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ABSTRACT Flocking of the unmanned aerial vehicle (UAV) network refers to utilize the node’s autonomous
mobility to satisfy the principle of cohesion, separation, and alignment. A network with flocking ensures the
connectivity between high-speed UAV nodes and simplifies the design of various swarm applications. In this
paper, we propose a novel distributed flocking model for UAV swarm networks. The model follows the Boid
principle and establishes the master–slave transmission mode among the nodes. The slave node performs
the distributed autonomous regulation. An effective flocking method is proposed, which is based on the
positioning and communication capabilities of Wi-Fi. The slave node can sense and adjust their distance and
direction from the master node. The simulation and experimental results show that our model can guarantee
the connectivity between all nodes and has 1.4× the network goodput gain outperforms the traditional flying
ad hoc network.

INDEX TERMS UAV network, flocking, distributed model, Wi-Fi communication.

I. INTRODUCTION
Recently, it is witnessed that UAVs (Unmanned Aerial Vehi-
cles) experienced an unprecedented development from sin-
gle machine to multi-machine systems in military and civil
applications [1]. Single UAV system still has many defects in
functionality and survivability, which stimulated the research
of multiple UAV systems with stronger functions and sur-
vivability. This also promoted the development of support
technologies such as UAVnetworks or flying ad hoc networks
(FANET) [2]. Recently, the collaborations among UAVs have
become increasingly popular. It has been used in wide range
of applications, including cooperative UAVs to perform mili-
tary tasks such as investigations, surveillance, operations [3],
multi-agent cooperative control [4], automatic parallel bal-
ancing payload [5], mobile sensor network [6], [7] and robot
system [8], etc. In fact, one of the preconditions for ensuring
that multiple UAVs can perform tasks collaboratively is that
the UAVs must be interconnected and interoperable. Even if
the speeds of UAVs are high, UAV networks are required to
support reliable information exchange between nodes. There-
fore, one of the challenges in this field is how to guarantee
the QoS of wireless communications between nodes in a
high dynamic environment. However, one-sided optimizing

FANET performance [9] may be difficult to guarantee reli-
able communication between nodes under high dynamic con-
ditions. As the UAV swarm networks are complex systems,
it is necessary to analyze and solve the key technical problems
in UAV networks in a hierarchical manner to deal with them.
The flocking of the UAV network is only one of them.

In order to keep the connectivity of a UAV network, nodes
in the multiple UAV systems should be aggregated within a
certain range regardless of how the nodes to move. Therefore,
for FANET nodes using Ad Hoc network technology, they
are required to have some kind of ability to control their
movement, which can eliminate the randomness of mobility.
Once the distance between nodes is effectively controlled,
the quality of wireless communication with a certain SNR
can also be guaranteed. The current solution to this problem
is to allow the UAV agent to imitate the swarm behavior,
so that the nodes can act like insects or animals to work
group cooperatively [10]. Flocking is the collective behavior
of UAVs that interact in large numbers for common group
goals. Inspired by biological researchworks, flockingwithout
collision between each other can be achieved through the
interaction process of simple individuals which only need to
follow simple rules of behavior [11]. We define flocking of
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UAV network as the features utilizing the node’s autonomous
mobility to make the nodes of UAV network satisfy the cohe-
sion, separation, and alignment principles. In other words,
when a network has flocking ability, all its nodes meet the
following characteristics: they can aggregate themselves, and
cannot walk randomly to become isolated nodes; they can
maintain separation without colliding due to close proximity;
they can have commonmovement tends and will not be out of
sync in high-speedmovement. If a new feature called flocking
is added to the UAV network layer, the complex QoS control
problem of the network will become transparent to the higher
layer, and the application developers can simplify the design
of the swarm systems and applications without having to pay
attention to control the network node movement and other
complicated issues.

Adding flocking to UAV networks involves many complex
technical issues. Firstly, based on the wireless networking
capabilities of Ad Hoc networks, how to make the set of
network nodes act as the required group effects by adding
certain control capabilities. One of the key issues is the
principle to design the control model. Secondly, considering
the limited resources of UAVs and the real-time nature of
flocking control, the algorithm for implementing the model
must be distributed and simple rather than centralized and
optimal. Consequently, each UAV node can perform online
real-time calculations and autonomous control. Thirdly, con-
sidering the high performance-to-price ratio of UAV swarm,
the equipment required for the above model and algorithm
should be consistent with the current technology level. In our
paper, we propose a flocking model of UAV network based
group intelligence to enable simple and autonomous real-
time control of UAV nodes. A Wi-Fi-based positioning and
communication capability is proposed to achieve the flocking
of UAV network, which provides the possibility of using
commercial equipment to realize our flocking algorithm.

This paper is organized as follows. Section II describes
the flocking problem of UAV networks. Section III pro-
poses a distributed flocking model (DFM) of UAV networks.
Section IV proposes a method based on Wi-Fi to solve the
positioning and alignment requirements at the same time.
It also gives a method for the node to sense the distance to
the master node, and proposes a method for synchronizing
the directions of the slave node and the master node based
on the DFM communication protocol. Section V designed
a prototype system and conducted simulation tests on the
OMNeT++ platform. Section VI summarizes related work
and Section VII concludes the paper.

II. PROBLEM DESCRIPTION
The main purpose of this paper is to solve the interconnection
problem of UAV networks, so that upper-layer applications
running upon the network do not need to pay attention to
the connectivity of the network, thus flocking of UAVs net-
work can simplify the design and development of UAVs
applications. Currently, there are two methods of controlling
UAVs motion mainly. One is formation, the other is swarm.

The UAVs in the formation fly according to waypoints which
are calculated beforehand, so that the method has many defi-
ciencies such as being beyond control in uncertain condition.
The UAVs in the swarm, however, usually use ad hoc network
technology and the nodes in unstable condition may move
randomly, so the flocking model is needed for controlling
UAV nodes autonomously in swarm. The necessary condition
for UAV network to meet the interconnection is that there is at
least one spanning tree in the topology diagram composed of
UAV nodes. Therefore, this paper proposed a flocking model
of UAVs network based on swarm intelligence. In the master-
slave mode, a slave node (Follower, F for short) and its master
node (Leader, L for short) form a communication link and
all communication links form a spanning tree. In order to
facilitate the analysis, we firstly consider only two UAVs in
the network. One of them is the leader L, and the other one is
the follower F. The node L can determine its flight trajectory
according to the task and the environment state, while the
node F needs to adjust its own distance and flight direction
with L according to the state information of L. Assuming:

1) All UAVs fly at the same altitude;
2) When UAVs move, uncertain changes in speed and

direction may occur due to application requirements and
disturbances.

3) UAV can obtain its own position information <

lon, lat, height > and flight status < speed, angle, omega >
through sensors in a real time manner;

4) UAV can communicate with neighboring nodes and can
publish its own information actively or request information
from neighboring nodes passively.

FIGURE 1. Flocking constraints between L and F.

For node L, the preferred location of F should be in the
annular area centered on L (shaded in Fig.1.). Wherein, the
distance d between F and L satisfies:

r1 < d < r2 (1)

where r1 denotes the safe distance, and r2 is the reliable
communication distance. We define r3 as the unstable com-
munication distance (r2 < r3). Obviously, in order to realize
the goal of flocking (separation, aggregation and alignment);
the following control strategies must be met:
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(1) During the movement, no matter how L changes, F can
always adjust itself so that it falls within the shaded area to
satisfy the Formula (1).

(2) When F falls to the region that d ≤ r1 or r2 < d < r3,
it needs to be adjusted within the time period 1t so that it
enters the shaded region as soon as possible.

In practice, L and F are not always in the desired position
as described above. For example, when the speed or course
of L or F is changed due to external factors, if one of them
fails to adjust in time, it will result in the loss of this flocking.
Therefore, it is necessary to design a reasonable and reliable
strategy for F, so that F and L can always satisfy the relation
of the Formula (1).

For the network composed of n UAVs, we assume that
each UAV node has been assigned an L node (other than
the root node). There will be possible collisions between
the nodes when considering the flocking problem between F
and L. Without loss of generality, we only take into account
collisions in the direction of movement of the node (as shown
in Fig.2). The node UAV1 needs to constantly sense the front
of the motion. When other node (such as UAV2) moves into
the sensing range and the distance ds between UAV1 and
UAV2 meets ds ≤ r1, the track of UAV1 should be adjusted
immediately to avoid collision. Moreover, the priority of
collision avoidance is higher than others.

FIGURE 2. Obstacle avoidance between two followers.

III. DISTRIBUTED FLOCKING MODEL BASED ON
AUTONOMOUSLY ADJUSTMENT
According to the group motion model, the Boid model [4],
individuals can sense the flight information of neighboring
individuals within a certain range and follow three basic rules
of behavior: cohesion, separation, and alignment. It is always
possible to satisfy the Formula (1) between the node F and
the node L. In order to simplify the calculation and control
process, F must be capable of autonomous adjustment based
on relevant information. The principles of DFM are: 1) When
F and L are too close, F should fly away from L; 2) When the
distance is too far, F should fly in the direction of L; 3) When
the distance between them is moderate, F should adjust itself
to keep the same speed and direction with L.

As shown in Fig.3, a North-East-Land coordinate system
was established. At any time t, suppose the flight state of node
L is < x1(t), y1(t), v1(t), ϕ1(t), α1(t), ω1(t) >, and the flight
state of node F is < x2(t), y2(t), v2(t), ϕ2(t), α2(t), ω2(t) >,
where < xi(t), yi(t) > is the position coordinate of UAVi,
vi(t) is the rate of UAVi (v ∈ (vmin, vmax)), and ϕi(t) is
the heading angle (positive direction of X axis is 0 degree,
counterclockwise is positive), αi(t) is the acceleration (|α| ≤
αmax), and ωi(t) is the angular velocity (|ω| ≤ ωmax).

FIGURE 3. Quantitative analysis between L and F.

Therefore, at time t, the distance between node F and node
L is d(t) =

√
(x1(t)− x2(t))2 + (y1(t)− y2(t))2, and the

relative position of node L to node F is < x1(t) − x2(t),
y1(t) − y2(t) >. According to the principle of separation
and cohesion, when F and L are too close, F should fly in
a direction away from L, that is, in the direction < x2(t) −
x1(t), y2(t) − y1(t) >.When F and L are too far, F should
fly in a direction near L, that is, in the direction < x1(t) −
x2(t), y1(t)−y2(t) >. According to the principle of alignment,
when F and L satisfy formula (1), F and L should maintain the
same flying speed and direction, that is, adjusting the speed
v2(t) and direction ϕ2(t) to make it consistent with the v1(t)
and ϕ1(t).
Specifically, the adjustment decisions of F can be divided

into the following categories:
(1) d(t) ≤ r1, the adjustment target at this time is to make

F accelerate away from L, and the direction away from is
< x2(t)− x1(t), y2(t)− y1(t) >. To convert into the direction
angle:

θ0 = arctan

∣∣∣∣y2(t)− y1(t)x2(t)− x1(t)

∣∣∣∣ (2)

θ =


θ0 x2(t)− x1(t) > 0, y2(t)− y1(t) > 0
θ0 + π x2(t)− x1(t) < 0, y2(t)− y1(t) > 0
θ0 + π x2(t)− x1(t) < 0, y2(t)− y1(t) < 0
θ0 + 2π x2(t)− x1(t) > 0, y2(t)− y1(t) < 0

(3)

If 0 < θ − ϕ2(t) < π or θ − ϕ2(t) < −π , then the angular
velocity of F in the next cycle is ω2(t+1T ) = ωmax, and the
acceleration is α2(t+1T ) = αmax. If θ−ϕ2(t) > π or−π <
θ −ϕ2(t) < 0, then the angular velocity of F in the next cycle
isω2(t+1T ) = −ωmax, and the acceleration is α2(t+1T ) =
αmax.

(2) d(t) ≥ r2, the adjustment goal at this time is to
make F accelerate closer to L, and the approach direction is
< x1(t)− x2(t), y1(t)− y2(t) >. To convert into the direction
angle:

θ0 = arctan

∣∣∣∣y1(t)− y2(t)x1(t)− x2(t)

∣∣∣∣ (4)
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θ =


θ0 x1(t)− x2(t) > 0, y1(t)− y2(t) > 0
θ0 + π x1(t)− x2(t) < 0, y1(t)− y2(t) > 0
θ0 + π x1(t)− x2(t) < 0, y1(t)− y2(t) < 0
θ0 + 2π x1(t)− x2(t) > 0, y1(t)− y2(t) < 0

(5)

If 0 < θ − ϕ2(t) < π or θ − ϕ2(t) < −π , then the angular
velocity of F in the next cycle is ω2(t+1T ) = ωmax, and the
acceleration is α2(t+1T ) = αmax. If θ−ϕ2(t) > π or−π <
θ −ϕ2(t) < 0, then the angular velocity of F in the next cycle
isω2(t+1T ) = −ωmax, and the acceleration is α2(t+1T ) =
αmax.
(3) r1 ≤ d(t) ≤ r2, the adjustment goal is to align F to L,

that is, keep the speed and direction consistent.
The new speed rate after L goes through the period 1T is

v1(t + 1T ) = v1(t) + α1(t)1T , and the new heading angle
is ϕ1(t + 1T ) = ϕ1(t) + ω1(t)1T , so F should be aligned
to v1(t + 1T ) and ϕ1(t + 1T ) as far as possible in the next
cycle. This means:

If v2(t)<v1(t+1T ),

α2(t+1T )=min[αmax,
v1(t+1T )−v2(t)

1T
].

If v2(t) ≥ v1(t+1T ),

α2(t+1T )=max[−αmax,
v1(t+1T )−v2(t)

1T
].

If 0<ϕ1(t+1T )−ϕ2(t)<π,

ω2(t+1T )=min[ωmax,
ϕ1(t+1T )−ϕ2(t)

1T
].

If ϕ1(t+1T )−ϕ2(t)>π,

ω2(t+1T )=max[−ωmax,−
ϕ2(t)+2π−ϕ1(t+1T )

1T
].

If −π <ϕ1(t+1T )−ϕ2(t)<0,

ω2(t+1T )=max[−ωmax,
ϕ1(t+1T )−ϕ2(t)

1T
].

If ϕ1(t+1T )−ϕ2(t)<−π,

ω2(t+1T )=min[ωmax,
ϕ1(t+1T )+2π−ϕ2(t)

1T
].

The above discussion shows that F which needs to achieve
the above self-adjustment strategy must obey the following
rules: 1) F must be able to sense the distance of L in time
to determine the distance d between them; 2) F must obtain
the L’s position information to adjust the speed and heading
angel; 3) It is a basic condition to ensure effective com-
munication between L and F. In fact, as long as Formula
(1) is satisfied between F and L, the communication quality
between them can be guaranteed.

IV. Wi-Fi BASED POSITIONING AND
COMMUNICATION METHODS
A. F SENSES THE DISTANCE TO L
Although we can obtain the spatial coordinates of L and
F through a positioning system such as GPS or Beidou
and calculate their distance, it is still difficult to reach
the accuracy requirements of bee colony control by using
non-high-precision equipment. Also, it is costly to use the
high-precision positioning equipment. Therefore, how to use

low-cost equipment to obtain relevant information and accu-
rately calculate the value of d is important.

Perceiving the distance to a point in space is not a technical
problem, because in 3D space or in the plane, using a sensor
can determine the distance to a specific target. However,
the sensor usually has strong directionality, and it needs to
deploy many sensors or adopting a sensor capable of rotating
in all directions so as to achieve the desired effect. This makes
the UAV with high cost performance unable to adopt such a
scheme. Since there is currently no cheap, omni-directional
distance sensor, it cannot meet technical requirements of the
UAV swarm.

Considering that the Wi-Fi has the characteristics of
omnidirectional transmission, its wireless signal can cover
the sphere space centered on the source point. There have
been many researches and applications in distance measure-
ment [12]. Most importantly, the Wi-Fi is mature and cheap,
and its equipment is light. The Received Signal Strength Indi-
cation (RSI) received by the node is an important technical
parameter in the Wi-Fi network, which reflects the distance
between the signal strength received by the receiving node
and the signal transmission point. The relationship between
the distance d of the transceiver node and the received RSSI
value is shown in Formula (6) [12]:

d = 10
(A−rssi+w)

10n (6)

Where A is apparent transmission power, n is a parameter
describing attenuation properties of the environment, and w is
a zero-mean Gaussian random variable used for modeling the
shadow fading. Accordingly, the node F can infer its distance
to the node L by the self-detected RSSI. Therefore, we use
the Wi-Fi system as a full-range distance sensor. As long as
the relationship between the distance d between two UAVs
and the received RSSI strength of Wi-Fi can be measured in
a specific environment, the value of d can be obtained from
the obtained RSSI value. Although the wireless signal may
be subject to different interference in different environments
[13], [14], the model does not need to calculate the exact
distance, but only needs to ensure that the network always
satisfies the connectivity.Wi-Fi andGPS can be used together
to realize the characteristic of flocking for UAVnetwork. GPS
can ensure that the UAVs do not collide when they are close,
and Wi-Fi can ensure good communication quality between
UAVs.

B. F INFERS THE ORIENTATION TO L AND ALIGNS TO L
Determining the orientation of F to L and their alignment
are the two key issues to implement our model. In order to
determine the position of F to L, F needs to know its own
space coordinates and the space coordinates of L based on
equations (2) and (4); F needs to exchange the direction of
movement and the speed of movement between them in order
to align with the state of L. To achieve this, the UAV network
adopts the DFM protocol to support the exchange of relevant
information between the parties. The DFM communication
protocol defines the communication rules for the information
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exchange between nodes F and L. It provides two com-
munication modes: broadcast mode and request mode. The
broadcast mode requires the node L to actively broadcast its
own position and flight status information. The node F deter-
mines whether to adjust its own flight status after receiving
this information. Proactive request mode requires the node
F to actively send an information request to L according to
the model requirements. After receiving the request, it must
immediately acknowledge its current location and flight sta-
tus information to the requester.

Since bee colony applications also depend on peer-to-
peer communication between nodes, to save valuable channel
bandwidth resources, the communication resources required
for maintaining the bee model of the bee colony network need
to be kept as low as possible. How can we meet the needs
of network clusters and keep a smaller communication load
simultaneously?

Let T0 be the interval period for node L to broadcast. L
broadcasts a message to F for every T0 period. As long as
the L status changes (that is, when ωL 6= 0 or αL 6= 0),
the message is immediately broadcast, so that F receives
immediately. The state change amount, F will be adjusted
according to the DFM; if the L state changes need a period
of time to complete, the broadcast interval will change
to T1, where T1 < T0. However, when the L status
does not change, the L broadcast interval is still restored
as T0.

When F determines that it needs to be adjusted according to
the DFM, F sends an active request packet to L immediately,
so that a packet including the current state of L can be
obtained as soon as possible.

When F determines that it needs to be adjusted according to
the DFM, F sends an active request packet to L immediately,
so that a packet including the current state of L can be
obtained as soon as possible.

It can be easily find that there are three main objectives for
designing the DFM communication protocol: First, to enable
F to infer the position of L, whenever F needs to adjust
according to DFM, it will immediately send a request packet
to L, and L immediately sends the message including its
own status. The second is to ensure the alignment between
network nodes, whenever the L state changes, it will take the
initiative to push the message to F including its own position,
speed and direction angle. The third is to pursue the efficient
use of Bandwidth, whenever L’s speed and direction change,
its broadcast frequency increases.

Therefore, the DFM communication control Algorithm 1
is described as follows:

V. SIMULATION RESULTS AND ANALYSIS
A. THE PROTOTYPE SYSTEM
In order to verify the feasibility of the proposed model and
algorithm, this section builds a simulation environment for
UAV network based on OMNeT++ simulator. The physical
layer of this model mainly uses the Radio model and the

Algorithm 1 DFM Communication Control Algorithm
1: Leader: //when node acts as Leader
2: Step 1:
3: initialize periodic time T = T0
4: Goto 2:
5: Step 2:
6: broadcast status message
7: timeout(T )
8: Goto 3:
9: Step 3:
10: IF ωL 6= 0 or αL 6= 0
11: update T = T1
12: Goto 2:
13: ELSE
14: update T = T0
15: Goto 2:
16: ENDIF
17: Follower: // when node acts as Follower
18: Step 1:
19: Receiving message from Leader
20: IF msg_recieved //receive message from Leader
21: Goto 2:
22: ELSE Goto 3:
23: ENDIF
24: Step 2:
25: IF need_adjust //node needs to adjust its path
26: adjust()
27: Goto 3:
28: ENDIF
29: Step 3:
30: IF location_deviated //when location is deviated
31: send(request)
32: Goto 1:
33: ENDIF

Medium model. In the MAC layer, the Ad Hoc model is
mainly used and the routing is provided by the OLSR proto-
col, and the DFMmodel we developed is added. The network
layer mainly uses the IMobility model. The network consists
of 7 UAVs, and Wi-Fi communication is used between the
nodes (maximum communication radius is set to 100m).
1 UAV is used as the master node L, and 2 UAVs are used
as its F; each F is followed by 2 UAVs. In DFM, r1 = 2m,
r2 = 100m, r3 = 130m, the UAV initial speed is set to 10m/s,
and the network movement range is 3km∗3km. During the
movement of the UAVs, there exists wireless communication
interference and random wind disturbance.

To evaluate the simulation results, we defined the following
evaluation indicators.

Average Departure Distance (ADD): ADD between L and
F in network is defined as:

ADD =

N∑
i=i

(dti+1 − dti )

N1t
(7)
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where dti+1 is the distance between F and L at time ti+1, dti is
the distance between F and L at time ti,1t is the time interval
between ti+1 and ti, N is the total number of time intervals,
and the unit of ADD is m/s. Obviously, the more frequently
the distance between two UAVs changes, the larger the ADD
value, and the more dynamic of the network topology change.

Network Goodput (NG): The NG of a unit time at time t in
the network is defined as:

NG(t) =
m∑
i=1

Goodputi(t −1t, t)
1t

(8)

where, Goodputi(t − 1t, t) is the Goodput of ith data flow
from t −1t to t , m is the total number of flows, and the unit
of NG is Mbps. Obviously, in the case of the same routing
protocol and communication standard, NG can be maximized
when the network topology always maintains good connec-
tivity, that is, nodes always satisfy the relation of Formula (1).

FIGURE 4. The network topology changes when the master node flies
along a straight trajectory.

FIGURE 5. The network topology changes when the master node flies
along a circular trajectory.

B. EXPERIMENTS AND ANALYSIS
In order to verify the effectiveness of our algorithm in dif-
ferent scenarios, we conducted the following experiments:
Let the master node fly in straight and round flight paths to
observe the behavior of the network.

Fig.4 and Fig.5 show the UAV network composed of 7
UAV nodes alignment and arrange in a circle, respec-
tively. UAV0 follows a straight line and a circular track,
UAV1 and UAV2 follow UAV0, UAV3 and UAV4 follow
UAV1, UAV5 and UAV6 follow UAV2. All UAVs may devi-
ate from their current position during flight because of ran-

FIGURE 6. Change of the distance between each L-F pair at different
trajectories. (a) Straight trajectory. (b) Circular trajectory
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dom disturbance. It can be found from Fig.4 and Fig.5 that
during the fly progress, the actual flight trajectory and net-
work topology of the UAV node have some deviation due to
random interference. But they can basically fly along the pre-
determined trajectory and maintain the topological stability.

Fig.6a and Fig.6b show the change of the distance between
each Follower-Leader pair under the straight line and the
round track, respectively. The network is composed of 7
UAV nodes. The following relationship is consistent with
Fig.4 and Fig.5. From Fig.6, we can see that the distance
between any Follower and its Leader node will fluctuate due
to interference, self-adjustment and other factors. However,
the distance between the Follower and the Leader can always
meet the requirements of Formula (1) and ensure that the
communication link is not interrupted. In addition, the dis-
tance between Follower and Leader fluctuates infrequently,
which indicates that the entire UAV network topology is
relatively stable during the operation. As shown in Table 1,
the value of ADD under different Leader-Follower pairs for
UAV networks composed of 7 UAV nodes in straight and
round tracks, respectively. From Table 1, it can be found that
the value of ADD under different Follower-Leaders pair is
less than 0.25 m/s, which means each UAV deviates by an
average of less than 0.25m/s during the flight. Comparedwith
the communication range (r2 = 100m) between UAVs, under
the control of the DFM algorithm, the UAV network can
maintain a stable topology flight, thus ensuring the reliability
of the communication link.

TABLE 1. ADD values between L-F pairs under different trajectories.

In the experiment, we also measured the network Goodput
(NG). Since the peak network bandwidth based on the IEEE
802.11g standard is about 5.8Mbps [15], we set up four nodes
in the third stage of the UAV network of this experiment and
send a stream of 0.48 Mbps between each pair of fi (i =
1,. . . , 12).The total flow speed is 5.76 Mbps, and the NG is
calculated in real time. For comparison, we conducted the
experiments under three different scenarios: 1) the network
topology is stationary; 2) the network node sets do linear
motion and are subjected to random interference; 3) the
network node sets do linear motion and are subjected to
random interference, but the DFM model is simultaneously
applied. Where the nodes may be offset due to the influence
of the wind that obeys the Poisson distribution when the
network nodes move. Fig.7 shows the variation of NG over
a simulation time of 100 s (multiple averaged results).

FIGURE 7. The variation of NG under different scenarios.

It can be found from Fig.7: a) under three different sce-
narios, NG is all lower than the theoretical value. This is
because the network still has the influence of routing, control
messages between F and L, and other disturbances in the sim-
ulation experiment. b) Compared with the static scenario 1,
the NG value of the DFM model is slightly lower. This
is because the DFM method needs to send a certain num-
ber of control messages, which reduces the overall network
throughput. c) In scenario 2 (Ad Hoc model directly used by
the network without DFM), due to the interference and the
random influence of wind power, the network topology and
the communication links between the nodes are difficult to
be stable, which results the value of NG value fluctuating.
When there is a large deviation from some nodes, even if
all nodes are disconnected, the NG will be reduced to zero.
On average, UAV networks with DFM have 1.4 times on NG
than UAV networks without DFM, and the worse the environ-
ment, the greater the gap of NG. In some swarm applications,
short-term and random communication interruptions cannot
be tolerated, and the system cannot be adjusted in real time.

During the execution of the DFM algorithm, the value of
the time period T1 during which the leader broadcasts the
state information when its motion is changing directly affects
the effectiveness of the algorithm and the performance of the
network. If T1 is chosen too small, although the granularity
of topology control can be improved, it may cause great
interference to network data transmission. If T1 is selected too
large, although the network load can be reduced, it may not
be able to effectively control network swarming. Obviously,
there is a better value for T1. Therefore, this paper measured
the relationship between the NG and T1. The results are
shown in Fig.8.

Fig.8 shows that the leader broadcast period time T1 con-
tinuously increases from 0.1s in the case of a network with
a straight motion speed of 10 m/s, and the NG mean value
changes. The time of the simulation is 100s. It can be found
from Fig.8 that as T1 increases, the number of control packets
decreases, which leads to the increasing of averageNG.When
T1 is greater than a certain value (e.g., greater than 3.2s),
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FIGURE 8. NG changes under different T1.

the flocking of network cannot be maintained effectively,
in which some nodes in the network may be disconnected
with a small probability and average NG value decreases. The
average NG value may decrease, while further increase the
T1 value greatly. In addition, the value of T1 is related to the
motion speed of the network node. When the speed is large,
T1 must be reduced to maintain the alignment of network
nodes.

VI. RELATED WORKS
Reynolds [11] proposed the flocking model in his pioneering
work in 1986, which has three heuristic rules that led to cre-
ation of the first computer animation of flocking. Reynolds’
three flocking rules include: 1) Cohesion: attempt to stay
close to nearby nodes; 2) Separation: avoid collisions with
nearby nodes; 3) Alignment: attempt to match velocity with
nearby nodes. This has motivated and guided many flocking
theoretical models. For example, Vicsek et al. [16] focused
on emergence of alignment in self-driven particle systems
while Toner and Tu [17] adopted a continuum mechanics
approach. Levine et al. [18] created rotating swarms using
a particle-based model with all-to-all interactions. Recently,
there has been a surge of interest in consensus problems due
to [19], [20], and so on. Although the objectives that these
theories aim at are different, the flocking, with its simplistic
and effective framework, has been widely adopted as the
coordination scheme in multi-agent systems [8], [21].

There has been a lot of research on the trajectory control
of single UAV, such as applying neural networks to mobile
robot manipulators [22]–[24]. From the control structure
perspective for multi UAVs, the existing flocking control
approaches can be classified into the centralized method,
where a single controller is used to control the whole team
based on the information from the whole team [25] and the
distributed/decentralized method, where each team member
generates its own control based on local information from its
neighbors [26]–[29]. The centralized flocking control can be
a good strategy for a small team of UAVs.When considering a

team with a large number of UAVs, the need for greater com-
putational capacity and a large communication bandwidth
would mandate a distributed/decentralized control. From the
control mechanism perspective, flocking control approaches
can be classified into consensus-based approaches [30],
[31], artificial potential function-based approaches [32], [33],
and leader–follower approaches [34], [35]. Consensus-based
approaches convert the flocking control problem into the
consensus (or stability) problem of relative positions and
velocities of multi-agents. They achieve formation stability
based on graph theory and consensus. However, inter-vehicle
collisions are not considered. Artificial potential function-
based approaches apply the negative gradient of a mixture of
attractive and repulsive potential functions as control inputs to
satisfy the convergence and non-collision properties, respec-
tively. The main drawback of this type of approaches is
the appearance of equilibrate, where the composite vector
field vanishes and the UAVs can get trapped at undesired
equilibrium points. Leader–follower approaches simplify the
formation problem into individual tracking problems. The
main disadvantage is that the leader is a single point of failure
for the formation. Moreover, it is difficult for leader–follower
approaches to realize formation reconfiguration.

As described in the section of problem statement, in order
to guarantee the basic QoS of UAV network, leader–follower
approach was used to realize the flocking model. Many
researches for UAV flocking based on leader–follower topol-
ogy have been proposed. Gurfil [36] used Dudek’s taxonomy
to investigate the performance of UAV swarm and concen-
trated on the four main parameters: System size, commu-
nication range, and communication bandwidth and system
composition. Quintero et al. [37] addressed the UAV flock
in a leader-follower fashion and restrained each follower
with stochastic optimal control. This flocking algorithm is
solved offline via dynamic programming to minimize the
expected cost over a finite horizon and three camera-equipped
UAVs flocked together to perform vision-based target track-
ing. Hafez1 and Kamel [38] proposed a decentralized linear
model with fuzzy logic control to solve the problem of forma-
tion reconfiguration for an autonomous team of UAVs in the
presences of faults. Benedetti et al. [39] gave an algorithm
aiming at coordinating of a set of multiple UAVs to self-
organize in order to create a flock performing a monitoring
mission. The approach is based on two algorithms that use
same rules. The first one drives agents to form a flock with
certain given characteristics. The second one allows agents
to follow a certain path which ensures the overall coverage of
the area to be monitored. Tang et al. [40] presented a sophis-
ticated vision-aided UAV flocking system, which has suc-
cessfully integrated various advanced technologies, including
LiDAR-based SLAM, and a visual system for sensing in both
of day and night without continuous wireless communication
and GPS signals. But these advanced technologies make the
system expensive. Hung and Givigi [41] formulated a model-
free RL flocking framework for fixed-wing UAVs in a sim-
ulated non-stationary stochastic environment and proposed
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an algorithm called Q-flocking to solve the RL problem.
The agents applied the Q-flocking algorithm to learn control
policies that facilitate flocking in a leader–follower topology.
However, how to speed up the learning process is a problem.
Therefore, how to design the distributed algorithms that can
run on the UAVs with inexpensive off-the-self equipment is
still a technique challenge.

VII. CONCLUSION
The Boid principle inspired by the behavior of biological
groups can be applied to satisfy flocking for UAV networks
using master-slave transmission mode. However, at present,
the algorithm for implementing this model is still more com-
plicated, and there are higher requirements for the computing
power, sensing capability, and communication capability of
UAV agent. The distributed flocking model proposed in this
paper has the characteristics of simplicity and efficiency.
It canmake the network possess flocking, and provide support
for simplifying the upper layer swarm application design.
The proposedmethod based on cheap commercial equipment,
and can effectively reduce the cost of multiple UAV systems.
The simulation results show that our model can guarantee
connectivity between nodes and have better bandwidth ben-
efits. We demonstrated that UAV networks with flocking
can provide a reliable information exchange platform for
intelligent applications, which can simplify the design of
multiple UAV systems. In our future work, we will study
the optimization model of DFM to optimize the operating
parameters in the environments with large numbers of nodes,
and apply the DFM model and technology in the actual UAV
network system.
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