
where k denotes the maximum size of the candidate segment
set andm is themaximum number of congestion edges among
the t time pieces.

VI. CONSTRUCTING SPACE-TEMPORAL
CONGESTION SUBGRAPH
In this section, we demonstrate how to build the Space-
Temporal Congestion Subgraph (STCS). STCS is defined
as below. Different from the arbitrary subgraph of the road
network, STCS is comprised of a group of congestion edges.
These congestion edges are formed successively during sev-
eral contiguous time pieces and are connected to each other
in space. Initially, congestion occurs only on a few road seg-
ments rather than themajority of them. After some time, if the
congestion on these segments is still not eased, other seg-
ments adjacent to those ones would be affected and are very
likely to become newly congested segments. In an extreme
case, the traffic congestion can be propagated over a huge
extent of the road network. Thus, STCS is constructed to
clearly describe this contagion phenomenon.
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Algorithm 4 Construct STCS AdjTable
Input: the congestion edges set at each time piece

Layer(s1, s2, . . . , st ), the road network G(V ,E), and the
time lag threshold T

Output: the adjacency table adjT of all STCSes
1: adjList = list(Layer(s1, s2, . . . , st ))
2: i = T + 1
3: while i <= t do
4: newLayer = mergeLayers(adjList[(i− T ) : (i)])
5: newLayer = connectNewLayer(newLayer,T ,G)
6: adjList[i] = newLayer
7: i+ = T
8: if i not equal t then
9: newLayer = mergeLayers(adjList[i ::])
10: newLayer = connectNewLayer(newLayer,T ,G)
11: adjList[t] = newLayer
12: adjT = adjList[t]
13: return adjT

Through the process of congestion detection, we get the
lists of congestion edges at each time piece. Then we apply
two strategies to fill those missing edges. After the two steps,
we can start to construct STCSes over all time pieces. All
STCSes are stored in the same adjacency table. Therefore,
the key to tackling this problem is how to build such an
adjacency table. As presented in Algorithm 4, it is mainly
comprised of two stages: combination and connection. The
combination refers to merging those congestion edges within
current sliding window as a new time piece. Because conges-
tion on a segment often maintains for several time pieces, one
congestion edge is formed separately at each of these time
pieces. In this case, these repeated edges are merged into a
new one, but their occurrence time (time piece number) are
recorded in ascending order by the new one. The length of a
sliding window is T + 1. On the connection stage, we judge
whether two arbitrary edges within a current sliding window
are connected according to their occurrence time based on
Definition 9, particularly if a congestion edge is produced on
the combination stage, its occurrence time hasmultiple values
and we select the largest one,i.e., the last time piece at which
the congestion happens. The sliding window moves T steps
forward once until the end. The time complexity of algorithm
4 is O(tm2), where m is the maximum number of congestion
edges at one time piece.

For example, there are 5 time pieces in Fig. 6 and T is
set to 2. At each time piece, congestion edges are painted as
red arrows and the green lines represent uncongested road
segments (the directions of segments are neglected). The
initial sliding window contains the first three time pieces.
The congestion on the road segment e2 lasts throughout the
sliding window, so three repeated edges are replaced by a new
one. After the combination stage, we connect two arbitrary
adjacent edges whose time lag between them is not beyond
the threshold T . Then the sliding window produces a new

FIGURE 6. The process of constructing a STCS.

FIGURE 7. Ring structure in STCSes.

time piece and we place it at the beginning of the remaining
time pieces and move 2 time pieces forward to enter next
iteration.
Definition 9: Space-Temporal Congestion Subgraph

(STCS). There is a directed graph Gc(Vc,Ec) where Vc is the
set of intersections and Ec is the congestion edge set over
consecutive time pieces. For ∀e, e′ ∈ Ec, the two edges
are connected in STCS if they are connected in space and
|e.t − e′.t| <= T . Given the road network G(V ,E), Vc ⊆ V ,
the corresponding road segments Es of Ec, Es ⊆ V , if the
graphGs(Vc,Es) is a subgraph ofG(V ,E), thenGc(Vc,Ec) is
a STCS.

In general, we always tend to destroy the ring structure
by removing certain edges in a graph; however, the situation
where a ring structure exists in a STCS is allowed to arise.
As shown in Fig. 7, 6 congestion edges constitute a STCS and
four of them form a ring structure. This ring structure explains
that the 4 edges in the ring influence each other. Especially,
the edge on segment 48999 and another edge on segment
59978 are not detected directly in terms of TSI. Since the two
road segments are too short, it is very difficult to catch enough
GPS points for congestion detection. However they are still
added into this STCS via filling missing edges, otherwise the
current STCS would break up into 2 STCSes.

VII. DISCOVER FREQUENT CONGESTION SUBGRAPH
Although the congestion on the road network varies dynam-
ically over time pieces, there still is a periodical pattern.
The inherent pattern refers to the frequent STCSes over the
same time pieces every day. From a STCS, we can make out
how the congestion on initial one or a few road segments
propagates across the corresponding adjacent segments itera-
tively. For common itemsets, well-developed algorithms such
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Algorithm 5 Find Frequent STCSes
Input: the STCS sets within same time pieces during differ-

ent days sg(g1, g2, . . . , gk ), and the support threshold δ
Output: the frequent STCS set sg′(g′1, g

′

2, . . . , g
′
p), g′i

denotes a frequent STCS
1: initialize an empty frequent STCS set freq
2: freq = FPgrowth(sg,δ)
3: delete redundant result sets from freq
4: for ∀x, y ∈ freq do
5: if x ∩ y 6= ∅ then
6: z = x ∪ y
7: delete x and y from freq
8: put z into freq
9: sg′ = freq

10: for i in sg′ do
11: if i constitutes z STCSes then
12: break up i into sg′i1, sg

′

i2,. . .,sg
′
iz

13: put sg′i1, sg
′

i2, ... ,sg
′
iz into sg

′

14: return sg′

as Apriori [12] and FP-growth [13] are quite suitable, but
for STCS sets, these algorithms are not able to be utilized
directly for the following two reasons. First, there is not any
dependency relationship between common itemsets, whereas
the edges belonging to the identical STCS set constitute a
subgraph according to spatio-temporal connections. Second,
these algorithms do not guarantee that congestion edges that
pertain to the same result set compose a STCS. Therefore,
we design several additional procedures on the basis of the
FP-growth (as illustrated in algorithm 5).

For those result sets outputted directly by FP-growth where
the congestion edges are not able to compose an integrated
STCS, they can be divided into 2 cases. One is that its
superset also belongs to the result sets, in other words, another
STCS is found frequent, which contains all congestion edges
in current result set. Thus, this result set is redundant and we
remove such result sets. The other case is that a result set’s
superset do not exist in the result sets, but it has intersection
with several result sets of the same type. This means that an
originally large STCS is decomposed into some smaller and
unconnected parts after FP-growth. Caused by the trajectories
data sparseness, certain congestion edges cannot be formed
frequently during most days. Thus, we combine these result
sets together to recover the original STCS. If the new union
set is still not connected entirely, then we break up the set into
several corresponding connected parts.

VIII. EXPERIMENT
In this section, we evaluate our algorithms based on real
road network and trajectory data. The experiments are
performed on the geospatial processing platform Arcgis,
of which Arcmap provides the visualized analysis for traffic
data and Arcgis server can deal with large scale trajectory
data.

FIGURE 8. The number of congestion edges at each time piece.

A. DATA
We utilize the road network of Shanghai with 79, 148 inter-
sections and 113, 765 road segments among which 25.49%
are one-way. The trajectories are mainly comprised of
over 12, 000 taxis from 8am to 9am during workdays in
April, 2015.

B. EXPERIMENT ON CONGESTION DETECTION
The threshold for n in (2) is set as 10, thus only those
segments whose traffic volume is not smaller than 10 are
considered regardless of whether or not they are congested.
The threshold for TSI is 0.70 [11]. Fig. 8 shows the number
of congestion edges at various time pieces from 6am to
10am on Apr.1,2015. Whether the size of one time piece
is 5 minutes or 10 minutes, they have the same variation
tendency. Before 8am, only a few segments are congested and
the growth of the value is relatively slow. These congested
road segments disperse on the road network and most of them
are not able to propagate the congestion to their adjacent
segments in a short time to form a local congested area. On the
contrary, there is an intense increase when it approaches 8am
and the value maintains a high level from 8am to 9am. During
this time interval, congested segments are distributed closely,
it is more likely for them to infect their neighbours so that a
large region filled with congested segments can be shaped.
Therefore, we mainly study the congestion propagation over
time pieces between 8am and 9am.

C. EXPERIMENT ON FILLING MISSING
CONGESTION EDGES
To evaluate the effectiveness of two strategies of filling miss-
ing congestion edges, we compare 4 means from the combi-
nation of two strategies with each other. As shown in Fig. 9,
if we do not fill any congestion edges into original data,
the number of edges over time pieces fluctuates strongly and
maintains a low level in the meantime. Only applying either
of the two strategies can improve this situation effectively.
No matter which one is adopted, they all keep the value
on a quite similar level. The last manner that combines the
two strategies is most effective and makes the change of the
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FIGURE 9. Different ways of filling missing congestion edges (N: none
missing edges are filled. T: add congestion edges from temporal
viewpoint. S: recover missing congestion edges from spatial view. ST:
combine the two strategies together).

FIGURE 10. STCSes with at least 4 edges constructed from time pieces
between 8am and 9am on Apr.1,2015.

number over time smoother. In addition to the comparison
on the number of congestion edges, we pay more attention
to these filled edges’ influence on the construction of STCS.
In Fig. 10, the congestion edges rendered in red are received
directly through congestion detection and the left labeled in
purple are added via filling missing edges. We can see that
the effect of these filled edges is manifest in two aspects.
One hand is that some STCSes would become smaller (fewer
edges) or even disappear without the filled edges because the
STCS would break up into several smaller STCSes. On the
other hand, filled edges make these large-size STCSes close
to each other in space to delineate the latent traffic congestion
propagation pattern better.

D. EXPERIMENT ON FREQUENT CONGESTION SUBGRAPH
The time lag T is set at 5 and the support threshold δ equals
7 (one third of overall weekdays). Each time piece’s size is
5 minutes. Frequent STCSes between 8am and 9am during
workdays in April 2015 are shown in Fig. 11. There are
8 large-size congestion subgraphs with at least 4 congestion
edges, of which the biggest one contains 43 edges. Most
large-size frequent subgraphs appear on the ring express-
way or elevated road and the rest of frequent STCSes exist

FIGURE 11. Frequent STCSes between 8am and 9am in the workdays of
April 2015. (A: Hongqiao Airport, B: Shanghai Station, C: Fudan University,
D: Tongji University, E: World Exposition Museum, and F: Shanghai
Stadium).

FIGURE 12. Snapshots of traffic condition in Shanghai road network at
8am on Apr.9,2018 from Baidu Map. (congested roads are rendered in
red or dark red). (a) Congestion near A (Hongqiao Airport). (b) Congestion
near B (Shanghai Station).

on general primary road segments. Besides, large-size fre-
quent subgraphs are mainly distributed near some POI (e.g.,
the biggest subgraph is adjacent to the Hongqiao Airport).
Three of four small-size STCSes (two edges at most) are close
to a subway station. Because the entire time interval spans the
morning rush hours, the directions of most edges are toward
the core area of the city.We can see that large-size STCSes are
not very far away from each other. Caused by unusual events
such as bad weather, business promotions and disasters, local
congested areas can lead to the cascading failure of the whole
network. Fig. 12 gives two snapshots of congested roads at
8am on Apr.9,2018 from Baidu Map. The congested roads
in Fig. 12 are consistent with a portion of edges belonging to
the corresponding frequent subgraphs in Fig. 11. The same
conclusion holds true for the other subgraphs in Fig. 11.

Fig. 13 presents the frequent congestion subtrees through
the method proposed by [6]. It is obvious that our approach
outperforms the algorithm in [6] by comparing the subgraphs
in Fig. 11 with the subtrees in Fig. 13. More specifically,
there are 49 subgraphs in Fig. 11 and only 27 subtrees are
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FIGURE 13. Frequent congestion subtrees between 8am and 9am in the
workdays of April 2015. (A: Hongqiao Airport, B: Shanghai Station).

constructed in Fig. 13. This means that our model can dis-
cover more frequent urban congestion propagation behav-
iors. Besides the strength in numbers of substructures, our
method also has the advantage of discovering large-size sub-
structures. 8 large-size congestion subgraphs with at least
4 congestion edges exist in Fig. 11 while only 3 large-size
congestion subtrees are found in Fig. 13. Especially, the large-
size congestion subgraph near B in Fig. 11 shrinks into a
small-size congestion subtree with only 2 congestion edges
in Fig. 13. The largest frequent congestion subgraph below
A in Fig. 11 is decomposed into two corresponding conges-
tion subtrees in Fig. 13 because of the absence of certain
congestion edges. Such situation reveals that the approach
introduced in [6] can not catch the complete traffic conges-
tion propagation process very well. In essence, a congestion
subtree is a special case of congestion subgraph. Therefore,
our approach is more effective in discovering urban traffic
congestion propagation pattern comparing with the method
proposed in [6].

IX. RELATED WORK
A. TRAJECTORY DATA PROCESSING
Map-Matching algorithms are divided into two kinds accord-
ing to the GPS points’ sampling frequency. For the low-
sampling-rate trajectory data, Lou et al. [14] devised a global
algorithm named ST-Matching. ST-Matching takes the speed
constraints into account. On the basis of ST-Matching,
Yuan et al. [15] proposed a voting-based matching (IVMM)
to consider the mutual influence between points. Due to the
complexities of the two algorithms, they are not suitable for
large-scale trajectory data. There has been much research
done on taxicab trajectory data. In [16]–[18], the trajectory is
utilized to identify traffic anomalies via detecting the routing
behavior. Liu et al. [19] adopted the community detection
algorithms in taxi data to discover the travel of citizens.
Huang et al. [20] constructed the TrajGraph as a visual ana-
lytics way to compare the various centralities of different road
segments. Zhuang et al. [21] built the knowledge graph with

the history trajectories to forecast people’s interest in various
places of a city.

B. URBAN TRAFFIC CONGESTION
In [6], the travel time on segments are obtained by the
sensors deployed at each intersection. The congestion is
determined in terms of a certain percentile of all historical
travel time. A congestion tree is constructed to demonstrate
the congestion propagation. However, the tree structure is
not good enough to reflect the actual contagion of traf-
fic congestion. Lv et al. [1] developed a congestion detec-
tion system with the help of mobile phones’ cellular sig-
nal. Rempe et al. [2], Huang et al. [22], and Wang et al. [23]
introduced the method of discovering congestion clusters in
the road network and investigated the correlations between
these clusters. Wang et al. [24] studied the driver sources
to understand the usage of road segments. Hong et al. [25]
modeled the trajectory data as Spatio-Temporal Graph(STG)
to find traffic anomalies in the city(block holes and volcanos).
Wen et al. [5] proposed the Flow-based PageRank(FBPR)
algorithm to study the traffic demand of road segments and
discover congestion areas. In [26], an integrated computing
method combing Bayesian information criterion and maxi-
mum likelihood estimation was proposed to obtain important
human mobility patterns.

C. COMPLEX NETWORK PROPAGATION
The linear threshold model, cascade model, and percola-
tion model are usually employed to investigate the diffusion
dynamics on the complex network (e.g. messages, contagion
and so on propagate on the social network) [7]–[9], [27].
Daqing et al. [28] defined traffic congestion as a behavior
of cascading failure and found that long-range correlations
of failures in space follow a power law decay. In [29],
the relationships between local traffic flow and global flow
are focused on and the critical bottlenecks in the network
can be found out after the process of traffic percolation.
Zhao et al. [30] investigated the spreading dynamics of fail-
ures with the cascading overload model.

D. FREQUENT PATTERN MINING
Apriori [12] and FP-growth [31] are usual algorithms for
discovering frequent itemsets from large-scale data sets.
FP-growth only needs to scan the database twice and is
quicker than Apriori. However, the two algorithms cannot
be applied directly to deal with graph structures without any
modification while GSPAN [32] and SPIN [13] are designed
for frequent graphs. The kernel of these algorithms is to solve
the subgraph isomorphism problem and thus the complexity
is rather high. On the other hand, because the structure of the
road network is always constant, it is easy to distinguish two
subgraphs regardless of whether they are the same.

X. CONCLUSION
In this paper, we investigate traffic congestion propagation
based on the Shanghai taxi trajectory data. We design the

VOLUME 6, 2018 69489



Z. Chen et al.: Discovering Urban Traffic Congestion Propagation Patterns With Taxi Trajectory Data

Map-Matching algorithm for high-sampling-rate GPS points.
Congested road segments are detected through the index
TSI. Because of the trajectory data sparseness, two strategies
of filling missing congestion edges from temporal and spa-
tial respectively are demonstrated. A dynamic graph struc-
ture named STCS built with congestion edges is proposed
to describe the congestion phenomenon. According to the
spreading dynamic of the traffic congestion, some post-
processing steps are added on the basis of FP-growth to
discover the frequent STCSes.
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