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ABSTRACT This paper proposes a new two-dimensional direction finding algorithm for estimating multiple
non-Gaussian signals using cumulants. This new algorithm: 1) employs an array geometry consisting of
a nine-element non-uniformly spaced cross-shaped sub-array plus another arbitrarily-spaced sub-array;
2) defines five cumulant matrices, from which the signal direction cosines can be estimated by using parallel
factor fitting, and hence, requiring no open-form two-dimensional searching and parameter pairing; 3) can
achieve array aperture extension by jointly extending array physical aperture and constructing virtual sensors,
without adding more sensors; and 4) can resolve 2(L − 4) signals with an array of L sensors in total.
Simulation results are presented to verify the efficacy of the proposed algorithm.

INDEX TERMS Array signal processing, direction finding, ESPRIT, parallel factor analysis, cumulant.

I. INTRODUCTION
Estimation of azimuth and elevation arrival angles (two-
dimensional directions) of multiple narrowband signals using
sensor array techniques has played a fundamental role in
many applications involving radar, sonar, wired/wireless
communications and seismic sensing. In the past two decades,
many efficient one-dimensional direction finding meth-
ods, such as MUSIC [1] and ESPRIT [2], are exploited to
realize two-dimensional angle estimation [3]–[17]. Among
these methods, [3]–[8] consider the MUSIC-type algo-
rithms, and consequently, being computationally ineffec-
tive in requiring iterative searching in a two-dimensional
domain. References [9]–[14] consider the ESPRIT-type algo-
rithms that avoid searching processes but involve nontrivial
pair matching computations between two independent sets
of angle estimates (or alteratively two independent sets of
direction cosine estimates). References [15]–[17] present the
efficient pairing matching methods. The ESPRIT-type algo-
rithms, though have lower computations than MUSIC-type
algorithms, they require rotational invariant subarrays, and
thus may suffer array aperture losses. Furthermore, all of the
above mentioned algorithms require the array inter-sensor
spacing within a half-wavelength to guarantee unique and
unambiguous angle estimates.

It is well known that an array with larger aperture can offer
higher array resolution and more accurate direction-finding
precision. Extending array aperture by adding more sensors

would increase hardware costs and would add to the com-
putational load required by the signal processors. Extending
array aperture by extending the uniform inter-sensor spacing
beyond a half-wavelength will lead to a set of cyclically
ambiguous direction-cosine estimates, in accordance with
the spatial Nyquist sampling theorem. To achieve unam-
biguous and accurate direction estimates via array aperture
extension, we can use a sparse uniform Cartesian-grid array
with identical sub-arrays [20]–[25], or to adopt higher order
statistics to construct ‘‘virtual sensors’’ [26]–[28]. However,
most of these approaches require some special constraints in
terms of array geometry (e.g., rotational invariant subarrays
or sensor locations known a priori), and consequently, offer
less freedom in the design of the array shape. In this paper,
we develop a new algorithm for estimating azimuth-elevation
arrival angles of multiple non-Gaussian signals with an array
geometry consisting of a nine-element non-uniformly spaced
cross-shaped sub-array plus another arbitrarily-spaced sub-
array. This new algorithm defines five cumulant matrices,
from which the direction cosines of the signal can be esti-
mated by using parallel factor (PARAFAC) fitting [30], and
hence, requiring no two-dimensional searching and param-
eter pairing. This new algorithm can also achieve array
aperture extension by jointly extending array physical aper-
ture, which is the effect of the nine-element non-uniformly
spaced cross-shaped sub-array), and constructing virtual sen-
sors, which is the effect of the arbitrarily-spaced sub-array,
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and hence, can resolve more signals than sensors. Monte
Carlo simulation results show that the proposed algorithm
can offer distinct performance improvement over the existing
techniques in terms of estimation error reduction and less
constrained in array geometry.

The rest of this paper is organized as follows. Section II
formulates the mathematical data model for the proposed
algorithm, Section III develops the proposed algorithm, and
Section IV presents the simulation results to demonstrate the
efficacy of the proposed algorithm. Section V concludes the
paper.

Throughout the paper, scalar quantities are denoted by
lowercase letters. Lowercase bold letters are used for vec-
tors, while uppercase bold letters for matrices. Superscripts
T , H , † and ∗ represent the transpose, conjugate transpose,
pseudo inverse and complex conjugate, respectively.

FIGURE 1. Array configuration for the proposed algorithm:
a nine-element non-uniformly spaced cross-shaped
sub-array plus an arbitrarily-spaced sub-array.

II. DATA MODEL AND ASSUMPTIONS
The present algorithm adopts a L-element array geome-
try, which consists of a nine-element non-uniformly spaced
cross-shaped sub-array plus a (L − 9) arbitrarily-spaced
sub-array, as shown in Fig. 1. The nine-element non-
uniformly spaced cross-shaped sub-array contains sensors
located at (0, 0), (±d, 0), (±D, 0), (0,±d) and (0,±D) of
the x − y plane, whereas the arbitrarily-spaced sub-array con-
tains sensors arbitrarily located in three-dimensional region
with possibly unknown locations. The inter-sensor spacingD
is assumed to be much larger than a half-wavelength, whereas
the spacing d is assumed to be within a half-wavelength.
Consider M narrowband non-Gaussian planer wave source
signals, parameterized by {θ1, φ1}, {θ2, φ2}, · · · , {θM , φM },
impinging upon the array. The parameter 0 ≤ θm < π

denotes the elevation angle of the mth signal, and 0 ≤ φm <
2π represents the azimuth angle of the mth signal.

The data measured by the sensor located at the origin can
be expressed as

z0(t) =
M∑
m=1

sm(t)+ n0(t) (1)

where sm(t) denotes the complex envelope of the mth signal,
n0(t) represents the additive noise. The 4 × 1 output vectors
measured by the sensors located at (d, 0), (D, 0), (0, d), (0,D)
and (−d, 0), (−D, 0), (0,−d), (0,−D), respectively, have the
complex envelopes represented as

z+(t) =
M∑
m=1

a+(θm, φm)sm(t)+ n+(t)

= A+s(t)+ n+(t) (2)

z−(t) =
M∑
m=1

a−(θm, φm)sm(t)+ n−(t)

= A−s(t)+ n−(t) (3)

where 4×M matrices A+ = [a+(θ1, φ1), · · · , a+(θM , φM )]
and A− = [a−(θ1, φ1), · · · , a−(θM , φM )] stand for the array
steering matrices, with a+(θm, φm) = [ej2π/λdum , ej2π/λDum ,
ej2π/λdvm , ej2π/λDvm ]T and a−(θm, φm) = [e−j2π/λdum ,
e−j2π/λDum , e−j2π/λdvm , e−j2π/λDvm ]T , in which um =

sin θm cosφm and vm = sin θm sinφm, respectively, signify
the direction cosines along the x-axis and y-axis. s(t) =
[s1(t), · · · , sM (t)]T denotes the signal vector. n+(t) and n−(t)
are 4× 1 noise vectors. The (L − 9)× 1 array steering vector
for the entire (L − 9)-element arbitrarily-spaced sub-array is

a(θm, φm) = [a1(θm, φm), · · · , a(L−9)(θm, φm)]T (4)

with a`(θm, φm) = ej2π/λ(x`um+y`vm+z`wm) represents the
inter-sensor spatial phase factor related to the mth signal and
the `th sensor at the possibly unknown location (x`, y`, z`),
where wm = cos θm is the direction cosine along the z-axis.
Then, the entire arbitrarily-spaced sub-array would yield the
following (L − 9)× 1 vector measurement at time t

z(t) =
M∑
m=1

a(θm, φm)sm(t)+ n(t) = As(t)+ n(t) (5)

where A = [a(θ1, φ1), · · · , a(θM , φM )].
With a total of N snapshots taken at the distinct instants
{tn : n = 1, · · · ,N }, the problem is to determine the
azimuth-elevation arrival angles {θm, φm,m = 1, · · · ,M} of
the impinging signals from these snapshots. We provide a
solution to the above-mentioned problem in Section III, under
the following assumptions,
i The DOA’s (θ1, φ1), · · · , (θM , φM ) are pairwise distinct,
so that the matrix A are of full rank.

ii The impinging signals are zero-mean and station-
ary, mutually independent, and non-Gaussian, having
nonzero fourth-order cumulants.

iii Neither pair of arbitrarily-spaced sensors are symmetric
with respect to the origin in the 3D region.
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iv The noise is zero-mean, complex Gaussian, and possibly
spatially correlated.

v The noise is statistically independent of all the signals.

III. DEVELOPMENT OF THE ALGORITHM
As mentioned above, many existing two-dimentional direc-
tion finding algorithms require either two-dimensional
searching or pairing of the parameters. In the proposed
algorithm, by forming a PARAFAC (PARallel FACtor)
model using cumulants, such searching and pairing proce-
dures will be avoided. The PARAFAC analysis is a multi-
way method originating from psychometrics [31], [32].
PARAFAC model, as a useful data analysis tool, is a gen-
eralization of low-rank matrix decomposition to three-way
arrays (TWAs) or multi-way arrays (MWAs). During the past
decade, the PARAFACmodel is gaining more andmore inter-
est in numerous and diverse applications, such as in sensor
array signal processing [30] and communications [29]. In the
following subsection, we formulate five cumulant matrices,
which would be linked to the PARAFAC model in order to
recover the directions of the incoming signals.

A. FORMULATION OF THE CUMULANT MATRICES
Let zi(t), zj(t), zp(t), z`(t) be the data measured by the sensors
either in the non-uniformly spaced cross-shaped sub-array
or in the arbitrarily-spaced sub-array, and let their fourth-
order cumulants be cum(zi(t), z∗j (t), zp(t), z

∗

`(t)). Using the
assumptions made in last section and cumulant properties
given in [33], we have

cum(zi(t), z∗j (t), zp(t), z
∗

`(t))

=

M∑
m=1

γmej2π/λ(xi,j,p,`um+yi,j,p,`vm+zi,j,p,`wm) (6)

where

xi,j,p,` = xi − xj + xp − x`
yi,j,p,` = yi − yj + yp − y`
zi,j,p,` = zi − zj + zp − z`

with (xq, yq, zq) being the location of the qth sensor, and

γm = cum(sm(t), s∗m(t), sm(t), s
∗
m(t)) = E{|sm(t)|4} (7)

Then, denoting the (L − 4) × 1 vector z̄(t) =

[zT0 (t), z
T
+(t), z

T (t)]T and the (L − 5) × 1 vector z̃(t) =
[zT+(t), z

T (t)]T , four cumulant matrices are defined as

R1,1 = cum(z0(t), z∗0(t), z̄(t), z̄
H (t)) = Ā0Ā

H
(8)

R1,2 = cum(z0(t), z0(t), z̄(t), z̃T (t)) = Ā0Ã
T

(9)

R1,3 = cum(z∗0(t), z
∗

0(t), z̃
∗(t), z̄H (t)) = Ã

∗
0Ā

H
(10)

R1,4 = cum(z0(t), z∗0(t), z̃
∗(t), z̃T (t)) = Ã

∗
0Ã

T
(11)

where

0 = diag{γ1, · · · , γM } (12)

and R1,1, R1,2, R1,3 and R1,4 respectively have dimensions
(L − 4) × (L − 4), (L − 4) × (L − 5), (L − 5) × (L − 4)
and (L− 5)× (L− 5). Ā = [ā(θ1, φ1), · · · , ā(θM , φM )], with
ā(θm, φm) = [1, aT+(θm, φm), a

T (θm, φm)]T and Ã is the last
L−5 rows of Ā. Re-arrange R1,1, R1,2, R1,3 and R1,4, we can
formulate a (2L − 9)× (2L − 9) matrix R1 as

R1 =

[
R1,1 R1,2
R1,3 R1,4

]
= Ă0Ă

H
(13)

where Ă = [Ā
T
, (Ã
∗
)T ]T .

FIGURE 2. Virtual array configuration illustration.

It can be seen from equation (13) that the cumulant
matrix R1 would play a similar role as an array covariance
matrix, which is from sensors shown in Fig. 2 in the noise-
free environment. In (13), Ā in Ă correspond to the physical
sensors, which are marked as shaded triangles in Fig. 2,
whereas Ã

∗
in Ă correspond to the virtual sensors, which are

marked as clear triangles in Fig. 2. In other words, the using of
the arbitrary sub-array enables the virtual array size extension
by forming fourth-order cumulant matrices.

To estimate the signal directions, we further define the
following cumulant matrices.

R2,1 = cum(z0(t), z∗+,1(t), z̄(t), z̄
H (t))

= Ā8u0Ā
H

(14)

R2,2 = cum(z0(t), z−,1(t), z̄(t), z̃T (t))

= Ā8u0Ã
T

(15)

R2,3 = cum(z∗0(t), z
∗

+,1(t), z̃
∗(t), z̄H (t))

= Ã
∗
8u0Ā

H
(16)

R2,4 = cum(z0(t), z∗+,1(t), z̃
∗(t), z̃T (t))

= Ã
∗
8u0Ã

T
(17)

R3,1 = cum(z0(t), z∗+,2(t), z̄(t), z̄
H (t))

= Ā8u0Ā
H

(18)

R3,2 = cum(z0(t), z−,2(t), z̄(t), z̃T (t))

= Ā8u0Ã
T

(19)
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R3,3 = cum(z∗0(t), z
∗

+,2(t), z̃
∗(t), z̄H (t))

= Ã
∗
8u0Ā

H
(20)

R3,4 = cum(z0(t), z∗+,2(t), z̃
∗(t), z̃T (t))

= Ã
∗
8u0Ã

T
(21)

R4,1 = cum(z0(t), z∗+,3(t), z̄(t), z̄
H (t))

= Ā8v0Ā
H

(22)

R4,2 = cum(z0(t), z−,3(t), z̄(t), z̃T (t))

= Ā8v0Ã
T

(23)

R4,3 = cum(z∗0(t), z
∗

+,3(t), z̃
∗(t), z̄H (t))

= Ã
∗
8v0Ā

H
(24)

R3,4 = cum(z0(t), z∗+,3(t), z̃
∗(t), z̃T (t))

= Ã
∗
8v0Ã

T
(25)

R5,1 = cum(z0(t), z∗+,4(t), z̄(t), z̄
H (t))

= Ā8v0Ā
H

(26)

R5,2 = cum(z0(t), z−,4(t), z̄(t), z̃T (t))

= Ā8v0Ã
T

(27)

R5,3 = cum(z∗0(t), z
∗

+,4(t), z̃
∗(t), z̄H (t))

= Ã
∗
8v0Ā

H
(28)

R5,4 = cum(z0(t), z∗+,4(t), z̃
∗(t), z̃T (t))

= Ã
∗
8v0Ã

T
(29)

where

8u = diag{ej2π/λdu1 , · · · , ej2π/λduM } (30)

8u
= diag{ej2π/λDu1 , · · · , ej2π/λdDuM } (31)

8v = diag{ej2π/λdv1 , · · · , ej2π/λdvM } (32)

8v
= diag{ej2π/λDv1 , · · · , ej2π/λDvM } (33)

Then, similar as R1 is constructed from (8) - (11), we can
construct R2, R3, R4 and R5 from (14) - (29) as follows

R2 =

[
R2,1 R2,2

R2,3 R2,4

]
= Ă8u0Ă

H
(34)

R3 =

[
R3,1 R3,2

R3,3 R3,4

]
= Ă8u0Ă

H
(35)

R4 =

[
R4,1 R4,2

R4,3 R4,4

]
= Ă8v0Ă

H
(36)

R5 =

[
R5,1 R5,2

R5,3 R5,4

]
= Ă8v0Ă

H
(37)

We refer to the sensors of nine-element non-uniformly
spaced cross-shaped sub-array as guiding sensors. More
specifically, z0(t) and z0(t), z0(t) and z±,1(t), z0(t) and z±,2(t),
z0(t) and z±,3(t), z0(t) and z±,4(t) are guiding sensors for
constructing R1, R2, R3, R4 and R5, respectively. With the
foregoing definitions, we will show in next subsection as to
how the matrices R1 - R5 are related to the PARAFACmodel.

B. FORMULATION OF THE PARAFAC MODEL
The matrices R1 - R5 can be related to the PARAFAC model
as follows. Definingϒ1 = 0,ϒ2 = 8u0,ϒ3 = 8

u0,ϒ4 =

8v0, ϒ5 = 8
v0, Rp can be re-expressed as Rp = ĂϒpĂ

H
,

p = 1, · · · , 5. Stack Rp to form a TWA R, the (i, p, j)th
element of which can be written as

ri,p,j = [R]i,p,j =
M∑
m=1

ăi,mζp,mă∗j,m (38)

where ζp,m is themth diagonal element ofϒp. Define a 5×M
matrix G as

G =


γ1 · · · γM

γ1ej2π/λdu1 · · · γMej2π/λduM

γ1ej2π/λDu1 · · · γMej2π/λDuM

γ1ej2π/λdv1 · · · γMej2π/λdvM

γ1ej2π/λDv1 · · · γMej2π/λDvM

 (39)

then ϒp and G are related by ϒp = Dp(G).
Equation (38) implies that the cumulant matrices R1 - R5

can be expressed as the low-rank decomposition of the
TWA R, and therefore, the direction finding problem can be
reformulated as the problem of low-rank decomposition of
the TWAR, which can be solved by PARAFACfitting. In fact,
we need only to estimate the matrix G.
Note that, on the basis of the notion of the Kruskal rank

(k-rank) of a matrix, the PARAFAC decomposition of the
TWA R would be unique under certain conditions. The
Kurskal rank (or k-rank) of a matrix A is kA, if and only if
every kA columns of A are linearly independent and either
A has kA columns or A contains a set of kA + 1 linearly
dependent columns. The Kruskal rank is always less than or
equal to the conventional matrix rank. If A is of full column
rank, then it is also of full k-rank. From [35], we have if
for M > 1,

kĂ + kG ≥ 2M + 2 (40)

then matrices Ă and G are unique up to inherently unresolv-
able permutation and scaling ambiguities. The uniqueness
condition (40) also implies the maximum number of sources
that can be identified by the PARAFACmodel (38). Using the
fact that rank is always less than or equal to the matrix rank,
(40) becomes

2min{2L − 9,M} +min{5,M} ≥ 2M + 2 (41)

Therefore, the trilinear decomposition (38) is unique for any
M ≤ 2L−9. ForM ≥ 2L−9, it is unique forM ≤ 2(L−4).
These conditions are sufficient for essential uniqueness, but
are not always necessary. The above analysis indicates that
the proposed algorithm can resolve more sources than sen-
sors. For example, for L = 11, the maximum number
of sources that can be resolved by the proposed algorithm
is M = 14.
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C. ESTIMATION OF THE DIRECTION COSINES
There exist several effective algorithms that can be used
to solve the PARAFAC fitting of R. The trilinear alternat-
ing least square (TALS) algorithm [30], which is based on
the idea of reducing the optimization problem to smaller
sub-problems that are solved iteratively, is adopted here.
In TALS, the parameters to be determined are separated into
three sets, and by fixing two of them, a least squares cost
function that depends only on the third set is first minimized.
With the solution of this linear least squares problem, the sub-
sequent stages of the TALS consist of applying the same
principle on the other two sets of parameters. The TALS
algorithm iterates, changing from one set to the next, until the
variation of the loss function or of the parameters is less than
a predefined convergence criterion. Since all the steps are
optimizations in the least squares sense, the TALS algorithm
is guaranteed to converge monotonically.

To formulate the TALS algorithm mathematically,
we define the ‘‘slice’’ matrices of R as

Rp = [r:,p,:], R′i = [ri,:,:], R′′j = [r:,:,j] (42)

where i, j = 1, · · · , 2L − 9, p = 1, · · · , 5. For the sake of
convenience, let B = Ă

H
, then, stack Rp for p = 1, · · · , 5,

we get the matrix

R =


R1
R2
R3
R4
R5

 =

ĂD1(G)B
ĂD2(G)B
ĂD3(G)B
ĂD4(G)B
ĂD5(G)B



=


ĂD1(G)
ĂD2(G)
ĂD3(G)
ĂD4(G)
ĂD5(G)

B = (G� Ă)B (43)

where � is the Khatri-Rao (column-wise Kronecker) matrix
product. In the same way, we can have

R′ =


R′1
R′2
...

R′2L−9

 = (Ă� BT )GT (44)

and

R′′ =


R′′1
R′′2
...

R′′2L−9

 = (BT � G)Ă
T

(45)

In practice, the exact cumulant matrices R, R′ and R′′ are
unavailable but can be estimated from sample data. Denote
R̂, R̂

′
and R̂

′′
as the estimates of R, R′ and R′′, then, the TALS

fitting for (43) - (45) is to iteratively minimize the following

three equations

min
Ă,G,B

= ‖R̂− (G� Ă)B‖F (46)

min
Ă,G,B

= ‖R̂
′
− (Ă� BT )GT ‖F (47)

min
Ă,G,B

= ‖R̂
′′
− (BT � G)Ă

T
‖F (48)

where ‖ · ‖F denotes the Frobenius norm. For each equation,
one component matrix is updated in each iteration by fixing
the other two to their values obtained from the other two
equations. It follows from (46) - (48) that the conditional least
square updates of B,G and Ă at the r th iteration are given by

B̂r = (Ĝr−1 �
ˆ̆Ar−1)†R̂ (49)

Ĝ
T
r = ( ˆ̆Ar−1 � B̂

T
r−1)

†R̂
′

(50)

ˆ̆A
T

r = (B̂
T
r−1 � Ĝr−1)†R̂

′′
(51)

To initiate the iteration at r = 1, Ĝ0 and
ˆ̆A0 can be randomly

generated. Let e(r) = ‖R̂− (Ĝr �
ˆ̆Ar )B̂

T
r ‖F . Then, the algo-

rithm converges when |e(r) − e(r − 1)| ≤ ε, where ε is an
arbitrarily preset small number.

Since d ≤ λ/2 and −1 ≤ um, vm ≤ 1, then with the
estimation of Ĝ, a set of unambiguous but high-variance
reference estimates of direction cosines along x-axis and
y-axis (ûrefm , v̂

ref
m ),m = 1, · · · ,M can be derived as

ûrefm =
arg(ĝm,2/ĝm,1)

2πd/λ
(52)

v̂refm =
arg(ĝm,4/ĝm,1)

2πd/λ
(53)

where ĝm,j, j = 1, · · · , 5 denotes the jth element of the
mth column of matrix Ĝ. Furthermore, as D > λ/2, a set
of low-variance but cyclically ambiguous direction cosines
estimates along x-axis and y-axis (ûm(nx), v̂m(ny)),m =

1, · · · ,M can also be derived from Ĝ as

ûm(nx) = µm + nx
λ

D
(54)⌈

D
λ
(−0.5− µm)

⌉
≤ nx ≤

⌊
D
λ
(0.5− µm)

⌋
(55)

µm =
arg(ĝm,3/ĝm,1)

2πD/λ
(56)

v̂m(ny) = νm + ny
λ

D
(57)⌈

D
λ
(−0.5− νm)

⌉
≤ ny ≤

⌊
D
λ
(0.5− νm)

⌋
(58)

νm =
arg(ĝm,5/ĝm,1)

2πD/λ
(59)

where dxe denotes the smallest integer not less than x,
bxc represents the largest integer not greater than x, and arg{z}
signifies the principal argument of the complex number z
between −π and π .

Finally, the reference direction cosines estimates (ûrefm , v̂
ref
m ),

m = 1, · · · ,M are used to resolve the cyclically ambiguous
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direction cosines estimates (ûm(nx), v̂m(ny)),m = 1, · · · ,M .
The disambiguated x-axis and y-axis direction cosines
ûm and v̂m are found from ûm(nx) and v̂m(ny) when the
value of |ûm(nx) − ûrefm | and |v̂m(ny) − v̂refm | are minimized.
Mathematically, the disambiguated x-axis direction cosines
estimates ûm are given by

ûm = µm + nox
λ

D
(60)

where nox is estimated as

nox = argmin
nx

∣∣∣∣ûrefm − µm − nxλ
D

∣∣∣∣ (61)

Analogously, the disambiguated y-axis direction cosines esti-
mates v̂m are given by

v̂m = νm + noy
λ

D
(62)

where noy is estimated as

noy = argmin
ny

∣∣∣∣v̂refm − νm − nyλ
1y

∣∣∣∣ (63)

Note that nox and noy are determined separately. The search
ranges for nox and n

o
y are given by (55) and (58), respectively,

and for each of nox and n
o
y , up to a maximum of b2(D/λ)+ 1c

candidates are tested.
From the foregoing analysis, the 2D directions of the

mth signal can be estimated as

θ̂m = arcsin
(√

û2m + v̂2m

)
(64)

φ̂m = 6 (ûm + jv̂m) (65)

D. COMPUTATIONAL COMPLEXITY COMPARISON
In this subsection, we analyze the computational complexities
of the proposed algorithm. Four other algorithms are consid-
ered here for comparison. We consider the major computa-
tions (multiplications) involved in the algorithms. The labels
‘‘Cumulant-PARAFAC’’, ‘‘Cumulant-ESPRIT’’, ‘‘Dual-Inv-
ESPRIT’’, ‘‘L-Shape-ESPRIT’’, ‘‘Parallel-Shape-ESPRIT’’
are used for the proposed algorithm, the algorithm in [26],
the algorithm in [21], the algorithm in [10] and the algo-
rithm in [11], respectively. For the ‘‘Cumulant-PARAFAC’’,
the major computations are (a): to estimate the cumulant
matrices R1 - R5 and (b): to perform trilinear decomposition
of R. The resulting multiplications required are in order of
O(12N (L − 4)2 + 12N (L − 4)2(L − 5)2 + 12N (L − 5)2)
for (a) and O(M3

+ 5M (2L − 9)2) per iteration for (b).
For the ‘‘Cumulant - ESPRIT’’, the major computations are
to compute three cumulant matrices and to perform eigen-
decomposition for signal subspace extraction. The compu-
tations required are in order of O(12NL2 + L3). For the
‘‘Dual-Inv-ESPRIT ’’, the major computations are to con-
struct a correlationmatrix and to perform its eigendecomposi-
tion. The multiplications needed are in order ofO(L2N+L3).
For the ‘‘L-Shape-ESPRIT’’, the major computations are
to estimate the signal subspace from array data using lin-
ear operations. The multiplications required are in order

of O(2LNM ). For the ‘‘Parallel-Shape-ESPRIT’’, the major
computations are to estimate the signal subspace using lin-
ear operations. The multiplications involved are in order
of O(3LNM ).

E. ADVANTAGES OF THE PROPOSED ALGORITHM
Relative to most other two-dimensional direction finding
algorithms [3], [4], [21], [26]–[28], the above proposed algo-
rithm has the following advantages
(1) The proposed algorithm imposes less constraint on array

shape, in the sense that sensors outside the cross-shaped
sub-array can be placed in an arbitrarily-shaped array and
the locations of these sensors may be unknown.

(2) It requires no two-dimensional searching.
(3) It requires no parameter pairing procedure.
(4) It achieves array aperture extension by constructing

virtual sensors using fourth-order cumulants.
(5) It providesly high accurate and unambiguous angle esti-

mates by exploiting the fact that spatial phase factor is
larger than a half-wavelength.

(6) It can resolve more signals than sensors. More exactly,
it can resolve 2(L−4) signals with an array of L sensors.

It is noted that in [3] and [4] the MUSIC algorithm is
adapted to a uniform circular array; these algorithms achieve
angle estimates by two-dimensional searching, and hence
would only have the advantage (3) listed above. The methods
in [10] and [11] apply the ESPRIT-like algorithm to L-shape
or parallel shape array geometries; these algorithms recover
the signal directions from half-wavelength spatial invariance
embedded in the array, and hence only have the advantage (2)
listed above. Reference [21] presents a sparse array geometry
embedding two spatial invariances to obtain highly accurate
and unambiguous angle estimation using the ESPRIT tech-
nique. This algorithm has the advantages (2) and (5) listed
above. Reference [26] derives an ESPRIT-based algorithm
using fourth-order cumulants with arbitrary array geometry.
However, this algorithm does not extend the array aperture
and hence only have the advantages (1) and (2) listed above.
The method in [27] develops a MUSIC-like algorithm that
can resolve more signals than sensors using higher order
statistics. With prior knowledge of the sensor locations, this
algorithm would have the advantages (1), (3), (4) and (6)
listed above. Reference [28] proposes a PARAFAC-based
algorithm by using a special volume array geometry. How-
ever, this algorithm requires the inter-sensor spacing is within
a half-wavelength, and hence this algorithm would offer nei-
ther advantages (1) nor (5).

IV. SIMULATIONS
Simulation results are presented to demonstrate the effi-
cacy of the proposed algorithm. Unless otherwise stated,
the array configuration in Fig. 1 with L = 15 elements,
i.e., a nine-element non-uniformly spaced cross-shaped
sub-array plus a six-element arbitrarily-spaced sub-array,
is used. We consider the case of two equal-power nar-
rowband non-Gaussian uncorrelated monochromatic signals
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impinging upon the array. There are N = 200 snapshots in
each independent Monte Carlo trials and 500 independent
Monte Carlo trials for each data point. Further the additive
white noise is assumed to be complex Gaussian, In all the
simulations, the performance metric used is the root mean
squared error (RMSE) of first signal.

FIGURE 3. RMSEs of the estimates of the direction cosines versus
inter-sensor spacing, varying from 1λ to 100λ. Two monochromatic
signals with digital frequencies f1 = 0.1, f2 = 0.4 and direction cosines
u1 = 0.1, v1 = 0.2 and u2 = 0.31, v2 = 0.44 impinge upon the array.

In the first example, we assess the performance of the
proposed algorithm for various values of D, the inter-sensor
spacing. Two incident signals arrive with direction cosines
u1 = 0.1, v1 = 0.2, u2 = 0.31, v2 = 0.44 are simu-
lated. Fig. 3 shows, on a log-log scale, the RMSEs of the
reference direction cosine estimates (ûref1 , v̂

ref
1 ) and disam-

biguated direction cosine estimates (û1, v̂1) as a function ofD,
varying from 1λ to 100λ, λ being the wavelength. The signal-
to-noise ratio (SNR) for each of the signals is set 20dB.
It is seen that the RMSE of the disambiguated direction
cosine estimates decrease linearly as the inter-sensor spacing
increases from 1λ up to 25λ. The performance of reference
direction cosine estimates remains relatively constant as the
inter-sensor spacing increases from 1λ to 100λ. This confirms
that the reference direction cosine estimates are high variance
but unambiguous. For D > 36λ, the disambiguated direc-
tion cosine estimates have almost the same statistical errors
as the reference direction cosine estimates. This behavior
is similar to that in [21] and can be explained as follows.
Referring to (60) and (62), the estimates u1(nx) and v1(ny)
suffer ambiguities of some unknown integer multiple of the
grid size λ/D, respectively. As the inter-sensor spacing D
increases, the grid sizes shrink relative to the variances of
the reference estimates ûref1 and v̂ref1 . Therefore, it becomes
increasingly probable that ûref1 and v̂ref1 would identify the
wrong grid point. As the inter-sensor spacings continue to
increase, the grid misidentification will become the dominant
error, and the disambiguated estimates û1 and v̂1 eventually
have the same error statistics as the reference estimates
ûref1 and v̂ref1 .

FIGURE 4. RMSEs of the estimates of the direction cosines versus SNR.
Two monochromatic signals with digital frequencies f1 = 0.1, f2 = 0.4
and direction cosines u1 = 0.1, v1 = 0.2 and u2 = 0.31, v2 = 0.44
impinge upon the array.

FIGURE 5. RMSEs of the estimates of the direction cosines versus the
number of snapshots. Two monochromatic signals with digital
frequencies f1 = 0.1, f2 = 0.4 and direction cosines u1 = 0.2, v1 = 0.4
and u2 = 0.35, v2 = 0.55 impinge upon the array.

In the second example, we compare the RMSEs
of the proposed algorithm (Cumulant-PARAFAC) with
four other subspace-based algorithms using cumulants or
other array configurations: the ESPRIT-based algorithm
using cumulants (Cumulant-ESPRIT) [26], ESPRIT-based
algorithm with dual-size spatial invariance (Dual-Inv-
ESPRIT) [21], the ESPRIT-based algorithm using L-shape
array (L-Shape-ESPRIT), and the ESPRIT-based algorithm
using Parallel-Shape array (Parallel-Shape-ESPRIT). For the
Cumulant-ESPRIT algorithm, we assume fifteen-element
arbitrarily-spaced array configuration that contains three pre-
set guiding sensors located at (0, 0), (λ/2, 0), and (0, λ/2).
For the Dual-Inv-ESPRIT algorithm, we use a right trian-
gular array grid with spacing D and a five-element half-
wavelength spaced cross-shaped sub-array in each grid point.
For the four ESPRIT-based algorithms, the estimated sets of
direction cosines are assumed to have been correctly paired.
In this simulation, the signal direction cosines are taken as
u1 = 0.2, v1 = 0.35 and u2 = 0.4, v2 = 0.55. For the
proposed algorithm and [21], we set D = 5λ. Figs. 4 and 5,
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FIGURE 6. Direction-cosine estimates for ten independent trials. M = 14
sources with (u1, · · · ,u14) = (0.37,−0.64, 0.15, −0.62,−0.36,
−0.12,0.78, 0.45,0.19, −0.20,−0.16, −0.08,−0.27, 0.39) and
(v1, · · · , v14) = (−0.55,−0.45, −0.35,−0.25, −0.15,−0.05, 0.1,0.2,
0.3,0.4, 0.5,0.6, 0.7,0.8) impinge upon the array of L = 11 sensors.

FIGURE 7. Computational costs of the algorithms versus the number of
snapshots. L = 11, M = 2.

respectively show the RMSEs of the five algorithms as a
function of SNR, varying from 0dB to 30dB and the number
of snapshots, varying from 20 to 2000. The curves in these
two figures unanimously indicate that the proposed algorithm
has performance superior to its four competitors in term of the
lower RMSEs.

In the third example, we show that the proposed algorithm
can resolve more sources than sensors. We assume M = 14
sources with the following direction-cosines (u1, · · · , u14) =
(0.37, −0.64, 0.15, −0.62, −0.36, −0.12, 0.78, 0.45,
0.19, −0.20, −0.16,−0.08, −0.27, 0.39), (v1, · · · , v14) =
(−0.55, −0.45, −0.35, −0.25, −0.15, −0.05, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8). The number of sensors consid-
ered in this example is L = 11. The SNR and the number
of snapshots are fixed at 30 dB and N = 1000, respectively.
Fig. 6 shows the direction-cosine estimation results for ten
independent trials. It is seen from the figure that the proposed
algorithm successfully resolves the 14 sources, as stated in
Section III.B: M = 2(L − 4).

In the last example, we compare the computational
complexities of different algorithms. Fig. 7 shows the

multiplications required by the five algorithms as a function
of the number of snapshots. The number of sensors consid-
ered is L = 11, and the number sources is set asM = 2. It is
seen from the figure that the proposed algorithm is computa-
tionally more complex than the other four algorithms.

V. CONCLUSION
A new cumulant based algorithm is proposed in this
paper to estimate 2D arrival angles of multiple narrow-
band non-Gaussian signals. In the proposed algorithm,
we present an array geometry consisting of a nine-element
non-uniformly spaced cross-shaped sub-array plus another
arbitrarily-spaced sub-array to define five cumulant matrices,
from which the signal direction cosines can be estimated by
using PARAFAC fitting. The proposed algorithm achieves
array aperture extension by jointly extending array physical
aperture and constructing virtual sensors, and requires no
open-form two-dimensional searching and parameter pairing.
In addition, it can resolve 2(L − 4) signals with an array of L
sensors. Incidently, as the fourth-order cumulant can naturally
suppress the correlated noise, the proposed algorithm would
be robust in the presence of spatially correlated noise.
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