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ABSTRACT Aiming at large-scale, high dimensional data, and variable intrusion behavior in wireless
sensor networks (WSNs), an intrusion detection algorithm based on parallel intelligent optimization feature
extraction and distributed fuzzy clustering for WSNs is proposed. First, in order to effectively reduce the
data dimensionality and improve the robustness of the feature extraction process, the parallel intelligent
optimization feature extraction framework is constructed on the basis of defining the optimal feature
evaluation index, for which the theoretical analysis shows that the index can eliminate feature redundancy
and maintain the diversity of original data. Second, the spider cluster optimization algorithm evolution rule
is redefined by introducing local search and adaptive multi strategy update method, and it proves that the
improved social spider optimization (ISSO) algorithm has global convergence. The ISSO is used to solve
the feature extraction framework, and through the parallel feature subset selection process, the best feature
combination is extracted. Finally,WSNs intrusion detection is carried out by using the best feature subset and
the distributed fuzzy clustering technology, and intelligent iterative evolution method and adaptive clustering
strategy are introduced in order to improve the fuzzy clustering algorithm performance. Experimental results
show that the intrusion detection algorithm can effectively give the results of intrusion detection, and
moreover, compared with the other detection algorithms, the intrusion detection rate is improved by about
13.1%, and the false detection rate is decreased by about 8.5%.

INDEX TERMS Feature extraction, fuzzy clustering, intrusion detection, social spider optimization
algorithm, wireless sensor networks.

I. INTRODUCTION
With the rapid development of network communication,
embedded computing and sensor technology [1], WSNs
(wireless sensor networks), composed of a large number
of sensor nodes which could do some compute and wire-
less communication, is widely used in engineering appli-
cations [2]. However, due to the vulnerability of WSNs to
intrusion attacks such as black hole, wormhole and phys-
ical manipulation [3], its further development is restricted
by network security [4]. Therefore, an efficient intrusion

detection algorithm is of great importance for the WSNs to
function properly.

Intrusion detection is used to detect various attacks quickly
and accurately, and making responses immediately [5]. It is
often categorized into two classes: misuse detection and
anomaly detection. However, the latter one has received more
concerns due to its ability to detect unknown attacks. Basi-
cally, the anomaly detection approaches can be distinguished
between three main types: supervised, semi-supervised and
unsupervised learning anomaly detection [6]. Among them,
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unsupervised learning identifies an access that can not to
be modeled as normal operations as an attack without clas-
sify its type, more suitable for large-scale high dimensional
WSNs intrusion detection. But such a ‘‘Yes or No’’ strategy
will reduce the accuracy of the intrusion detection. Never-
theless, when dealing with the mass WSNs real-time data,
feature selection can be used to optimize the WSNs data
effectively by extracting feature subset with high resolu-
tion [8]. Due to its ability to reduce the data complexity
while maximizing the accuracy of detection, the feature
subset selection method has attracted increasing attentions,
and SPFS (similarity preserving feature selection) is repre-
sentative [9]. Hence, various feature extraction methods were
proposed by scholars, such as Filter model, Wrapper model,
Embedded model [10], PCA (principal component anal-
ysis), LDA (linear discriminant analysis) [11], etc. These
methods usually adopt single variable evaluation rule to select
feature subset, which may not be the optimal. Therefore,
based on multi variable evaluation rule, researchers proposed
new rules such as Pearson coefficient, maximum informa-
tion compression index [12], maximum information coeffi-
cient (MIC) [13], etc. However, most of these multi-variable
evaluation rules failed to measure the relationship between
the redundancy of the feature subset and the diversity of
the original data accurately. Consequently, multiple metrics
fusion emerged as a popular tool to select feature subset.
Sun et al. [14] combined the MIC with symmetric uncer-
tainty measurement, effectively selected the feature subset
by using Markov blanket method. Based on Pearson coeffi-
cient, Qiu et al. [15] introduced information gain metrics into
feature extraction. Removing the irrelevant features, and then
the redundant features, to achieve feature subset selection.
Their method is also demonstrated to be effective by simu-
lations. But these methods mentioned above need multiple
steps to successfully select the feature subset, which in
turn increased the algorithm’s time complexity. After feature
subset is selected, models such as neural network, rough set,
support vector machine and cluster analysis can be used to
detect intrusions. Because the boundary of normal behavior
and intrusion behavior is sometimes difficult to define, intru-
sion detection with fuzzy clustering has drawn significant
attention. Tang et al. [16] proposed an improved fuzzy clus-
tering algorithm based on FCM (AGFCM) to detect anomaly
intrusion behavior. Elhag et al. [6] used genetic algorithm
to determine the optimal combination of the characteristic
parameters, and fuzzy clustering method to detect intru-
sions. Nayak et al. [17] incorporated elicit teaching learning
with the Fuzzy c-means clustering algorithm to obtain the
improved fitness values of the cluster centers. However,
the defects of fuzzy clustering (sensitive to the initial cluster
center, easy to fall into local optimal, and the number of
clusters needs to be determined beforehand, etc.) are still need
to be solved.

With the rapid expansion of the WSNs’ scale, and
the exponentially explosive growth of data needs to

be processed, the robustness of feature subset selection,
the accuracy and promptness of intrusion detection are of
great importance. Therefore, this paper proposed an intrusion
detection algorithm based on parallel intelligent optimization
feature extraction and distributed fuzzy clustering for WSNs.
The major contributions of this paper include:

(1) We define a new feature evaluation index to eliminate
the feature redundancy and maintain the diversity of the
original data.

(2) We formulate our feature extraction framework, and
utilize the improved social spider algorithm and parallel
computing, to ensure the extraction of the best feature combi-
nation while improve the robustness of the feature selection.

(3) We propose an improved fuzzy clustering method for
efficient and reliable WSNs intrusion detection.

II. PARALLEL INTELLIGENT OPTIMIZATION FEATURE
EXTRACTION FRAMEWORK
A. FEATURE SUBSET EXTRACTION
In this paper, we use D = {xi}ni=1 to denote the data matrix,
where xi is data set and n is the number of data sets. For each
data set xi, we use fi1, fi2, · · · , fim to denote the m features,
and Fi = (fi1, fi2, · · · , fim) is the corresponding feature
vector. We also use C =

{
cj
}c
j=1 to denote the c classes of

the data matrix D. Thus, feature subset extraction is to select
k features from Fi = (fi1, fi2, · · · , fim) to form a feature
subset, which can provide almost the same classification and
identification ability as the original data matrix.
Definition 1: Define feature extraction vector P as:

P =
(
p1, · · · , pj, · · · , pm

)
, pj ∈ {0, 1} , PT1 = k (1)

where pj = 1 indicates that the corresponding feature is
selected, otherwise pj = 0. For data set xi, we have FiPT =
k∑
j=1

∧

fij, where
(
∧

fi1,
∧

fi2, · · · ,
∧

fik

)
is the feature description after

feature extraction.
Definition 2: Given P, define feature extraction

matrixW as:

Wm×c =

(
PT ,PT · · · ,PT

)
=


p1 p1 · · · p1
p2 p2 · · · p2
...

...
. . .

...

pm pm · · · pm



=


0 0 · · · 0
1 1 · · · 1
...

...
. . .

...

0 0 0 0

, ‖W‖2,0 = k (2)

Since the value of pi is either 0 or 1, W is also composed
of 0 and 1. AndW has and only has k rows of 1.

UsingW to extract feature fromD, we obtain feature subset
F̂ =

{
f̂ 1, f̂ 2 · · · f̂ k

}
, as shown in Fig. 1.

From Fig.1 we can see that the extracted feature subset
F̂ =

{
f̂ 1, f̂ 2 · · · f̂ k

}
describes the features of the sample data
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FIGURE 1. Feature subset extraction.

that corresponding to the non-zero elements of the feature
extraction vector P, which indicates that the feature subset
is extracted from the data samples. To evaluate the feature
subset F̂, we have Definition 3.
Definition 3: The optimal feature evaluation index 2(D)

is defined as:

2(D) = min
P

∥∥∥∥∥ψT (8W ) (8W )T ψ
n2

− A

∥∥∥∥∥
2

F

(3)

where A =
(
aij
)
c×c is inter class similarity matrix, ψ =(

ϕij
)
n×c is feature and inter class correlation matrix. ϕij ∈

[0, 1] reflects the degree of correlation between sample xi and
the classification cj. Here, we use the maximum information
coefficient method [13] to solve ϕij.

Maximum information coefficient the mutual infor-
mation of X = {xi, i = 1, 2, · · · ,N } and Y =

{yi, i = 1, 2, · · · ,N } is defined as:

MI (X,Y) =
∑
x∈X

∑
y∈Y

p (x, y) lg
p (x, y)
p (x) p (y)

(4)

where p (x, y) is the joint probability function of X and Y ,
p (x) and p (y) are the marginal probability function of X
and Y respectively. Divide the interval range of X into a
segments, and Y into b segments. Thus, the joint space of
X and Y is meshed into a× b grids. Estimate p (x) and p (y)
with histogram to obtainMI (X,Y)a,b. Considering that there
are various ways to mesh the joint space of X and Y into
a × b grids, we define the maximum value of MI (X ,Y ) as
MI (X,Y)max

a,b . Hence, the maximum information coefficient
is defined as:

MIC (X,Y) = max
a×b≤B(N )

{
MI (X,Y)max

a,b

log (a, b)

}
(5)

where B (N ) is the maximum number of the meshed grids,
usually we have B (N ) = N 0.6. Since the maximum informa-
tion coefficient is defined, we let ϕij = MIC

(
xi, cj

)
.

Conclusion 1: Feature subset selected by the optimal
feature evaluation index 2(D) defined in Definition 3 can
minimize the feature redundancy and optimize the original
classification correlation information.

Proof: Perform standard centralization on all features

in 8n×m,
n∑
i=1

fij = 0,
n∑
i=1

f 2ij = 1. Let A′ = n2A, and

B = ψT (8W ) (8W )T ψ . Then, we have:

2(D) = min
P

1
n2
∥∥B− A′∥∥2F

= min
P

1
n2
tr
[(
B− A′

) (
B− A′

)T ]
⇒ 2(D) = min

P

1
n2
tr
(
BTB+ A′TA′ − 2A′TB

)
(6)

Because A′TA′ is a constant matrix, if we want the value
of 2(D) to be the minimal, conditions min

P
tr
(
BTB

)
and

max
P

tr (A′TB) should be both satisfied. As for min
P
tr
(
BTB

)
,

we have

min
P
tr
(
BTB

)
=

k∑
i,j=1

[(
f̂ i
T
ψ
) (

f̂ j
T
ψ
)T]2

=

k∑
i,j=1

(
f̂ i
T
(
ψψT

)
f̂ j
)

⇒ min
P
tr
(
BTB

)
=

k∑
i,j=1

c∑
h

(
〈f̂ i,Sh〉 × 〈f̂ j,Sh〉

)2
⇒ min

P
tr
(
BTB

)
=

k∑
i,j=1

c∑
h

n4σ 4
Shρ

2
f̂ i,Sh

ρ2f̂ j,Sh
(7)

where Sh (h = 1, 2, · · · , c) represents the hth row of ψn×c,
that is the corresponding elements of class ch. σ 2

Sh is
the standard deviation of ch, and ρf̂ i,Sh

(ρf̂ j,Sh ) is the

Pearson correlation coefficient of f̂ i and ch. Equation (7)

shows that
c∑
h
ρ2
f̂ i,Sh

ρ2
f̂ j,Sh

indicates the feature redun-

dancy between f̂ i and f̂ j. The value of min
P
tr
(
BTB

)
=

k∑
i,j=1

c∑
h
n4σ 4

Shρ
2
f̂ i,Sh

ρ2
f̂ j,Sh

will achieve a minimum when

min
P

c∑
h
ρ2
f̂ i,Sh

ρ2
f̂ j,Sh

reaches its smallest value. In other words,

redundancy between different features is the minimum. For
max
P

tr (A′TB), we have:

max
P

tr (A′TB) = (8W )T ψA′ψT (8W )

=

k∑
i=1

f̂ i
T
(
ψA′ψT

)
f̂ i

⇒ max
P

tr (A′TB) =
k∑
i=1

f̂ i
T

(
c∑

e=1

c∑
r=1

SeaerSTr

)
f̂ i (8)

Seen from (8),
c∑

e=1

c∑
r=1

SeaerSTr represents the inter class

similarity matrix and inter class correlation matrix to the
maximum extent, which means that the original classification
correlation has been maintained to its best.

Proved.
From Definition 1 and Definition 2, it is clear that there’s

mutual correspondence between feature extraction vector P
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and feature extraction matrix. When all the subscripts j that
satisfy pj = 1 in P are determined, the exact expression of
W can be fixed and then the feature subset can be extracted.
But, (3) is an integer programming problem [13], which is a
NP-Hard problem. We use intelligent optimization to solve it
in the following sections.

B. CONSTRUCTION OF FEATURE SUBSET
EXTRACTION MODEL
Intelligent optimization provides a newway to solve complex
optimization problems. By simulating the behavior of natural
creatures or the change of the physical properties of mate-
rials, it solves the optimization problem through iterative
evolutionary computation. For this reason, based on social
spider optimization algorithm [18], we introduce improved
social spider optimization algorithm (ISSO) into the process
of solving 2(D) to obtain the optimal feature extraction
vector P. Intelligent optimization, in its essence, is random
search. It has no fixed optimization result. To enhance
the robustness and reliability of feature extraction, parallel
computing is also employed to extract Q ISSO features at the
same time. Then feature subset selection strategy is applied
to sort P i, i = 1, 2, · · · ,Q, and Pbest with better robustness,
and improved classification performance is achieved. Pbest
and distributed fuzzy clustering are used together to ensure
efficient detection of intrusion behavior. The detailed proce-
dure of WSNs intrusion detection is shown in Fig.2.

FIGURE 2. Flow chart of WSNs intrusion detection.

III. IMPLEMENTATION OF PARALLEL INTELLIGENT
OPTIMIZATION FEATURE EXTRACTION
A. IMPROVED CLUSTERING SPIDER ALGORITHM
By simulating the cooperative behaviors of spiders, Cuevas
proposed a novel swarm algorithm called the Social Spider
Optimization (SSO) to solve optimization tasks. For SSO,
the spider web of spider population is equivalent to the
algorithm search space, and the spatial location of the spider

represents a solution of the optimization problem. Through
the constant co-evolution of female and male spiders, the
problem is finally achieved. The SSO algorithm draws imme-
diate attention due to its remarkable performance. However,
SSO is easy to be trapped in the local optimization maximum,
and has a low degree of convergence. Thus, based on SSO,
we redefined the spider cluster optimization algorithm evolu-
tion rule by introducing local search and adaptive multi
strategy update method. Firstly, an original particle swarm
G = {X i}

N
i=1 with the size of N is generated randomly in

the solution space Rm. Each particle X i = (xi1, xi2, · · · , xim)
represents a potential solution for the optimization. Then,
perform iterative evolution on the particles. And finally,
the optimization problem is solved. (Details of SSO can be
found in related works.)
Adaptive Multi Strategy Update and Local Search:

Researches have shown that the diversity of the population
samples and the local extremum escaping ability are the key
factors affecting the convergence performance of the intel-
ligent optimization algorithm. Therefore, in the process of
population evolution, various learning objects are given to
the particles, so that they can adaptively adjust the updating
strategy according to their evolution degree, so as to effec-
tively maintain the diversity of the population samples.
Definition 4: In ISSO, the updating strategy of particle

X i (t) is defined as:

X i (t + 1)

=

{
X i (t)+1, r1 ≥ κ
SSO (X i (t)), else

(9)

1 =


ω1 ⊗ (X i (t)↔ X i (t)), r2 ≤ α1
ω2 ⊗ (X i (t)↔ Xbest (t))
+ω2 ⊗

(
X i (t)↔ Xg (t)

)
, α1 < r2 ≤ α2

ω3 ⊗
(
X i (t)↔ X j (t)

)
, α2 < r2 < 1, i 6= j

(10)

where SSO (X i (t)) denotes that particle X i (t) is iterative
updated according to basic SSO, κ , α1 and α2 is the update
control probability, r1 and r2 is (0,1) random, A ↔ B
represents A learn from B, ω1⊗ (↔) denotes learning degree
control. The bigger the value of ω1 is, the greater the impact
of particle B has on the evolutionary direction of particle A.
In order to further improve the convergence performance of
IDSSO (improved discrete SSO), we divide G into multiple
sub-populations Gj, j = 1, 2, · · · ,O according to particle
fitness. Each sub-population set its α1, α2, ω1, ω2 and ω3
adaptively, so as to adjust the learning object and learning
degree dynamically. For sub-population Gj, we have

α1 (ω1) ∝ ln

max
Xi∈Gj

f (Xi (t))

f (Xbest (t))
t

Tmax
+ 1


α2 (ω2, ω3) ∝ ln

2−

max
Xi∈Gj

f (Xi (t))

f (Xbest (t))
t

Tmax

 (11)

72204 VOLUME 6, 2018



Z. Liu et al.: Intrusion Detection Based on Parallel Intelligent Optimization Feature Extraction and Distributed Fuzzy Clustering

in which f (·) is the objective function, Tmax is the maximum
number of iterations. From (11) we can see that, for Gj
with better fitness, particles learn from themselves with a
greater probability, whichmeans evolution in the form of self-
variation. And then, the deep search space of the algorithm
is extended. Whereas Gj with worse fitness will result in
particles learn with a larger probability from the population
optimal solution and the historical optimal solution Xg (t),
thus speeding up the evolution.

Algorithm 1 ISSO Algorithm
Input:Number of particles N , number of sub-populationsO,

number of features m, update control probability κ ,
objective function f (·), maximum number of
iterations Tmax;

1: Randomly generate an initial population in the solution
space, t ← 1;

2: for i = 1 : N do
3: Calculate f (X i (t)) and update Xg (t);
4: end for
5: while the terminate condition is not satisfied do
6: Sort all the particles according to their fitness, and

divide them into O sub-populations;
7: for j = 1 : O do
8: Update particles in Gj according to (9)-(12).
9: If the updated particles are superior to the original

particles, replace the originals with the updated and
update Xg (t). Or else, leave it unchanged;

10: end for
11: Update Xbest (t), t ← t + 1;
12: end while
Output: Global optimal solution Xbest .

The time complexity for ISSO to evolve once is
O (N logOm), where O (N ) is the time complexity of the
population initialization. Thus, the total time complexity of
ISSO is TmaxO (N logOm)+ O (N ).
Conclusion 2: ISSO is a global optimization algorithm.
Proof: Viewed from the time sequence, popula-

tion G (t) constructs a discrete time stochastic process
{G (1) ,G (2) , · · ·G (t) , · · ·}. From Definition 4, the current
state of G (t) is only related to its previous state, that is

p {Gt |G1, · · · ,Gt−1 } = p {Gt |Gt−1 } (12)

Thus, {G (1) ,G (2) , · · ·G (t) , · · ·} is a Markov chain. Here
we have:

f (Xbest (1))

≥ f (Xbest (2)) ≥ · · · ≥ f (Xbest (t)) ≥ · · · (13)

f (Xbest (1))− f (Xbest) ≥ f (Xbest (2))− f (Xbest)

≥ · · · ≥ f (Xbest (t))− f (Xbest) ≥ · · · (14)

For any positive ε, define Nε, the range of Xbest , as Nε =
{X i (t) |f (X i (t))− f (Xbest) < ε } ,X i (t) ∈ G (t). We also

FIGURE 3. Particle update strategies of IDSSO. (a) Reverse strategy.
(b) Replace strategy. (c) Exchage strategy.

define a sequence of random variables {ξ1, ξ2, · · · , ξt , · · ·},
where ξt is expressed as

ξt =

{
1, Xbest (t) ∈ Nε
0, Xbest (t) /∈ Nε

(15)

Let P (ξt = 1) = pt , P (ξt = 0) = 1 − pt , Z (t) = 1
t

t∑
i=1
ξi,

then the expectation and variance of Z (t) can be written as

E (Z (t)) =
1
t

t∑
i=1

pi, D (Z (t)) =
1
t2

t∑
i=1

pi (1− pi) ≤
1
4t

(16)

According to Chebyshev inequality,

P {Z (t)− E (Z (t)) < ε}≥1−
D (Z (t))
ε2

≥ 1−
1

4tε2
(17)

Together with P {Z (t)− E (Z (t)) < ε} ≤ 1, we have
lim
t→∞

P {Z (t)− E (Z (t)) < ε} = 1, which indicates that
{ξ1, ξ2, · · · , ξt , · · ·} is well convergent. When t → ∞,
Xbest (t) is in an arbitrary small range aroundXbest with prob-
ability 1. Therefore, ISSO is a global optimization algorithm.

Proved.

B. IMPLEMENTATION OF FEATURE EXTRACTION BASED
ON PARALLEL ISSO
Determining the exact form of feature extraction vector P is
critical to feature extraction. So, we define the code of each
ISSO particle as a corresponding extraction vector P, written
as X i (t) =

(
xi1, · · · , xij, · · · , xim

)
, xij ∈ {0, 1} ,XT

i 1 = k .
And select 2(D) as the objective function f (·). According
to Definition 4 and the form of the particle code, the three
update strategies in (10) are described in detail as follows.
Definition 4: Select bm× ω1c bits out of the particle code

X i (t), and reverse these bits. This reverse strategy is defined
as ω1 ⊗ (X i (t)↔ X i (t)), as shown in Fig. 3(a).
Definition 5: If X i (t) have m′(0 ≤ m′ ≤ m) bits code that

are different from Xbest (t), select
⌊
m′ × ω2

⌋
bits out of the

m′ bits, and replace the selected
⌊
m′ × ω2

⌋
bits in X i (t) with

the corresponding code in Xbest (t). This replace strategy is
defined as ω2 ⊗ (X i (t)↔ Xbest (t)), as shown in Fig. 3(b).
Definition 6: Randomly select bm× ω3c bits out of X i (t),

and exchange the these bits with the corresponding code in
X j (t). This exchange strategy is defined as ω3 ⊗(

X i (t)↔ X j (t)
)
, as shown in Fig. 3(c).

Selection of Parallel Feature Subset: Parallel computing
is utilized in our algorithm to improve the robustness and
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reliability of feature extraction. Such strategy will enable us
to run Q ISSO feature extraction processes simultaneously to
calculate the optimal extraction vector set

{
P1,P2, · · · ,PQ

}
.

Definition 7 (Evaluation of Classification): Use P i, i ∈
{1, 2, · · · ,Q} to classify samples {xi}ni=1 in data matrix D,
and define the evaluation of classification as DIV (P i):

DIV (P i) =
n∑
j=1

(∑
xz∈Misj ‖xj − xz‖

n× |Misj|

)

−

n∑
j=1

(∑
xz∈Nej ‖xj − xz‖

n× |Nej|

)
(18)

where Misj and Nej are the different sample set and similar
sample set of xj respectively,

∣∣Misj∣∣ and ∣∣Nej∣∣ are the set
scales.

Equation (18) indicates that DIV (P i) reflects the sample
classification quality of P i. The larger the value of DIV (P i),
the better the classify quality. The pseudocode of parallel
ISSO feature extraction based onDIV (P i) (PISSOF) is listed
below.

Algorithm 2 PISSOF Algorithm
Input: Number of particles N , number of sub-populations

O, number of features m, update control probabil-
ity κ , objective function 2(D), maximum number of
iterations Tmax, number of parallel feature extraction
process Q;

1: Run Q ISSO optimization feature extraction procedures
simultaneously, and get

{
P1,P2, · · · ,PQ

}
;

2: for i = 1 : Q do
3: According to P i, use SVM to classify data matrix D;
4: Calculate DIV (P i) according to (18);
5: end for
6: Pbest is the maximum value of DIV (P i);

Output: Pbest

IV. INTRUSION DETECTION BASED ON FEATURE
EXTRACTION AND DISTRIBUTED
FUZZY CLUSTERING
A. DISTRIBUTED FUZZY CLUSTERING
Fuzzy C-means clustering algorithm (FCM) classifies the
data matrix through membership function. Suppose there are
n samples in data set {xi}ni=1. FCM calculate the member-
ship matrix U = [µik ]C×n and cluster center V = {vi}
through iteration to divide {xi}ni=1 into C sub-classes and
make the clustering objective function minimal, here µik is
the membership degree of sample xk to the ith sub-class.
However, FCM is easy to fall into local optimum due to its
local search strategy and sensitivity to initial value settings.
Besides, the number of sub-classes C should also be set in
advance for FCM. Hence, we present distributed fuzzy clus-
tering to improve the fuzzy clustering algorithm performance
through introducing intelligent iterative evolutionmethod and
adaptive clustering strategy.

Definition 8: In ISSO algorithm, coded particles as:

X i (t) = (v1, · · · , vi, · · · vC ), vi = (vi1, vi2, · · · vik) (19)

where vi, i = 1, 2, · · · ,C is the ith cluster center,
(vi1, vi2, · · · vik) is the eigenvalues corresponding to non-zero
elements of the optimal feature extraction vector Pbest .
During the iterative process of the algorithm, particles are still
updated by strategy defined in Definition 4. And for contin-
uous optimization problem, the update strategy is written as:
ω1 ⊗ (X i(t)↔ X i(t)) = ω1 × X i(t)
ω2 ⊗ (X i(t)↔ Xbest (t)) = ω2 × (Xbest (t)− X i(t))
ω3 ⊗ (X i(t)↔ X j(t)) = ω3 × (X j(t)− X i(t))

(20)

Definition 9: Define the objective function of ISSO as:

min f = 2
C∑
i=1

n∑
j=1

µ∂ij
[
1− K (xj, vi)+ (vi, vi)

]
K (xj, vi) = exp

(
−‖xj − vi‖2

σ 2

)
(21)

where ∂ is fuzzy weighting exponent. The essence of (21)
is to replace the traditional Euclidean distance by the Gauss
kernel induced distance so as to expand the application scope
of fuzzy clustering algorithms.
Distributed ISSO Optimization: To further increase the

clustering performance, MPI parallel is used to run L ISSO
optimization fuzzy clustering classification progresses simul-
taneously. After each iteration, the L progresses would lead
to L optimum solutions

{
X i
best (t)

}L
i=1. If the inequality∣∣∣∣max

i=1:L
f
(
X i
best (t)

)
− min

i=1:L
f
(
X i
best (t)

)∣∣∣∣ ≥ τ is satisfied,

solutions with poor-fitness will be substituted by Nmpi
high-fitness solutions randomly selected from

{
X i
best (t)

}L
i=1.

Optimal Clustering: To automatically determine the clus-
tering number C , clustering validity index VS (U,V) is
defined as:

VS (U,V) =

[
C∑
i=1

n∑
j=1

µikd2(xj,vi)
n(i)

]√(
C+1
C−1

)
[
1−max

i 6=j

(
max
i 6=j

(
min

(
µik , µjk

)))] (22)

d(xj, vi) =
√
1− exp

(
−β‖xj − vi‖2

)
,

β =

1
n

n∑
j=1

∥∥∥∥∥∥xj −
1
n

n∑
j=1

xj

∥∥∥∥∥∥
2

−1

(23)

where, n (i) is the ith cluster scale. From (22) and (23) we can
see that VS (U,V) is able to effectively evaluate the homo-
geneity and separation of cluster sub-classes. The smaller the
value of VS (U,V) is, the better the clustering performance.
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Algorithm 3 Distributed ISSO Fuzzy Clustering Algorithm
Input:Number of particles N , number of sub-populationsO,

number of features m, update control probability κ ,
maximum number of iterations Tmax, fuzzy weight-
ing exponent ∂ , maximum clustering number Cmax,
optimal feature extraction vector Pbest , number of
parallel clustering processes L;

1: For each sample xi, extract its optimum feature subset
X i =

(
f̂i1, f̂i2, · · · , f̂ik

)
according to the position of

non-zero elements in Pbest ;
2: for C = 2 : Cmax do
3: for l = 1 : L do
4: Initialization of populations Gl . According to

Definition 8, coded every particle in Gl with k
samples. Randomly select a particle to be Xbest (0),
and calculate the initial fitness value of each
particle, t ← 1;

5: while the terminate condition is not satisfied do
6: Perform ISSO on every particle in population Gl

once according to (20);
7: for i = 1 : N do
8: Use µik =

‖xk − vi‖−
2
∂−1 /

(
C∑
j=1

∥∥xk − vj∥∥− 2
∂−1

)
to

calculate U , and calculate f (X i (t)) according
to (21);

9: Update historical optimal solution for particle
and optimal solution X l

best (t) for population;
10: end for
11: if

∣∣∣∣max
i=1:L

f
(
X i
best (t)

)
− min

i=1:L
f
(
X i
best (t)

)∣∣∣∣ ≥ τ

then
12: if X l

best (t) belongs to the Nmpi poor solutions,
substitute it with a better solution randomly
selected from other populations;

13: end if
14: t ← t + 1;
15: end while
16: end for
17: Collect the L optimal solutions

{
X i
best (t)

}L
i=1, and

choose the best fitted solution as cluster center V c;
18: Calculate VSC (U,V) according to (22);
19: end for
20: TheC corresponding to theminimal value ofVSC (U,V)

is the optimal cluster number, the corresponding cluster
center is the optimal V

Output: cluster center V = {vi}

B. IMPLEMENTATION OF INTRUSION
DETECTION IN WSNS
Perform Algorithm 2 on data set

{
xtexti

}n
i=1, we obtain

the optimal feature extraction vector Pbest . Then C cluster
centers V =

{
vj
}
, j = 1, 2, · · · ,C based on Pbest can be

attained byAlgorithm 3. Classify test data xtexti to the nearest

cluster center. When all the data have been classified, there
are C classes Dtextc , c = 1, 2, · · · ,C . Because the number of
abnormal data is small, Dtextc , which contain a small number
of data, is very likely to be invaded. To determine whether the
data is abnormal, suspectedDtextc is compared with validation
data classes in sequence. Dtextc can be said to be abnormal if
the following inequality is satisfied.

min
H=1:C ′

∣∣∣∣∣∣∣∣
∑

xtexti ∈D
text
c

(
xtexti − v

text
c
)

∣∣Dtextc

∣∣ −

∑
xj∈DH

(
xj − vH

)
|DH |

∣∣∣∣∣∣∣∣ ≤ θ
(24)

where C ′ is the number of validation data clusters,
vtextc and vH are the cluster center of test data classes Dtextc
and validation data classes DH respectively, |DH | is the scale
of data in each class.

V. EXPERIMENTAL ANALYSIS AND
SIMULATION RESULTS
A. PERFORMANCE OF PARALLEL ISSO FEATURE
EXTRACTION ALGORITHM
In this part, real data is used to verify the perfor-
mance of PISSOF we proposed in this paper, they are
Ionosphere (ION), Hill-Valley (Hil), Arrythmia (Ary),
Madelon, Multiple-features (Mfe), Breast, ORL10P and
Dexter selected from [8] (the parameters of the 8 real data
are shown in Table 1). Typical feature extraction algorithms,
ReliefF, mRMR, SPEC [7], CFS [13], CIP [8], FCBF [13]
and FSBR [14], are also simulated as comparative algorithms
of PISSOF. Two classifiers, KNN and SVM, are utilized
individually to carry out classification test for feature subsets
obtained from PISSOF and the aforementioned 7 feature
extraction algorithms on MATLAB. Each algorithm runs
50 times. And evaluation analysis is based on average
correct rate of classification CAC (P i) and average DIV (P i)
respectively.

TABLE 1. Test data.

Parameters in PISSOF are set as follows: N = 200,
O = 10, κ = 0.25, Tmax = 500, Q = 5. Under
the same parallel computing framework, perform discrete
particle swarm optimization algorithm (DPSO) and discrete
artificial bee colony algorithm (DABC) separately to solve
the feature extraction model. Table 2 and Table 3 are the
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TABLE 2. Comparison of CAC
(
Pi

)
.

TABLE 3. Comparison of DIV
(
Pi

)
.

FIGURE 4. Comparison of the feature extraction convergence curves. (a) Test data Ion. (b) Test data Mfe. (c) Test data Ary.

comparison results of CAC (P i) and DIV (P i) for different
feature extraction algorithms. Fig. 4 gives a comparison of the
convergence curves between ISSO and the other two discrete
algorithms.

For SVM, PISSOF has a better overall performance than
the other 7 feature extraction algorithms, as shown in Table 2.
Except for test data Dexter, the classification accuracy of
PISSOF is the best. The CAC (P i) of PISSOF has increased
by 8.9%∼15.6% compared with the other 7 feature extrac-
tion algorithms. Similarly to KNN, besides test data ION,
the PISSOF has the best classification rate. The compar-
ison results indicate that the feature subset selected by
PISSOF has better classification performance. From Table 3,

it can be concluded that the redundancy between extracted
features has been effectively reduced by PISSOF, much
lower than ReliefF, SPEC, FCBF, FSBR, etc. Obviously, CIP
and mRMR also has small inter-feature redundancy, which
is a direct result of their starting point of feature extrac-
tion, reduce the redundancy. To sum up, unilateral reduc-
tion of redundancy does not necessarily improve the success
rate of feature subset classification. Only by reducing the
redundancy while preserving the diversity of the original
samples, can the classification and identification performs
better.

Fig. 4 shows that ISSO has better convergence precision
and efficiency. Multiple evolution updating strategies and
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FIGURE 5. Comparison of TPR and FPR.

adaptive learning enables ISSO to avoid the local optimum
for higher accuracy.

B. PERFORMANCE OF WSNS INTRUSION
DETECTION ALGORITHM
200 nodes were deployed on a 100 × 100m ground. Select
LEACH and IEEE802.15.4 as the routing protocol and MAC
protocol respectively. Continuously collect network data in a
given time. Parameters of the simulation are listed in Table 4.
The data feature index is composed of network basic connec-
tion, network connection content and network flow. And
packet loss rate, message transmission frequency, message
reception frequency, energy consumption rate and sensor
measurement value are also investigated as main feature
index. For each intrusion simulation, we randomly select
different number of nodes as the attacked nodes. Attack types
are mainly wormhole, black hole, and flooding. The experi-
mental data is divided into normal data set and test data set
that were attacked.

Similar to the WSNs intrusion detection algorithm
proposed in this paper, AGFCM [15], PLS-CVM [20]–[27]
and classical F-Score classify and detect data on the basis
of feature subset extraction. So we compare the detection
performance of our algorithm and the three algorithms for
further analysis. We simulate the four algorithms under

TABLE 4. Parameters for WSNs simulation.

different feature numberm, normal data set size n, proportion
of attacked nodes γ and noise level SNR. Each algorithm runs
20 times. Comparisons and analysis were between average
detection rate TPR and average false detection rate FPR.
Fig. 5 is the comparison result, and Table 5 lists the results
of feature subset selection and the time cost.

TABLE 5. Comparison of feature subset selection result and time cost.

Fig. 5(a) is the TPR and FPR curve overmwhen n = 2000,
γ = 5%, SNR = 20db. As it can be seen, the TPR of the
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four algorithms increased with the increase of m, while the
FPR decreased. Especially when m ≥ 70, the TPR of the
algorithm we propose will reach beyond 95%, better than
the other three algorithms. Fig. 5(b) is the TPR and FPR
curve over n when m = 70, γ = 5%, SNR = 20db.
With the increase of n, the TPR of our algorithm improves
obviously and the FPR decreases sharply, which means that
our algorithm is superior than the other three algorithms
on detection performance. And we have the conclusion that
the participation of normal validation set is helpful for the
improvement of detection accuracy. Fig. 5(c) is the TPR and
FPR curve over γ when m = 70, n = 2000, SNR = 20db.
It is clear that with more nodes being attacked, TPR declines.
But even when 30% of the nodes were attacked, the TPR of
our algorithm is still above 50%, rather better than the other
3 algorithms. Fig. 5(d) is the TPR and FPR curve over SNR
when m = 70, n = 2000, γ = 5%. When the noise level
is low, all the four algorithms perform well. However, when
the SNR exceeds 35dB, all of the algorithms suffer dramatic
decline of detection accuracy, but our algorithm declines
with a slower tendency compared with the other three algo-
rithms, which means our algorithm is more robust against
noise.

As Table 5 shows, for different m, the extracted feature
subset size k of our algorithm are 13, 12, 14, 21,18,
20 respectively, the whole change is not very obvious,
while the other algorithms’ k almost doubled, indicating
that the algorithm we proposed has better stability. The
time cost of our algorithm is better than PLS-CVM, much
the same as that of AGFCM, for they all adopts fuzzy
clustering technique. It also can be seen that increase
the number of parallel operations cannot necessarily guar-
antee a significantly increased time cost of our algorithm,
which means that our algorithm has a high calculation
efficiency [28]–[31].

C. SIMULATION RESULTS ANALYSIS
In summary, PISSOF feature extraction algorithm and intru-
sion detection algorithm has better performance.

1. Feature subset obtained by PISSOF classifies data set
more precisely. The introduction of the optimal feature evalu-
ation index reduced the inter-feature redundancy while main-
taining the diversity of original data. And the parallel ISSO
further improved the solving efficiency of feature subset
extraction model.

2. The intrusion detection algorithm we present in this
paper can effectively detect intrusions, and the intrusion
detection rate is improved by about 13.1%, and the false
detection rate is decreased by about 8.5%. The performance
improvement is because the best feature subset and adaptive
clustering strategy makes the algorithm more easily to iden-
tify intrusion behavior.

3. For intrusion detection of high dimensional complex
data, the intrusion detection rate can be raised by the increase
of the size of normal validation data set and the number of
feature sets.

VI. CONCLUSION AND FUTURE SCOPE
This paper investigates the large-scale complex WSNs intru-
sion detection, and proposes an intrusion detection algorithm
based on parallel intelligent optimization feature extraction
and distributed fuzzy clustering in WSNs. The algorithm
utilizes techniques such as feature extraction, intelligent opti-
mization and fuzzy clustering, combined with the actual
demand of WSNs intrusion detection, to improve the detec-
tion performance. Simulation experiments also verify the
effectiveness of the proposed algorithm from many aspects.
However, the WSNs experiment deployment in this paper
is relatively stable, and the intrusions that happened were
mainly deliberately set in advance. Therefore, in our future
work, we intend to consider actual deployment of WSNs, and
focus on the success rate of small sample detection.
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